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Abstract

This review provides a comprehensive account of the recent progress in constructing
practical exchange-correlation approximations of Kohn-Sham density functional theory.
The emphasis is on the general techniques of density functional design that have been
particularly successful in quantum chemistry. Nearly all density functionals embraced
nowadays by computational chemists are discussed. Persistent misconceptions about
several widely used functionals are clarified.

1 Introduction

The rise of density functional theory (DFT) to prominence and popularity it enjoys today
was hardly anticipated by computational chemists forty or even thirty years ago. As recently
as 1983, when DFT was but a footnote in quantum chemistry textbooks, Robert Parr was
writing a review “to alert the physical chemistry community to the promise and the charm
of the density functional theory of electronic structure of atoms and molecules” [1]. Two
decades later, DFT is a household tool for computing everything from atoms to biopolymers.
How did this extraordinary reversal of fortunes come about?

Electronic structure methods that use the electron density as the basic variable trace
their origin to the Thomas—Fermi [2], Thomas—Fermi-Dirac [3], and related models [4-7]
developed in the early years of quantum mechanics. Many similarities with present-day DF'T
can be also found in Géspar’s exchange potential [8] and Slater’s X a-methods [9-11]. By the
1960s, these precursors of DFT were fully developed and used extensively for calculations of
atoms and solids, but their impact on molecular quantum chemistry remained insignificant.
The Thomas—Fermi and Thomas—Fermi—Dirac models proved to be of little use in chemistry
because they can never yield a lower total energy for a molecule than for separated atoms
(the “no bonding theorem”) [12-14]. The experience of quantum chemists with other DF'T
prototypes was not so discouraging, but the accuracy of those approximations could not
match the accuracy of the increasingly sophisticated wave function techniques.

*Chapter 24 in: Theory and Applications of Computational Chemistry: The First 40 Years (A Volume of
Technical and Historical Perspectives), edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria,
Elsevier, Amsterdam (2005).



Certain skepticism toward the budding DFT existed also on theoretical grounds. It
seemed improbable that a quantitative theory based solely on the electron density could be
exact for anything other than model systems like the free-electron gas, simply because the
density appears to contain not enough information about electron-electron interactions. The
two-electron reduced density matrix was deemed the simplest mathematical object necessary
to describe a many-electron system with Coulombic interactions. It was not until 1964 that
Hohenberg and Kohn put these doubts to rest by proving their now famous theorem [15].
The Hohenberg-Kohn paper contains two fundamental results: (i) the ground-state electron
density uniquely determines the Hamiltonian and, therefore, the ground-state electronic wave
function (or a family of degenerate ground-state wave functions [16]) and all properties of the
system; (ii) the true density functional for the electronic energy assumes its minimum for the
correct ground-state density. These propositions effectively reduce the problem of solving the
many-body Schrodinger equation to the problem of minimizing a density functional. This
idea can be put to work in various ways, of which the approach of Kohn and Sham [17] has
been embraced more often than others.

The challenge of density functional theory consists in the determination or, rather, ap-
proximation of the unknown energy density functional. Compared to quantum chemists,
solid-state physicists have it easy. The simple formulas derived in the theory of a uniform
electron gas work quite well for typical crystals. Not so in chemistry, where the uniform elec-
tron gas is not a good approximation for rapidly varying, shell-structured, electron densities.
In order to achieve useful accuracy for molecules, even small ones, much more sophisticated
approximations are required. The absence of such approximations until the mid-1980s was
the single most important reason why DFT conquered chemistry many years after it took a
prominent place in solid state physics [18]. Once the first successful density functional ap-
proximations for molecules were developed, interest in DFT surged, prompting the discovery
of new fundamental results, stimulating the development of scores of density functionals,
and generating countless applications. To appreciate this amazing progress, the reader only
needs to compare Parr’s 1983 review [1] with its follow-up published twelve years later [19].
For more details, we recommend many excellent introductory [20-24] and advanced [25-31]
expositions of density functional theory.

To an uninitiated user of quantum chemistry programs, mathematical expressions of
density functionals may appear esoteric. The analytic form of many functionals is indeed
complicated and non-intuitive, but it often conceals beautifully simple ideas. Lack of fa-
miliarity with these ideas and a “black-box” attitude toward the alphabet soup of density
functional approximations are in part responsible for the wide-spread sentiment that DFT
is effectively an empirical method with no prescription for systematic convergence to the
right answer. We hope to convince the reader here that this view is unfair and that the
development of density functionals can be, in its own way, a rigorous procedure. We will
do so by systematizing and explaining the principal ideas behind modern density functional
approximations. Because the most important developments in DFT relevant to chemistry
occurred in the last quarter of a century, it is this later period that is primarily covered here.

Although this review focuses on general principles of density functional design, many par-
ticular approximations will be discussed in detail. It is not our purpose, however, to present
an exhaustive survey of density functionals or to characterize their performance. Such a task
would be nearly impossible at a time when the number of published functionals continues
to grow at an accelerating pace. Nonetheless, all “popular” exchange-correlation functionals
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for Kohn—Sham DFT (i.e., functionals available in program packages like GAUSSIAN 03 [32]
and enjoying wide use) will be covered. Nor shall we touch upon indirectly related subjects
such as orbital-free kinetic-energy DFT [33], quantal DFT [34], local-scaling transformation
version of DFT [35], and others. Finally, we realize that this review is biased toward our
own work and the work of our collaborators and hope that the reader will forgive us any
unintended omissions.

2 Kohn—Sham density functional theory

Density functional theory aspires to predict exactly properties of many-electron systems
without recourse to the wave function, using only the information contained (explicitly or
implicitly) in the ground-state electron density. This section reviews the basic DET formal-
ism and introduces fundamental relations that will recur throughout this work.

2.1 Motivation for density functional theory

Consider the problem of solving the nonrelativistic, stationary nucleus, Schrédinger equation
HU = EV (1)

involving the N-electron Hamiltonian operator (in atomic units)

N N
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where v(r;) is a multiplicative external potential in which the electrons move. For atoms,
molecules, and solids, v(r;) is simply the Coulombic potential of the nuclei with charges Z4
at positions Ry,

nuclei
ZA

P )

(3)

although DFT is not restricted to potentials of this form. Multiply Eq. (1) from the left by
U* and integrate each term over the spatial (r;) and spin (¢;) coordinates not acted upon
by the operators T, V', and V.. Assuming that ¥ is normalized, the result is

1 Py(
E=— /[V2p(r r)} , dr—l—/ r)dr + // »(r1, 1) dry dr,, (4)
2 r] — 1y

where we have introduced the one-electron reduced density matrix p(r,r’) and the pair
density

N(N -1
Pg(rl,rQ):% Z /.../|\II(I'10'17I'20'2,I'30'3,...,I'NO'N)|2dI'3...dI'N. (5)

01...0N
The density, reduced density matrix, and the pair density are related by

2

p(r2) = plrs,er) = o / Py(ry, 1) dry. (6)
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The three terms in Eq. (4) represent the kinetic energy of the electrons

T = —%/ [pr(r,r')}r,:r dr, (7)

the electron-nuclear attraction
V= [ oot dr, (8)

and electron-electron interaction

‘/ee = // —P2(I'1, I'Q) dr1 dI‘Q. (9)
12

The last term includes the classical Coulomb repulsion and quantum-mechanical exchange-
correlation effects. The separation of the classical and quantum-mechanical parts can be
made explicit by writing the pair density as

Pa(ri,12) = p(00) [plra) + s, 2] (10)

which effectively defines hy.(r1,12), the ezchange-correlation (zc) hole of an electron at r;.
Using Eq. (10) we can rewrite Eq. (9) as

Vse =J+ E)E(é)v (11)

where J is the classical Coulomb repulsion energy
1
J = —// PE)PED) 1o, (12)
2 T12

and EY is the conventional (in wave function-based methods) exchange-correlation energy

1 hXC )
B =3 / / pr) m(“ £2) gr, dry. (13)

Now Eq. (4) becomes
E=T+V+J+EY. (14)

Observe that V' and J are explicit functionals of p(r), but 7" and EY are not. One might

suppose that 7" and EY cannot be determined from p(r) in principle, since they appear
to require the knowledge of the density matrix p(r,r’) and the pair function Ps(rq,rs),
respectively. Intuition is wrong here, because the Hohenberg—Kohn theorem [15] asserts that
the ground-state energy of a real many-electron system in a static external potential v(r) is
a unique functional of the density:

Elpl = [ vlwp(e)dr + Flgl, (15)
where F[p] absorbs the kinetic energy and electron-electron interaction terms

Flp] = Tlp] + J[p] + E[p]. (16)
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The Hohenberg—Kohn theorem assures only that the functional F[p] exists, but the actual
form of Fp| is unknown (except for the term J[p]) and must be approximated. Once the
number of electrons N is fixed, Hamiltonian operators for any two systems differ only by the
external potential v(r). The functional F[p] is therefore universal.

The partitioning of F[p] into the three components T, J, and E)((f;) in Eq. (16) is by no
means unique. Different partitioning schemes give rise to different variants of DF'T. In fact,
the particular partitioning of Eq. (16), although very natural, is not the one that is normally
used. The most popular variant of DFT is the Kohn-Sham formulation, to which we now
turn our attention.

2.2 Kohn—Sham scheme

The idea of the Kohn-Sham method is best understood as follows. Consider a generalized
Hamiltonian of Eq. (2) in which the term Vee is scaled by an electron-electron coupling
constant A\. We are interested in values of A\ between 0 and 1. Each value of A corresponds
to a distinct universal functional of the density. In Levy’s constraint search formulation [36]
of the Hohenberg—Kohn principle, this is explicitly stated as

Ex[p] = (W5 AT + AV | W), (17)

where \Ifrp“in’)‘ is the N-electron wave function that minimizes the expectation value of T+ /\Vee
and simultaneously yields the density p(r). For real systems, A = 1, so that Fj[p] = F[p] is
the universal functional of interest. This is the problem we wish to solve but cannot.

The value A = 0 corresponds to a system of noninteracting electrons moving in the
external potential v(r). The noninteracting Schrédinger equation is, of course, trivially
solvable. The solution is ®; = \If;“invo, a single Slater determinant of one-electron wave
functions (orbitals) ¢; obtained from the single-particle equations

1
|:—§V2 + 'U(I'):| (bl(r> = €Z¢Z<I') (18)
The universal density functional for this noninteracting system is therefore
| N
Folp] = Tulpl = =5 D (il V2|6n), (19)

i=1

where the density is given by
N
plr) =) loi(r)l’. (20)
i=1

Note that Ti[p] is written in terms of orbitals, and so is an implicit functional of p(r).

What Kohn and Sham did was to assume that for any real (interacting) system with
the ground-state density p(r) there always exists a noninteracting system with the same
ground-state p(r). Then one can rewrite Eq. (16) as

Flpl = Talpl + Jlpl + Exelpl, (21)



where Ty[p] is the kinetic energy of the noninteracting system computed exactly by Eq. (19),
and Fy.[p] is the DFT exchange-correlation energy, formally defined as

Exelp] = Tlp) = T.[o] + EX[p]. (22)

Application of the variational principle, 0 E/dp(r) = 0, to the Kohn—Sham functional

Elpl = [ pe)o(w) de + Tp) + J1o) + Exlpl 3

subject to the orthonormality constraints (¢;|¢;) = d;;, yields N Hartree-type one-electron
equations

loo p(')
—§V +o(r) + r— 1 dr’ 4 vee(r) | i(r) = €04(r), (24)
where ¢;(r) are Kohn—-Sham orbitals, ¢; are Kohn—Sham orbital energies, and vy (r) is the

exchange-correlation potential
_ 0Bk ]

e = )

that is, the functional derivative of Fy.[p] with respect to the density. The orbitals ¢;(r)
form a Slater determinant CDZnin, called the Kohn—Sham wave function.

Egs. (20), (24), and (25), known as the Kohn-Sham equations, are formally exact and
contain only one unknown term, Fy.[p]. It is Ey. that is approximated in Kohn—-Sham DFT,

(25)

not the conventional exchange-correlation energy EY). Exact treatment of the kinetic energy
as an orbital-dependent functional is crucial to the practicality of this scheme because T'[p]
and T[p] are notoriously difficult to approximate as explicit functionals of the density [33, 37].
One can readily show [20] that Ty < T, so that by Eq. (22) Fy. > Ef(?, where the equality
holds only for one-electron systems. For a historical account of the developments leading to
the announcement of the Hohenberg—Kohn theorem and the formulation of the Kohn—Sham
equations, we refer the reader to a memoir of Hohenberg, Kohn, and Sham [38] and Kohn’s
Nobel lecture [39]. For a modern perspective on DFT fundamentals, we recommend a recent
review by Savin, Colonna, and Pollet [40].

3 Exchange and correlation density functionals

The problem of finding accurate approximations to Fy.[p] is the biggest challenge of Kohn—
Sham DF'T. The better we understand the exact functional, the better approximations we can
design. The following section presents a closer look at the exchange-correlation functional.

3.1 Exchange-correlation energy

The formal definition of the exchange-correlation energy by Eq. (22) is not very helpful for
designing approximate density functionals. Fortunately, there exist more constructive exact
formulas for Fy.[p]. Observe that by the Hellmann-Feynman theorem [41]

OF[p
o\

= (WA |V [ W), (26)
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where F\[p] is given by Eq. (17). Let us integrate Eq. (26) over A from 0 to 1 keeping the
density p(r) fixed at all \. This procedure is called “adiabatic integration” and its result is

01 O ir = Filo) — Flp] = Brelo] + 1o (27)

where we have used Egs. (19) and (21) for Fi[p] = F|[p| and Fg[p], respectively. Combining
Egs. (26) and (27) we obtain the adiabatic connection formula [42-45]"

1 1
Bl = [ (0w ax - Jlol = [ Exlpldr 29
0 0
Generalizing the definition of the pair function and exchange-correlation hole in Eq. (10)
to intermediate coupling strengths, we now introduce Pjs'(ry,r9) and h).(ri,rs), and use
Egs. (9)-(11) to rewrite Eq. (28) as

1/t h)
f%MZQ/}M[/MmX““”me2 (29)
0 r12

In this equation, p(r;) does not have the subscript A because the electron density is fixed.
Since the integration over \ is decoupled from the integration over space coordinates, we can
define

1
holrrz) = [ Bfrnez) (30)
0

and rewrite Eq. (29) as

Elp] = %// p(rl)%zm) dry drs. (31)

Eq. (31) can be regarded as a Kohn-Sham DFT analog of Eq. (13). Let us now make a
change of variables r = r;, u = r9 — r; and integrate over the angular coordinates of u. This
gives the spherically-averaged exchange-correlation hole

B 1 27 T
hye(r,u) = yym / dgbu/ hye(r,r 4+ 1) sin 0, db,. (32)
T Jo 0

Using this quantity, Eq. (31) can be written as

Eylp] = %/p(r) dr /000 47TUZM du. (33)

u

This equation serves as the starting point for many density functionals approximations.
In practical Kohn—Sham DFT, the exchange-correlation functional F,. is usually sepa-
rated into the exchange and correlation parts,

Ex[p] = Ex[p] + Ec[p). (34)

!The density was held fixed for all X in Refs. [43-45]; it was held fixed only for A = 0 and 1 in Ref. [42].




The exchange energy is defined by
Ey[p] = (@)™ Ve 25™) — J o], (35)

where @gﬁn is the Kohn-Sham determinant, while the correlation energy is taken formally
as the difference

Ec[p] = Exclp] = Bxlp] = (U™ [Veo W) — (D5 Ve 25, (36)

where \Ifglin is the exact interacting wave function. The last term in Eq. (36) is nothing but
the integral of Eq. (9) with the pair density P, derived from @gﬁn. For a single-determinant
wave function like @™, the pair density is [46]

Pyfr1,es) = 5p(ra)p(e) = 3 [palrama)paen ) + paer mps(rary)]. - (37)

2
For spin-compensated systems, substitution of Eq. (37) into Eqs. (9) and (35) yields the
following exact expression for the exchange energy

1 2
Eixact _ = // M drydrs, (38)
4 12

where p(ry, ry) is the Kohn-Sham one-electron density matrix

p(ri,r2) = Z ¢i(r1); (r2). (39)

Eq. (38) looks exactly like the expression for the exchange energy in the Hartree-Fock (HF)
theory, EHY. Tt should be emphasized, however, that ¢;(r) in Eq. (39) are the Kohn-Sham,
not Hartree—Fock, orbitals. The two sets of orbitals are different, because they arise from
solving different equations. Thus, in general E=2<® £ EHF  This distinction is important
and should always be kept in mind, especially because the terms “exact exchange” and
“Hartree—Fock exchange” are often loosely used as synonyms.

The true exchange functional is therefore known exactly. Then why do we need approxi-
mate exchange functionals? The problem with Eq. (38) is that it is not an explicit functional
of the density, so the corresponding exchange potential cannot be readily evaluated as the
functional derivative of E®** with respect to p(r). For this purpose, an indirect procedure,
called the optimized effective potential (OEP) method [47-55] can be used. Another reason
for avoiding the exact exchange functional is that in practice it is very difficult to achieve
useful accuracy by combining exact exchange with approximate correlation functionals.

3.2 Ingredients of density functional approximations

In principle, the original Kohn-Sham formalism applies to both spin-compensated (p, = pg3)
and spin-polarized (p, # ps) systems. In the case of spin-polarized systems, however, the
electronic energy is extremely difficult to approximate as a functional of the total density
alone. In practice, one always prefers to describe spin-polarized systems using spin-density
functional theory. Spin-DFT is a generalization of the original Hohenberg—Kohn principle
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and Kohn-Sham method to systems in the presence of a non-zero external magnetic field. It
was first discussed in the original Kohn—Sham paper [17] and elaborated by von Barth and
Hedin [56] and by Pant and Rajagopal [57]. In spin-DFT, the basic variables are the spin-up
and spin-down electron densities p,(r) and ps(r), and the exchange-correlation energy is a
functional of both. In the absence of a magnetic field, spin-DFT gives the same results for
spin-polarized systems as the spin-independent DFT, but still operates with functionals of
the type Exc[pa,pg]. This offers a significant practical advantage because approximate spin-
density functionals Ex.[pa, pg| usually provide a much better description of spin-polarized
systems than functionals Ey.[p].

Let us emphasize again that in spin-DFT the exchange-correlation energy FE,. is a func-
tional of p,(r) and ps(r) alone, and, in principle, these are the only ingredients needed. This
appealing picture is gravely complicated by the fact that the dependence of E. on p,(r)
and pg(r) is highly nonlocal, meaning that: (i) small variations of the densities may cause
large variations of the exchange-correlation potential vy.; (ii) v at a given point r may be
very sensitive to changes of the density not only in the vicinity of r, but also at very distant
points r’. Of course, for practical reasons we want approximate functionals that are explicit
and local (or semilocal). To compensate for their locality, such functionals must use some
other (local or semilocal) ingredients in addition to the local p,(r). These can be derivatives
of p,(r) (semilocal ingredients) and quantities that are indirectly (nonlocally) determined by
the densities. Examples of ingredients of the latter type include Kohn—Sham orbitals and
variables constructed from them, provided they are gauge-independent and invariant with
respect to unitary transformation of the orbitals.

The most important examples of orbital-dependent ingredients are the Kohn—Sham re-
duced density matrix of Eq. (39) and the noninteracting kinetic energy density

occ.

) = 53 [Vou )P (10)

The name of the latter derives from the fact that 7,(r) integrates to the Kohn—Sham kinetic
energy Ty of Eq. (19) for o-spin electrons, as can be readily verified via integration by parts.
The definition of 7,(r) by Eq. (40) is gauge-invariant only in the absence of an external
magnetic field [58]. Furthermore, it is not unique, because any function that integrates to
zero, such as V?p,(r), can be added to 7,(r) without changing the value of T;. The nonin-
teracting kinetic energy density is not a far-fetched ingredient as may seem at first sight. It
naturally arises in the Taylor series expansion of the Kohn—Sham density matrix (see Sec-
tion 8.1). Chemical content of the kinetic energy density has been interpreted by Schmider
and Becke [59, 60]. The possibility of constructing functionals of even more complicated vari-
ables like 7o, = 1 Y70 [V2¢k(r)|?, which appear in higher-order density matrix expansions,
has also been considered [61].

Another ingredient whose importance is being increasingly recognized [62-67] is the para-
magnetic current density, defined in atomic units as

. occ.
7

Jo (1) = =5 D [0 (1) Vra (1) = 04o(r) Vi, (1) (41)

k=1

This quantity arises in current-dependent DFT, an extension of the Hohenberg—Kohn theory
to strong magnetic fields [68-71]. The paramagnetic current density is nonvanishing only for
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degenerate states that are described with complex wave functions (Kohn—Sham determinants
in DFT), such as the three configurations of the B atom, where the unpaired electron can
occupy either the 2p;, 2pg, or 2p_; orbital. Such states have the same energy but different
density distributions. All standard functionals in existence predicts a large artificial separa-
tion between the M; = 0 and M} = =£1 levels. This unphysical splitting can be drastically
reduced by including the current density j,(r) into approximate functionals [65-67].

Ingredients other than the density do more than just provide additional degrees of free-
dom for designing density functional approximations. They are necessary if we want an
approximation to satisfy exact constraints that are impossible to impose using spin-densities
and their derivatives alone. The type of ingredients of Ey.[pa, pg] forms the basis for Perdew’s
“Jacob’s ladder” classification [72] of density functionals. The lower three rungs of this lad-
der are, in the ascending order: (i) the local spin-density approximation (LSDA), which
employs only p,; (ii) the generalized gradient approximation (GGA), whose ingredients are
ps and Vp,; (iii) the meta-GGA, which makes use of 7, (or V?p,) in addition to the GGA
ingredients. The ascent of the ladder consists in embedding increasingly complex ingredients
and exact properties in Fy.[pa, pg] and results, in practice, in better functionals [73].

3.3 Analytic properties of exchange-correlation functionals

Although the exact functional Ey.[p,, ps] remains an enigma, many of its analytic properties,
ranging from obvious to subtle, are known [74]. For any possible electron densities, the
exchange energy is strictly negative, while the correlation energy is nonpositive:

E ., <0, E.<O0. (42)

Lieb and Oxford [75] showed that the exchange-correlation energy of electrons in Coulombic
systems is bounded also from below:

Ex[pompﬁ] > EXC[paa pﬂ] > Cro /,04/3<I') dr, (43)

where —1.44 > C o > —1.68 [76].
For one-electron densities p;(r), Ey must cancel the spurious Coulomb self-repulsion
energy:
Eylp1, 0] + Jlp1] = 0, (44)

while F. must vanish altogether:
Eqgs. (44) and (45) were stressed in the self-interaction correction scheme of Perdew and
Zunger [77].

For uniform electron densities, Ey.|pa, ps] should reduce to the formulas for the exchange-
correlation energy of a uniform free-electron gas (the LSDA):

Eelpa, pgl = B2 pa, pgl, it po(r) = const. (46)

A large number of known exact properties of density functionals involve coordinate scal-
ing transformations of the density. Most of such relations have been derived by Levy and
coworkers [78-84]. The uniform scaling of the density is defined by

py(r) =+’ p(yr), (47)
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The effect of this transformation is to contract or thin the density while preserving its
normalization. Coordinate scaling constraints for exchange and correlation functionals are
reviewed by Levy [85]. The most important among these constraints are the following:

E.[p,] = vExp], (48)
lim E.lpy] > —oo. (49)

The exchange functionals appropriate to spin-compensated and to spin-polarized systems
are related to each other by the spin-scaling relation [86]

1
Ex[pas ps] = 5 (Ex[2pa] + Ex[2p5)) (50)
where Ey[p] = Ei[p/2,p/2]. The spin-scaling relation effectively defines the resolution of
the exchange energy into two parallel-spin contributions, E?7 = %EX[QpU], where 0 = «, 3.

Note that Ey has no opposite-spin components. Eq. (50) is respected by all exchange energy
approximations in existence. In the literature, exchange functionals are often stated in the
form EY[p] only, while the form Ex[pa, pg] (the one actually used) is implied through Eq. (50).
For the correlation energy, there is no simple spin-scaling relation similar to Eq. (50).

4 Strategies for designing density functionals

DFT would be the ultimate practical theory if one could derive the exact exchange-correlation
functional in a closed form, as were the Thomas—Fermi kinetic energy and Dirac exchange
energy functionals for the uniform electron gas. This appears to be a hopeless task. DFT
would still be almost perfect if, by analogy with wave function methods, we had a mechan-
ical prescription for the systematic improvement of approximations that guarantees their
convergence to the right answer. In principle, Gorling—Levy perturbation theory [87-89] and
“ab initio DFT” [90-92] offer such prescriptions, but these approaches abandon the idea
of a universal density functional and, for all practical purposes, are hardly different from
wave function techniques. In practice, one has to devise density functional approximations
relying on many little bits of information about the true functional and compensating for
lack of mechanical recipes with insight and ingenuity. As the success of DFT attests, this is
a workable plan. We distinguish the following six approaches to designing density functional
approximations.

1. Local density approximations (LDA). This group includes functionals derived in
the analytic theory of a uniform electron gas and applied, directly or with empirical
modifications, to non-uniform densities. All LDA functionals have the form

ELPAp] = / xelp) dr, (51)

where the exchange-correlation energy density ex.(p) is a function of p(r) only.

2. Density-gradient expansion (DGE). These are formal analogs of the three-dimen-
sional Taylor expansion of the exchange-correlation energy in derivatives of the density:

EPCE[p] = / [eQ(p) + e (p)Vp + 2 (p)|Vp|* + .. ] dr. (52)
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Derivation of the coefficients e\ (p) is very involved mathematically, and the perfor-

mance of such nonempirical functionals is reasonable only for slowly-varying densities.

. Constraint satisfaction. A more successful approach consists in designing function-
als of the form

Eylp] = /exc(p, Vp,Vp,7,...)dr, (53)

where the integrand is constructed to satisfy chosen exact constraints. The constraints
in question may concern the asymptotic behavior of e,. and vy, upper and lower
bounds on the energy, density scaling transformations, and other properties of the true
functional. A number of approximations of this type are fully nonempirical.

. Modeling the exchange-correlation hole. Functionals of this type are based on
Egs. (31) or (38) and form one of the largest and most diverse groups. For example,
the exchange hole may be approximated by a truncated Taylor series expansion in p,
Vp, V2p, and 7. The correlation hole may be derived from an approximate correlated
wave function or modeled after the correlation hole of an analytically solvable problem.
The general analytic form of these functionals is the same as in Eq. (53). Functionals
based on an exchange-correlation hole model may be fully nonempirical or contain
fitted parameters.

. Empirical fits. Functionals of this type are designed by fitting reasonably chosen ana-
lytic forms of Ey.[p] to experimental values of thermochemical and/or other properties
of atoms and molecules. The analytic form may be borrowed directly from functionals
of any other group or simply postulated without a rigorous derivation. Some fitted
(“optimized”) functionals are linear combinations of pre-existing functionals. The gen-
eral form of such approximations is

Exc[p] = Z Ck/e)((lz)<p7 Vp? vzpa T,...; 0k, bka <. ) dI’, (54)
k

where CY, ag, by,... are adjustable parameters.

. Mixing exact and approximate exchange. These functionals, termed hybrids,
have the form

B[] = / [ (x) + b (r) 4+ PF(r)] dr, (55)

where the mixing coefficients a and b may be constants or depend on r. In the latter
case, functionals of this form are called “local hybrids” [93].

The majority of density functional approximations in current use fall into one of these
categories. The scheme presented above, however, is neither perfect nor complete. For
example, the LDA for exchange may be viewed as a functional derived from the exact ex-
change hole hEPA(r, u) of a uniform electron gas [it is given by Eq. (57) below] and placed
in group 4. Functionals of any group may have adjustable parameters, not just optimized
functionals. Exact constraints are often explicitly imposed on density functionals based on
an exchange-correlation hole model, not only on functionals of group 3. The above scheme
does not include several interesting but less common methods such as the weighted-density
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approximation [94-97], the phase-space approach [98,99], Laurent series expansions in terms
of homogeneous functionals [100,101] or moments of the density [102], and many others.
Nevertheless, we believe that the classification of density functionals by the method of their
derivation is instructive. In what follows, we will use it as a map to navigate the realm of
approximate density functionals.

5 Local density approximations

In a narrow sense, the local density approximation consists in applying the exact results of
the theory of a uniform electron gas to real nonuniform densities. More generally, an LDA
is any approximation of the form

ELPA] = / p(t)exelp) dr. (56)

where €,.(p) = ex(p) + €.(p) is the exchange-correlation energy per particle of the electron
gas, which is a function of the density only.

5.1 Local density approximation for exchange

The exchange energy of a uniform electron gas can be evaluated analytically by the method of
Bloch [103] or Dirac [3]. Details of both approaches are discussed by Gombés [4], Bethe [104],
Slater [105], and Parr and Yang [20]. The outline of the derivation is as follows. The Kohn—
Sham orbitals for a uniform electron gas are plane waves, ¢y (r) = V12T where V is
the volume of the box. Given the orbitals, one calculates the Kohn—Sham density matrix
of Eq. (39) by replacing the sum over occupied orbitals k with an integral over a sphere of
radius kr = (372p)"/2. Then a transformation to relative coordinates r = rj, u = ry — r;
and angle-averaging yield the LDA exchange hole

9 sin(kpu) — kpucos(kpu) ]’
hLDA _ _ 2

L0 (r, ) = ) | R , (57)

which determines the exchange energy by Eq. (33). The final result is

3 73\ 1/3
EMPA — —C’X/p4/3(r) dr, where Cy= 2 <%> . (58)
Equivalently, the LDA exchange energy per particle is
3/3\71

&P () =~y = -2 (g) L (59)

where 7, = (3/4mp)'/? is the radius of a sphere that contains the charge of one electron.
Eq. (59) was first obtained by Wigner and Seitz [106].

The LDA exchange formula (58) is exact for a uniform electron gas but underestimates
the exchange energy of inhomogeneous systems. Generally, LDA is more accurate than the
Hartree—Fock method but falls far short of chemical accuracy (1 kcal/mol).
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The extension of Eq. (58) to spin-polarized systems is called the local spin-density ap-
proximation (LSDA). According to Eq. (50), the LSDA exchange energy is

ESPA[ ps] = —21/3C'x/ <p4a/3 + pé/g) dr. (60)

Although Eq. (60) is all one needs for practical purposes, let us cast it in a different form
(for reasons that will become clear when we discuss the LSDA for correlation). Introducing
the relative spin-polarization

= M7 (61)
Pa + Pp
and using po = 3(1 + ¢)p and pg = 3(1 — ()p, we rewrite Eq. (60) as
EPPA pas ps) = / pex(p, ) dr, (62)
where ]
Ex(p7 C) = _5 Xpl/g [(1 + C)4/3 + (1 - C)4/3:| : (63)
For a spin-compensated (“paramagnetic”, ¢ = 0) electron gas,
€x = 6)1(3 = - Xp1/37 (64)
and for fully-polarized (“ferromagnetic”, ( = +1)
e = € = 2130 p'/3. (65)

For intermediate spin-polarizations 0 < ¢ < 1, one can write e,(p, () as an exact interpolation
between the para- and ferromagnetic cases,

&x(p,¢) = e (p) + [ex (p) — & (0)] F(C), (66)
where the interpolating function is readily shown to be

L+ QY+ (1= ¥ )
CHEREY

Q=4 (67)

Ernzerhof and Scuseria [107] suggested approximating Ey using the LDA functional in
which the actual p(r) is replaced by a fictitious density p(r) defined by 7(r) = Crp*3(r),
where 7(r) is the kinetic energy density of the actual nonuniform system. This leads to the
local T-approximation (LTA)

Cx
BV = S [ o) ar (68)
CF

where Cp = £(37%)2/3. Eq. (68) can be viewed as an alternative to the conventional LDA.
In numerical tests, the LTA was found to be “complementary” to the LDA. It predicts more
accurately exchange energy contributions to the atomization energies in those cases where
LDA is in large error, and wvice versa. For a uniform electron gas, LDA is equivalent to LTA.
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5.2 Local density approximation for correlation

Correlation is a much more difficult problem than exchange, so exact analytic forms of
e“PA(p) are known only for two limiting cases. The first is the high-density (weak correlation)
limit of a spin-compensated uniform electron gas

(ry) = AggInry + B4+7r,(Clnr, + D), 7, < 1. (69)

The constants Agg and B were evaluated by Gell-Mann and Brueckner [108], C' and D by
Carr and Maradudin [109]. Specifically, in hartree units (Ej),

1—In2
2

~ 0.031091 (70)

Agp =

The second case is the low-density (strong correlation) limit obtained by Nozieres and
Pines [110] and Carr [111]

1 /U U U.
Poy—- (20, “1 72
ec(rs)—2(rs T§/2—|—T§+...), re > 1, (71)

where U}, are again known constants. Similar formulas exist for €/ (r,).

The exact numerical values of €/'(ry) and € (r,) are known, with small statistical uncer-
tainties, for several intermediate values of ¢ from Monte Carlo simulations of the uniform
electron gas carried out by Ceperley and Alder [112]. Based on these results, several interpo-
lation formulas for €’(r,) and €!'(r,) have been devised to connect the high- and low-density
limits [Egs. (69) and (71)] and simultaneously reproduce the Ceperley—Alder data for inter-
mediate r,. Three such parametrizations are widely used in quantum-chemical codes.

Perdew and Zunger [77] (PZ81) suggested the following parametrization of the Ceperley—
Alder data for the spin-compensated and spin-polarized cases

Y .
. , if rg > 1,
et hi(r) = 1+ Burd” + Bors (72)
Alnry+ B+ Crglnr,+ Dr,, ifry <1,

where v, (1, B2, A, B, C', and D are parameters, different for ¢ = P and ¢« = F'. In particular,
AP = 2AF = Aqg. The PZ81 parametrization has several shortcomings, such as an artificial
discontinuity of second and higher derivatives at r; = 1.

Vosko, Wilk, and Nusair [113] (VWN) proposed a more accurate but less transparent
representation

@ @) = 4 {m X:C(Z) * %btan_l 2:12r b
bz (x—x0)®  2R2x0+0b), , Q
Xeo M x@ @ 2x—+b} } ’ (%)

where z = r/?, X(z) =22 +bx+c, Q= (4c — b*)/? and A, b, ¢, and z( are parameters.
For an explanation of this form, see Ref. [113].
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The best available analytic representation of the Ceperley—Alder data was devised by
Perdew and Wang [114] (PW92)

1
QA(ﬁﬂ“;/Q + Bors + By + Bar2)

PWO2i(r ) = —2A(1+ ayry)In |1+ (74)

where A, p, a1, B1, B2, B3, and 34 are parameters assuming different values for each €'(r;).
Unlike the VWN form, form (74) properly allows for a nonzero coefficient C' in Eq. (69) and
avoids other deficiencies of the PZ81 and VWN parametrizations.

Even with accurate representations of €' (r,) and €'(r,) at our disposal, we need a general
formula applicable to spin-polarized systems. Without loss of generality we can assume that,
in analogy with Eq. (62),

EYSPA g pl = / peu(r, C) d, (75)

where the function €.(r, ¢) is to be determined. Unfortunately, unlike for exchange, there is
no simple exact formula relating e.(r, ¢) to €' (ry), €&’ (r;), and ¢. Von Barth and Hedin [56]
proposed using the same interpolation formula for €.(rg, () as for e(p, (), that is,

ce (s, ) = € (rs) + [ec (rs) — e (r9)] F(C), (76)

where f(() is given by Eq. (67). In practice, Eq. (76) is not very accurate [45]. Vosko, Wilk,
and Nusair [113] examined several alternatives to the Barth-Hedin interpolation formula and
recommended the following expression

f(©)
f"(0)

where a.(r;) is a new function called spin stiffness. The spin stiffness is formally defined as
ae(rs) = [0%€c(rs, €)/0¢% =0 and fitted to the same analytic form as €' (ry) and €' (r;).

The PW92 parametrization of the LDA correlation energy of Eq. (74) combined with
VWN interpolation formula (77) is the most accurate representation of the LSDA corre-
lation energy functional currently available.? It is used as part of the PW91 correlation
functional implemented in the GAUSSIAN program [32].> The PZ81 parametrization of €.(r,)
in combination with the Barth-Hedin interpolation formula (76) is used in the GAUSSIAN
implementation of the Perdew 1986 correlation functional (P86) and as a standalone LDA
correlation functional (keyword PL). The VWN parametrization of €. (r,) of Eq. (73) is meant

to be used with the VWN interpolation formula (77).

VN, 0) = (1) + aulr) [ } L=+ [P () — @] FOC (77)

6 Density-gradient expansion

Although the LSDA is exact for a uniform electron gas and quite accurate for solids, it is
less than satisfactory for atoms and molecules. The natural step beyond the LDA is a formal

2In the GAUSSIAN program [32], the keyword LSDA requests the Barth-Hedin interpolation formula in
which € (r,) and €f'(rs) have the analytic form of Eq. (73) but employ parameters that were fitted to the
correlation energy of a uniform electron gas calculated in the random-phase approximation (RPA).

3Currently there is no stand-alone keyword for the PW92 representation of LSDA in the GAUSSIAN
program. In GAUSSIAN 03, one can perform LSDA-PWO92 calculations by specifying the combination of
keywords SPW91 I0p(3/78=0000010000) in the input section.
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expansion of E,. in gradients of the density. This idea was suggested already by Hohenberg
and Kohn [15]. In general, the density-gradient expansion (DGE) of the exchange-correlation
energy has the form of Eq. (52), but the requirement that F,. be invariant under rotations
about r makes the coefficients of Vp and other nonscalar terms vanish, yielding [15]

Bl = [ pPNoydr [ (9oL . (78)

where @@(p) are coefficients of appropriate dimensionality. The V?p term in Eq. (78) has

been eliminated via integration by parts.
It is customary to discuss gradient expansions for exchange in terms of dimensionless
reduced density gradients

Vol x

The form of the gradient expansion for F is fixed by dimensional analysis:

&mzﬁmw—m/&%wwnw (30)

where [y is the second-order DGE coefficient. Equivalently, Eq. (80) can be written as

Epl = /peiDA(p) [1 + %:ﬁ + .. ] dr

The coefficients of s? and 22 are related by

237"

. By (82)

Hx =
Derivation of gradient expansion coefficients is very involved even for the second-order
terms [115-118]. According to Antoniewicz and Kleinman [115], the exact second-order
coefficient in Eq. (81) is
10

= = —, 33
Fx = HAK = o7 (83)
which is different from Sham’s result [116]
7
o= ps = 5o s =0.00166721L... (84)

Coefficients of the fourth-order terms in the DGE for the exchange energy for slowly-varying
densities have been obtained only recently [119, 120].
The gradient expansion for the correlation energy begins as

Bl = WMol [ Culrpatar

- / p [P (p) + Bep)t® + .. ] dr, (85)
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where
L [Vol

B 4(3/m)1/6 p7/6 "
The value of the coefficient (. for the high-density limit was obtained analytically by Ma
and Brueckner [121] (in a.u.)

(86)

lim 3. = Bus = 16(3/7)/3C,(0) ~ 1.97563 /372 = 0.0667244... (87)
p—00

An analytic representation of the function C.(r,) has been given by Rasolt and Geldart [122].
Observe that Egs. (81) and (85) correctly reduce to LDA for uniform densities.

The second-order density-gradient expansion improving upon the LTA of Eq. (68) has
been derived by Ernzerhof and Scuseria [123]

v\’
ETDCE[] = ELTA[] +5Es/7'4/5 <‘76/5‘) dr, (88)

where is [gg is a nonempirical coefficient. Because Bgs turns out to be positive, Eq. (88) can
give unphysical positive exchange energies.

The second-order DGE results only in modest improvements over LDA for exchange
energies. Herman et al. [124] found empirically that the optimal value of the second-order
gradient coefficient (3, in the second-order DGE approximation is about 2.5 times greater
than the exact value. For correlation, the second-order DGE overestimates the correction
needed to reproduce the exact correlation energy by a factor of 5 and so predicts positive
correlation energies [121]. This implies that density variations in atoms and molecules are
too rapid to be approximated by Eqs. (81) and (85). Because of such problems, truncated
density-gradient expansions are not used as practical density functionals. Instead, they are
regarded as the exact forms to which approximate exchange-correlation functionals should
reduce in the limit of slowly-varying densities.

7 Constraint satisfaction

Improvement of the second-order density gradient expansion became the focus of many
research efforts in the 1970s and 1980s. Some developers of density functionals [125-132] saw
the root of problems in the wrong analytic behavior of the exchange-correlation potential of
the DGE functional and concentrated on designing semiempirical gradient corrections with
desired analytic properties. Others [133-135] explained failures of the second-order DGE
(divergence of the exchange-correlation potential, overcorrection of the correlation energy,
etc.) by the fact that the exchange-correlation hole corresponding to the second-order DGE
exhibits undamped oscillation at large u values and thereby severely violates the important
normalization constraints and sign properties of the correct hole. Accordingly, functionals
based on explicitly normalized and properly signed exchange-correlation holes have been
proposed. It is not hard to see that the two approaches are essentially different routes to
the same goal: satisfaction of important exact constraints. As we shall see in this section,
the process of identifying important analytic properties of the exact exchange-correlation
functional and imposing them on approximate constructions is the most reliable strategy of
density functional design.
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7.1 Corrections on the asymptotic behavior

The second-order density gradient expansion for exchange performs well only in the limit of
small reduced density gradients . The assumption that x is small may be justified for an
infinite electron gas but not for finite systems, where x diverges in far-out regions. This can

be demonstrated by assuming a spherically symmetric exponential density p(r) = e™ ",

lim z = lim [9p/0r| = lim ae”’? = co. (89)

r—00 r—00 p4/3 r—00

The second-order gradient contribution to the energy density, proportional to p*/32? [see
Eq. (80)], remains finite but the leading term of the exchange potential vy (r) [see Eq. (25)]
scales like p'/322, and so is unbounded at large r. Various modifications of the second-order
DGE have been suggested to eliminate the asymptotic divergence of vy(r). Most of these
functionals fall into the category of generalized gradient approrimations (GGA) [136]

ESMp) = [ pelM ) Pu(a)dr = [ peS4 () (90)

in which F(x) [or Fi(s)] approximates the exact enhancement factor of Eq. (81).

One of the first successful functionals of this type was proposed in 1986 by Becke [125].
Its enhancement factor is modeled after that of Eq. (81) and has a damped second-order
gradient term

Bea(c18)?

L+ 9(cr1s)?’
where ¢; = 2(672)'/3 and ¢, = (21/3C,)!, while 3 = 0.0036 and v = 0.004 are empirical
parameters.? Shortly thereafter, Becke observed [126] that the large-gradient (s — o0o) limit

of Eq. (91) is ~ s°, whereas the correct limit should be ~ s2/°. To ensure the correct behavior
both in the low- and high-gradient limits, he proposed the following modification

Bea(ers)?
[1 4 y(e1s)?]4/5

FP%(s) =1+ (91)

FP%(s) =1+ (92)
where # = 0.00375 and v = 0.007 are again optimized parameters.

With an empirical value of 3, neither B8 nor mB86 recovers the correct second-order
gradient expansion of Eq. (81). DePristo and Kress [127] explicitly imposed this constraint
by using the formula
o1+ 7(as)”

1+ 72(c18)?

where ug = 7/81 is Sham’s exact second-order coefficient, but v;, 72, and m < 1 are still
adjustable parameters. Note that the large-gradient limit of Eq. (93) is ~ s™, which is
correct only if m = 2/5.

F*(s) = 1+ pss (93)

“The factors ¢; = 2(672)Y/3 and ¢y = (2'/3C,)~" in Egs. (91)-(93), (96), (99), (101), (110), and (180)
arise in the transition from the Ey[pq,ps| form of the original definitions, where F is written in terms of

o = |Vpol|/ pe/? to the standard form Fy [p], where Fy is written in terms of s only. The transformation is
based on the spin-scaling relation of Eq. (50). Note that ¢;s = 21/3g,
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It is also known that in a finite many-electron system, the true exchange potential v, (r)
and exchange energy density e, (r) have the following asymptotic behavior [45, 137]:

1

Uy (r) =—+C (94)

r—00

where C' is a constant that vanishes everywhere except in nodal surfaces of the highest
occupied orbital [138], and
__pr)

€X(r) r—00 B 2r '

(95)

Although the B86, mB86, and DK87 exchange potentials no longer diverge and, like energy
densities, go to zero in the r — oo limit, their asymptotic decay is not of the form prescribed
by Eqs. (94) and (95). Becke [128] argued that the asymptotic limit of ex(r) is an important
constraint and proposed a functional which satisfies Eq. (95) for exponentially decaying

densities )
FPSS(s) =1+ Paalcrs)” (96)
14 65(c1s)sinh™ (1)
where § = 0.0042 is an empirical parameter determined by a least squares fit to exact

Hartree-Fock exchange energies of six noble gas atoms (He through Rn). It is the function
sinh™' y = In(y + /1 + »2) that does the trick of ensuring the correct behavior of e (r) at
large r. To see this, use the expansion [139]

1 1-3
22y 2.4 -4yt

sinh™y = In(2y) + +..., Jyl>1 (97)

and the large-r form of ¢;s = 2'/3x, where x is given by Eq. (89). The B88 functional proved
very successful and remains one of the most popular approximations for the exchange energy.

In the early 1990s, Lacks and Gordon (LG) [140] observed that the LDA, B86, mB8&6,
DKS87, and B88 exchange functionals all give a poor description of van der Waals interac-
tions between rare gas atoms, especially at large internuclear distances. Even at the energy
minima, exchange contributions to the binding energy are in errors exceeding 100%. In an
effort to refine the description of low-density, high-gradient regions responsible for long-range
interactions, they considered the form

1+ (ag + pak)s?/b+ ass* + ags® + ags® + ajps'® + a12312]b
1+ ad32

F9(s) = : (98)
where ay4, ag, as, a1g, a12, and b are empirical parameters obtained by least squares fitting to
the total exchange energies of the He, Ne, and C* atoms and the exchange contributions to
the binding energies of He, and Ne,. The value of a; was fixed at 1078, In more extensive
tests, Adamo and Barone [141] found that the combination of the LG exchange and LYP
correlation is not a substantial improvement over BLYP.

In 1997, Filatov and Thiel [142] observed that the correct asymptotic limit of the exchange
energy per density is also obtained with functionals of the general form

Bea(ers)?

F5T97(S) — 14+ 1
[1+ (68/m)m(cys)m sinh ™ (cr5)m]

(99)

1/m*
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Using m = 2 and allowing the adjustable parameter 3 to assume different values for spin-up
and spin-down densities, they managed to reduce the mean absolute error in the exchange
energy by about one third relative to B8S8.

Van Leeuwen and Baerends [129] achieved the correct asymptotic behavior of vy.(r) by
modeling the Kohn—-Sham exchange-correlation potential directly rather than by approxi-
mating the energy density. Their first model vy.(r) had an analytic form inspired by the B88
functional [129]. More recent shape-corrected potentials of Baerends and coworkers [143-147]
involve explicit dependence on Kohn—Sham orbitals and satisfy even more exact constraints,
such as invariance with respect to shifting the external potential by a constant and correct
short-range behavior. The advantage of modeling vy.(r) = v (r) 4+ v.(r) is that potentials,
unlike energy densities, are uniquely determined by p(r). Given an exchange potential vy (r),
the exchange energy can be evaluated by the Levy—Perdew formula [78]. More recently, Tozer
and Handy [131, 132] proposed an explicit asymptotic correction for conventional exchange-
correlation potentials and obtained encouraging results for sensitive properties. The correct
asymptotic behavior of the exchange energy density and potential appears to be much less
important for obtaining accurate atomic exchange energies.

What about satisfying constraints (94) and (95) simultaneously? Engel and cowork-
ers [148] proved that no GGA of the form of Eq. (90) can reproduce the asymptotic limits of
Egs. (94) and (95) at the same time. Jemmer and Knowles [130] and Filatov and Thiel [149]
attempted to satisfy Eqs. (94) and (95) simultaneously by going beyond the conventional
gradient approximation and introducing the dependence on the Laplacian of the density:

Edp) = [ o (o) Fulp. [, 90) dr. (100)

Such functionals suffer, however, from numerical instabilities with respect to small density
changes, which makes it practically impossible to obtain variational solutions of the Kohn—
Sham equations [130]. Neumann and Handy [150] investigated the possibility of including
terms of up to fourth order in V and also arrived at decidedly disappointing conclusions.

Gill [151] disputed the claim that the asymptotic divergence of the exchange potential
is of practical significance and argued in favor of a minimalistic empirical functional with a
readjusted fractional power of the gradient correction

F&%(s) =1+ 502(018)3/2, (101)

where § = 1/137 is a parameter whose value was chosen to reproduce the Hartree—Fock
exchange energy of the Ar atom (one also cannot help suspecting a playful reference to the
fine structure constant). The exchange potential corresponding to Eq. (101) again diverges
at large x. Contrary to what one might expect, G96 shows an accuracy on par with B88 in
test calculations of thermochemical molecular properties, a better performance than of some
much more sophisticated functionals.

Generalized gradient approximations based on the local-7 approximation of Eq. (68) have
been constructed by Ernzerhof et al. [152]. These workers focused on improving the orig-
inal LTA of Eq. (68) and second-order 7-DGE of Eq. (88) by imposing several important
constraints on the enhancement factor: (a) the correct homogeneous density limit; (b) nega-
tivity of Ey; (c) correct asymptotic behavior of the exchange energy density [Eq. (95)]. The
resulting 7-GGA shows a performance comparable to that of conventional GGA functionals.

21



Intuitively designed damped gradient corrections have been also used to improve the LDA
for correlation. The first attempt of this kind was made by Ma and Brueckner [121] in their
paper on the exact second-order expansion of E.[p], where they also propose the functional

12 v

EMBSS[5] — /pegDA(P) {1 - 5MBW dr. (102)

The constant v = 0.32 was fitted to the empirical correlation energies of several atoms.

7.2 Normalization of the exchange-correlation hole

Similar to the partitioning of E,. into exchange and correlation contributions, the exchange-
correlation hole at a coupling strength A\ can be partitioned as

hi‘c(rl, I'g) = hX<I'17 I‘g) + h?([‘l, 1'2), (103)
where the exchange hole is defined as the noninteracting limit
hx(rl, I'Q) = hi‘czo(rl, I'g). (104)

The basic properties of the exact exchange and correlation holes are:

hx(rl,rg) S 07 /hx(rl,rg) dI‘Q = —]_, (105)

/h;\(rl, I'Q) dI‘2 =0. (106)

Langreth and Perdew [133] and Perdew [135] explained the failure of the second-order
DGE by a gross violation of Egs. (105) and (106) by the DGE exchange and correlation
holes. Such violations have been traced to spurious large-u behavior of the spherically-
averaged hy.(r,u). Perdew showed [135] that by cutting off large-u parts of hy.(r,u) and
positive parts of hy(r,u) one can obtain successful density functional approximations. The
essence of the cutoff procedure for exchange in real space is as follows [153-155].

Start with the analytic second-order density gradient expansion for the coupling constant-
and angle-averaged exchange hole, hPS¥(r u). Convert the diverging DGE hole into the
normalized GGA hole by applying a sharp cutoft:

he M (r, u) = hY 9% (r, u)O(hY ™) (uo(r) — u), (107)
where ;
_J 1, ity =0,
0ly) = { 0, ify<o0. (108)

The first step function in Eq. (107) enforces the negativity constraint. The second function
involves a cutoff radius uo(r) chosen to satisfy the hole normalization constraint of Eq. (105).
The hole of Eq. (108) is substituted into Eq. (33) to give the numerical enhancement factor
F(z), which is then fitted to an analytic form.5 The real-space cutoff procedure determines

SStrictly speaking, the cutoff procedure uses the angle- and system-averaged GGA exchange hole [156],
i.e., the hole around an electron averaged over the position of that electron. We omit here technical details
for the sake of clarity.
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only the general features of the functional but not its analytic representation. The latter may
be chosen in different ways depending on which exact constraints one decides to impose. The
first practical exchange functional of this type was derived in 1986 by Perdew and Wang [136]

2 m
FPW86(g) = (1 + % + bst + 036) , (109)

in which m = 1/15, us = 7/81, b = 14, and ¢ = 0.2 are nonempirical parameters.
In 1991, Perdew and Wang [76, 155, 157] used the same approach to derive a nonempirical
exchange functional whose analytic representation was inspired by the B88 form:

Bea(ers)? — [Bealcrs)? — paxle 0% — 0.004s*

FPWOl(s) = 1 +
) 1+ 68(c1s) sinh ™ (c;8) + 0.00454

, (110)

where ¢; = 2(67%)Y/3, ¢y = (2/3C,)71, B = 0.0042 (the B88 coefficient), and pax = 10/81.
The particular form of Eq. (110) was chosen to satisfy a large number of exact constraints.
Although PW91 is modeled after the B88 functional, it does not yield the correct asymptotic
behavior of the exchange energy density, a property abandoned in favor of more desirable
constraints. The function sinh™'(c;s) in Eq. (110) is only a B88 relic.

The exact density-gradient expansion for the correlation hole is not known except in the
high-density limit, so away from this limit approximate gradient-corrected models have to
be used instead. Perdew and coworkers [153,158] constructed a real-space model for the
spherically-averaged GGA correlation hole starting from an accurate analytic representa-
tion A.(rs, ¢, u) of the LSDA correlation hole, adding a gradient correction B.(rs,(,u), and
truncating the sum to satisfy the normalization constraint of Eq. (106)

BCGGA(Tsa Ca t, U) = ¢3(¢k5)2 [Ac<7asa Ca u) + Z5280(7457 Ca u)} e(uo o u)’ (111)

where k, = (4kp/m)'/2, t is the reduced gradient of Eq. (86) generalized to spin-polarized
systems

Vol
20k.p’

(112)
ug is the cutoff radius, and

(140 + (1= PP

4(¢) = .

(113)

The hole of Eq. (111) is substituted into Eq. (33) and the integral is evaluated numerically.
The result is written as

ESSA [y ] = / peBSPA (¢ dr + / pH(r, 1) dr. (114)

where H (s, (,t) is a numerically defined gradient correction. The last step in this derivation
is to find a suitable analytic representation for H(rg, (,t). Two different solutions to this
problem have been proposed, leading to the PW91 [76, 155, 157] and PBE [159] correlation
functionals. The PW91 gradient correction has the form

HPWOY(p (1) = nggl(rs,f,t) + Hy(rs, (. t). (115)
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The H; term in Eq. (115) is negligible, unless s < 1 [155]. In PBE,

HPE(rg, ¢, t) = HyP(rs, ¢, t). (116)
The analytic representations of Hy W' and H'BY have the same form given by
PuiB 1+ At?
Hy(rs, (1) =v¢3(O) 1In |1 t? 117
0(T7C?) P)/¢ (C)n|: + ~ 14 A2 1+ A2¢4 ’ ( )

where
Bus 1

A= o — 1

(118)

The only difference between HJW! and HJBF is in the values of v used in Egs. (117)

and (118). In PWO1,
2

Ypwel = %A—QB ~ 0.024734, (119)

where o = 0.09 is a constant chosen to approximate the t* dependence of the numerical
¢$GA . In PBE,

vpeE = Agp ~ 0.031091, (120)

which is the exact second-order gradient coefficient of the LDA correlation energy expansion
[see Eq. (70)].

The analytic form of the gradient correction H(rs, (,t) was motivated by the following
three conditions [159]: (1) H must reduce to the second-order term in the DGE expansion
for correlation in the slowly-varying limit, H — SBup@®t?; (2) if the density changes infinitely
fast (t — 00), the correlation energy must vanish, that is, H — —eSP4; (3) under uniform
scaling to the high-density limit, H must cancel the logarithmic singularity of e¥P4 to satisfy
the uniform scaling constraint of Eq. (49).

The HBE recovers the first constraint by itself, but HYW9! does not. In order to recover
the correct second-order gradient expansion for the correlation energy in the s — 0 limit,
another term is used:

Hi(rs, ¢, ) = v |Co(ry) — Co(0) + %ﬁs ¢°(()t2e 1000 (O (kst/kr)? (121)

where v = 16(3/7)"/3 is the conversion factor from the units of pt? to p*/3x2.

The numerical GGA based on the model hole of Eq. (111) and the PBE analytic repre-
sentation of this functional both satisfy Levy’s uniform scaling constraint for correlation, but
the form EYW9'p,,, ps] does not (the culprit here is the small H; term). In molecular calcu-
lations, however, these subtle differences never show up, so the PBE and PW91 correlation
functionals are equivalent for most practical purposes.

7.3 Systematic constraint satisfaction

Simply imposing correct asymptotic limits on the second-order density-gradient expansion
(Section 7.1) proved to be a very effective strategy for designing exchange functionals. It
is reasonable to assume that the more exact constraints an approximate density functional
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satisfies, the more accurate and universal it will be. This idea is behind many existing density
functional approximations.

Langreth and Mehl [134] used the sharp cut-off procedure in momentum space to elimi-
nate spurious contributions to E. and an empirical exponential function to damp the gradi-
ent contribution to the energy. The Langreth-Mehl (LM) functional [134, 160, 161] has now
mostly a historical significance. A few years later, Perdew [162] improved the LM functional
by imposing two additional requirements that it recover the correct second-order DGE in
the slowly-varying density limit and reduce in the uniform density limit to LDA, not to
the random-phase approximation, as the LM functional does. Perdew’s 1986 correlation

functional is
e_cb(pvv/)) |VP|2

WCC(TS) p4/3 dI‘, (122)

(5] e

interpolates between the spin-compensated and spin-polarized forms [160], while

EY®[pa, pg] = EX"™pa, ps] + /

where the function

() =22

Ce(0) [Vpl

(I)(p, Vp) = (971—)1/6]?0 (7,, ) p7/6

(124)

with the parameter f = 0.11 chosen to fit the exact correlation energy of the neon atom.
C.(rs) is the gradient coefficient of Eq. (85) in the parametrization by Rasolt and Gel-
dart [122]. In the original paper, EFPA[p,,, pg] was taken in the PZ81 parametrization of the
Ceperley—Alder data, and this is how P86 is implemented in the GAUSSIAN program. The
P86 correlation functional correctly reduces to LDA for uniform densities, but does not scale
to a constant under the uniform scaling transformation of the density.

Wilson and Levy [163] were the first to explicitly impose the high-density scaling con-
straint of Eq. (49) on an approximate correlation functional

a4 b\ (1 — ¢2)1/2
EZNL[pmpﬁF/p( tho)(l=¢)

c+d(xg +x5) + 75

dr, (125)

where x = |Vp|/p"?, 2, = ]Vpa|/p§/3, and a, b, ¢, and d are empirical parameters. Some
earlier correlation functionals, such as B88c and LYP (see below), also respect Eq. (49)
for all densities, although they predate the formal proof of it. More recent nonempirical
functionals described in the rest of this section are purposely constructed to satisfy Eq. (49)
among many other exact constraints. Satisfaction of density scaling constraints for the
exchange and correlation energies may not be important for “usual” systems, but it becomes
crucial for a proper description of high-Z atomic ions [164].

In 1996, Perdew, Burke and Ernzerhof (PBE) [159] constructed a simple exchange func-
tional by imposing several energetically significant exact constraints. The enhancement
factor of the PBE exchange functional is similar to that of B86 [Eq. (91)],
jis”

FPPP(s) = 14—
o (8) +1+,u32//<c

(126)
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Here x = 0.804 is a nonempirical parameter chosen to satisfy the Lieb-Oxford bound in its
local form: F,(s) < 1.804 for any s. The value of p = Byp(7?/3) = 0.21951 is determined
from the condition that the second-order gradient term for exchange cancel that for corre-
lation (i.e., pBupt? = uCyxp®®s?). This choice, rather than p = pax = &2, assures that in
the s — 0 limit the PBE exchange-correlation reduces to LDA for nearly uniform densities
faster than PW91 does. Although Eq. (126) is not based on any particular hole model, it is
numerically very similar to the PW91 exchange functional of Eq. (110) and, in fact, produces
nearly the same results. An empirical adjustment of the parameter x from 0.804 to 1.245
in the PBE exchange functional has been proposed [165], but Perdew and coworkers [166]
defended the original nonempirical value. Hammer et al. [167] attempted to reconcile both
points of view by suggesting a minor revision of the analytic form of Eq. (126).

The PW91 and PBE exchange-correlation approximations exhaust the number of exact
constraints that can be practically imposed on GGAs, that is, functionals whose ingredients
are p,(r) and Vp,(r). Bringing into play the kinetic energy density 7, (r) of Eq. (40) opens
new opportunities (the meta-GGA level). One particular use of 7, (r) is based on the following
property:

™V (r) < 7,(x), (127)
where LT 2
v LVedl” (128)
8 pPo

is the von Weizsicker kinetic energy density.5 In Eq. (127), the strict equality holds only if
po(r) is represented by a single real Kohn—Sham orbital. Therefore, the quantity

scc i

o =1 - (129)
vanishes for any one-electron system and is strictly positive in systems with more than
one o-spin electron [168,169]. In practical terms, this means that n5°“ can be used as
a multiplicative self-correlation correction (SCC) ensuring that E. vanishes for any one-
electron density [Eq. (45)]. Satisfaction of this constraint is not possible at the GGA level.
The functionals discussed in the rest of this section all make use of this trick.

Becke’s 1995 correlation functional (B95) [168] was constructed to satisfy the following set
of conditions: (a) the correct uniform density limit; (b) separation of the correlation energy
into parallel-spin and opposite-spin components; (c) zero correlation energy for one-electron
systems; (d) good fit to the atomic correlation energies. These requirements are met by the

following analytic form

EP% = B + B 4+ B (130)
where W UBG
B = / To ~ Ty _Cen (Po) 4 (131)
it (1 + cppa2)?

6 Proof. Let us introduce the symbolic vectors f = (¢1, ¢2,...,én) and g = (Vé1, Vo, ..., Vo), where
the spin-index o has been suppressed for brevity. By definition

_LIVel? _Llgt-f £ gl

VT8 Ty 8 FiE

where the strict equality holds only if all ¢; are real. The result 7y < 7 follows from the Schwarz inequality
If* - gl®> < |f|*lg|*>. Thus, if N =1 and ¢, is real, then |f* - g|> = |f|?|g|?, and so 7y = 7.

1]f*-g
2 |f2

1
p=|fI? T=§MR
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Censs (Pas P5)
EY = / g, (132)
1+ cap(z? + xﬁ)

in which 7 = 13—0(6772)2/3p§/3, and ¢,, = 0.038 and c,5 = 0.0031 are fitted parameters. The

g
same-spin correlation energy density of the uniform electron gas (UEG) is simply

Cere (Po) = €7 (ps, 0). (133)

The opposite-spin energy density is freed from self-correlation by the method of Stoll et
al. [170,171]:

s (Par p3) = 5P (pa, ps) — €572 (pa, 0) — €55 (5, 0), (134)

where eLSPA(p,, pg) = pelSPA(py, pg) is the LSDA correlation energy density.

Krieger, Chen, Iafrate, and Savin (KCIS) [172] revisited the local density approximation
for correlation and attributed the LDA overestimation of correlation energies for nonuniform
densities to the fact that, unlike an electron gas, finite many-electron systems have a non-zero
energy gap between the Fermi level and the continuum (the gap is equal to the ionization
potential [173]). To improve the LDA description of systems with a finite orbital gap, they
made use of the formula of Rey and Savin [174] for the correlation energy per particle of the
electron gas with an energy gap G,

Ec(p, Vp) 1 Clz( ) Cé( )GQ, ( 35)

where i = P, F, i (p) are density-dependent coefficients, and € (p, Vp) is defined in Ref. [175].
They also assumed that the local value of the gap G is determined by the density and its
gradient, G = |Vp|*/8p* = 1w /p, and used the Barth-Hedin-type interpolation formula
for €., the correlation energy per particle of a spin-polarized electron gas with a gap. The
final expression for the KCIS correlation functional was designed to satisfy the same three
conditions as those respected by the PBE correlation functional, plus the requirement that
the correlation energy vanish for one-electron densities [Eq. (45)]:

B Ty ~ v
Ei{CIS[pO“ pﬁ] = / [pec(pom pﬂ, VpOé? V,OB) — E T_pO'EC(pO'; 07 Pos 0) dr' (136)

Perdew, Kurth, Zupan, and Blaha [176] (PKZB) constructed a 7-dependent functional
by preserving and extending the list of constraints satisfied by the PBE exchange-correlation
GGA. The kinetic energy density appears both in the exchange and correlation components
of the PKZB functional. In the exchange part, 7 is an argument of the enhancement factor

PKZB X
F, —1+1+X/H, (137)
where x = x(p, Vp,T) is a new variable replacing the variable us? of PBE. The particular
form of y (not shown here) was chosen to reproduce the fourth-order gradient expansion of
F for slowly-varying densities. The analytic representation of y contains only one empirical
parameter optimized by minimizing the mean absolute error in the atomization energies of
a 20-molecule training set [176].
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PBE
c

o)

W\ 2
-(1+0)) (TTL) pocc Py 0, Vo, 0)} dr, (138)

The PKZB correlation functional combine the ingredients € and 7,

(e
[

where C' is a nonempirical constant chosen to reproduce PBE surface correlation energies of
a uniform electron gas. Note that PKZB is self-correlation free for one-electron densities.

PKZB is much more accurate than PBE for atomization energies [177] but inferior for
equilibrium bond lengths, vibrational frequencies [177], dissociation energies and, especially,
geometries of hydrogen-bonded complexes [178]. These concerns prompted Tao, Perdew,
Staroverov, and Scuseria (TPSS) [179] to search for additional constraints to be imposed
at the meta-GGA level in order to improve upon PBE and PKZB for all properties. The
principal problem with PKZB turned out to be with the exchange component. In PBE
and PKZB, the enhancement factors are such that the exchange potentials vy, (r) diverge
at the nuclei (see Fig. 1 of Ref. [180]). In the case of PBE, the divergence of vy, (r) is
harmless, but in the case of PKZB it is manifested in overstretched bond lengths. This
problem was addressed in the TPSS approximation by requiring that vy, (r) be finite at the
nucleus whenever 7V = 7, a condition that covers compact iso-orbital densities (i.e., one-
and spin-compensated two-electron densities represented by real Kohn—Sham orbitals). In
effect, the new constraint eliminates the divergence for nearly all realistic many-electron
systems, because p,(r) near the nucleus is dominated by the 1s orbital, so that 7, — 7.
This proved to be the last and key constraint that made it possible to obtain accurate
atomization energies and bond lengths from a nonempirical meta-GGA [180].

The TPSS exchange enhancement factor has the same from as in PKZB [Eq. (137)],
but the function x(p, Vp,7) in TPSS is much more complicated (which is necessary to
satisfy additional constraints). Aside from producing a finite vy, (r) at the nucleus, the
TPSS exchange functional reproduces the fourth-order density gradient expansion [120] for
slowly-varying densities and yields the correct exchange energy for ground-state one-electron
hydrogenic densities (for the H atom, E&*¢t = —% Er). Improvements in the correlation
part of TPSS are of a technical character [179]:

3
ETPSS[p,. ] = /pezevPKZB [1 + deevPRIB (T_W> ] dr. (139)
T
Here d is a nonempirical constant and e*"FXZB is the revised PKZB correlation energy per
particle
revPKZB PBE w2
% = P (p4, 05, Vpa, Vips) |1+ C(6,6) () (140)
T

Tw 2 o
(L CEOL () D2 maxlel™ (g, 0.V 0), £ (s 3 Vs Vi)

In TPSS, C'is no longer a constant but a function of the spin polarization ¢ and a variable £ =
IV¢|/2(32p) /3. C(C,€) is designed to make ELFS5p,,, pg] properly independent of ¢ in the
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low-density limit. The max() function in Eq. (140) ensures that e""XZB ig strictly negative

everywhere, a property that is weakly violated by PKZB. Extensive tests on molecules,
hydrogen-bonded complexes [180], and solids [181] indicate that, property by property, TPSS
overcomes all the shortcomings of PKZB and closely follows or exceeds in accuracy nearly
all other density functionals, including B3LYP.

8 Modeling the exchange-correlation hole

The sharp cutoff procedure introduces spurious kinks into the GGA exchange hole of Eq. (107),
which complicate the derivation of the P86 and PW91 exchange functionals. In this section,

we will consider functionals that are based on smooth analytic hole models normalized from

the outset.

8.1 Exchange functionals based on a model hole

Becke and Roussel [182] constructed a model exchange hole starting with the second-order
Taylor expansion of the exact spherically-averaged o-spin hole [183]

1
h%(r,u) = —py(r) — 6 [V?po(r) — 47,(x) + 477 (r)] w* + . .. (141)
and fitting it to a generalized analytic form of the exact hydrogenic exchange hole. The
exact normalized hydrogenic 1s density is p(r) = (®/87)e "l where a = 2Z. Hence the
spherically-averaged exchange hole for a hydrogenic atom is

1

2 ™
hl(r,u) = /. dgbu/o pu(r +u)sinb, db,

1 27 T 043
— 2 2_ .
_ _4_/ d¢u 8_6 avr?4u?—2rucos b, stu deu
™ Jo 0 ™

= — 16:7‘u [(alr —u] + D) — (a|r + u| + 1)e~I"+I] | (142)

The analytic form of Eq. (142) is sufficiently flexible to parametrize the exact second-order
expansion of the exchange hole for any many-electron system, if it is generalized as

a
167bu

hER(a, b;u) = [(alb — u| + De~ = — (a]b 4 u| + 1)6‘“‘”“'} : (143)
where a and b are positive scalar functions of p,, |Vps|, V2ps, and 7., without any physical
significance. The underlying hydrogenic model still ensures that the generalized hole of
Eq. (143) is nonpositive and normalized to —1. For a given reference point r, the values of
a(r) and b(r) are obtained by expanding Eq. (143) in a Taylor series to second order in u
and comparing its zeroth- and second-order coefficients with those of Eq. (141). Then the

substitution of Eq. (143) into Eq. (33) yields
—ab 1
1—e 1+ §ab dr. (144)

1
EMpaspsl = =5 ) /
o=a,3

Po(r)
b(r)
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In contrast to the gradient expansion of the exchange hole of Perdew [135], the BR functional
does not reduce to LSDA in the uniform density limit. To recover this limit approximately,
Becke and Roussel multiplied the term (7, — 7)¥) in Eq. (141) by an adjustment factor of
0.8. At the same time, the BR exchange energy density has the correct —p(r)/2r asymptotic
behavior in the r — oo limit.

Around the same time, Becke [184] proposed a real-space normalized model for the cor-
relation hole. He started from the observation that, for a given coupling strength A, the
spin-polarized components of the spherically averaged pair densities have well-defined short-
range behavior near the reference point [185]:

PY7Mr,u) = A%(r) (1 + gu) ul (145)
Py u) = AP () (1 + \u) + . . . (146)

where A% (r) and A*(r) are certain functions. The pair densities trivially determine the
exchange-correlation hole by Eq. (10). By using Egs. (10), (103), the Taylor series expansion
for the exchange hole [Eq. (141)], and going through a number of algebraic manipulations,
Becke obtained explicit formulas for hZ*(r,u) and h®?*(r,u). Substitution of these ex-
pressions into the adiabatic connection formula of Eq. (29) yields the correlation energy
functional

S~ pon 4 B 4 B2 (147
oo wh .4 2 Roo
E?? =Coy | po(to =7, )25, |1 — —1In <1 + 7) dr, (148)
ZUU'
o 1
EP = Cag/papgziﬂ [1 e In(1+ Zaﬁ):| dr, (149)

where z,, and z,s3 are the so-called correlation lengths, defined in Ref. [184], while C,, and
Cqp are adjustable constants.

Performance of the BR and B88c functionals has been studied by Becke [186], as well as
by Neumann and Handy [187]. A comprehensive assessment of these functionals, completed
recently by Izmaylov et al. [188], indicates that the accuracy of BR is comparable to that
of the B88 exchange, while the B88c approximation is less accurate than LYP, PW91, and
similar correlation functionals.

Approximate functionals derived from a model exchange-correlation hole are relatively
few in number. The majority of functionals are not based on any explicit model hole.
The holes corresponding to such functionals are not even known and, if needed, have to be
“reverse-engineered” from the functional itself. Ernzerhof and Perdew [189] did this to obtain
a smooth analytic representation for the angle- and system-averaged PBE GGA exchange
hole. When substituted into Eq. (33), their model gives the hole-based PBE functional [189].
For practical purposes, the hole-based PBE exchange is numerically equivalent to the energy-
based functional of Eq. (126). Explicit exchange-correlation holes are of considerable interest
on their own. The work on the TPSS hole is currently in progress [190].
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8.2 Functionals based on a correlated wave function

The best-known example of approximations of this type is the correlation functional of
Lee, Yang, and Parr (LYP) [191]. LYP is nothing but a DFT adaptation of the orbital-
dependent correlation energy formula of Colle and Salvetti (CS) [192]. The starting point of
the derivation is a correlated wave function of the form

\I]<X1,X2, c. 7XN) = \I/HF(XI,XQ, Ce 7XN) H [1 — f(I'Z‘, I'j)] s (150)

1<j

where UHF is the Hartree-Fock wave function (a single determinant) and f(r;, r;) is a model
two-electron correlation function. Arguing that f(r;,r;) is small for typical positions of
electrons, Colle and Salvetti obtained an approximate formula for the corresponding electron
pair density

PyS(ry,15) = By (r1,10) [1 = f(r,12))7, (151)

where Py (r;,ry) is the spin-free Hartree-Fock electron pair density of Eq. (37). The con-
ventional quantum-mechanical correlation energy is then given by

B - [[En AL,

T12

= // P2HF(I'1, I'2> fz{rh r2) _ 2f<r17r2) drldrg. (152)

12

By making a series of approximations, Colle and Salvetti then obtained the following expres-
sion in terms of interparticle coordinates R = (r; + r2)/2 and u =r; —ro

5= —a [ oy TR ], o [ )

dR 1
L+dp A(R) (153)

where the values of the parameters a = 0.04918, b = 0.132, ¢ = 0.2533, and d = 0.349 were
determined by fitting to certain exact data relevant to the He atom.

Lee, Yang, and Parr [191] carried out this analysis further by rewriting Eq. (153) in an
equivalent form

=553(r) [rur(r) — 27w (v)] exp [—cp~ V3 (r
ECCS[ | = —CL/P(I')I b ()| i —)deQ_l/?’((I‘))] P [ P ( )} dr, (154)
where LY |2 .
~ P 2

and 7yr is the Hartree—Fock kinetic energy density [note also the addition of the Laplacian
term which was not included in the definition of 7 in Eq. (127)]. Eq. (154) is still not
a conventional density functional, because it involves dependence on the orbitals through
the mqr term. Lee, Yang, and Parr simplified this expression by replacing mgrp with its
second-order gradient expansion

1 1
~ uni —T _VQ ) 156
THF = Tunif 1+ gTw+ 13 p (156)
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where Ty = %(37?2)2/ 35/3 is the Thomas-Fermi kinetic energy density of a uniform electron
gas. The final expression,

ELYP[ | = —a/ p+bp 2P (CFPS/3 — 27w + %%W + %V%{)) exp (—cp‘l/?’)
c P =T

where Cp = 1%(3#2)2/3, proved to be an excellent approximation to Eq. (153).

The LYP functional as given by Eq. (157) is a meta-GGA, because it depends on the
Laplacian of the density. Miehlich et al. [193] pointed out that VZp(r) can be eliminated
from the LYP formula by partial integration. Their transformed version of LYP, reproduced
here in the spin-polarized form, is given by [194]

dr,  (157)

4 PaPp 8/3
LYP _ 11/3 8/3 / >
EC [pompﬁ] CL/ |:1 _‘_dp,l/g p + 2 CFbprépﬁ <pa +p/8
+ Laa|Vpal® + LagVpa - Vs + L66|Vpﬁ|2} dr, (158)
where .
Pa 2
Loo =bw< =paps |1 —30 — (0 —11)—| — , 159
o{grors [1-30- 0 - 1% - 3] (159)
1 4,
Laﬁ = bw §papﬁ (47 - 76) - gp ) (160)
Lgg is obtained by interchanging subscripts @ and § in Eq. (159),
—cp~ /3 -1/3
e —11/3 S = Cpfl/?) dp / (161)

YTIT dp_1/3'0 ’ 14 dp=1/3’

and a, b, ¢, d are the same parameters as in Eq. (153).

Although the LYP functional does not reduce to LSDA for uniform densities (only about
25% of the true correlation energy of a uniform electron gas is recovered [195]), it is an accu-
rate approximation for atomic correlation energies. The good performance of LYP, however,
appears to be a fluke. In a critical analysis, Singh, Massa, and Sahni [196] demonstrated that
the Colle-Salvetti correlation energy formula is seriously flawed. For example, the wave func-
tion of Eq. (150) is not normalized, and the Kohn—Sham correlation potential corresponding
to the Colle-Salvetti formula is grossly inaccurate [197]. Their analysis was continued by
Imamura, Scuseria, and Martin [198].

The idea of generating density functionals from correlated wave functions continues to
attract attention [199]. Imamura and Scuseria [200] recently derived a correlation functional
starting from a Colle—Salvetti type correlated wave function and using the transcorrelated
method of Boys and Handy [201, 202]. Colle-Salvetti-type correlation functionals that treat
parallel-spin and opposite-spin contributions to the correlation energy separately have been
also developed by Tsuneda and Hirao [203], Tsuneda, Suzumura, and Hirao [204].

8.3 Functionals based on a model pair correlation function

The exchange-correlation hole h).(r;, ry) is closely associated with the pair distribution func-
tion g*(ry,ry) defined by

P (r12) = 3p(e0)p(02) 11, 12) (162
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where Py is the pair density at coupling strength A\. Comparison with Eq. (10) shows that

hie(r1,12) = p(r2) [g7(r1,12) — 1] . (163)

Note that g*(r;,r2) is symmetric in its variables, unlike h).(ry,12). At A =0, ¢* = g, + g
reduces to the exchange-only pair-distribution function gy. This implies that hy(ri, 1) =
p(r2)[ge(r1, ) — 1] and k) (ry, 1) = p(r2)g)(ry,r2). It is easy to establish that the pair
distribution function determines the exchange-correlation energy by a formula similar to
Eq. (31), and that

1 1 A
E. = —/ dA//p(rl)p(rg)Mdrl drs. (164)
2 /o r12

Although g (ry,3) is trivially related to h)(ry,rs), it is instructive to treat density func-
tionals based on g (r;,T3) as a separate subgroup. The function g (ry,rs) is either derived
(approximately) from a correlated wave function (the Colle-Salvetti formula can be viewed
in this light) or postulated as a “model”.

Proynov, Salahub, and coworkers have developed several correlation functionals [205-209]
starting from a Gaussian model of the spherically-averaged pair distribution function for
opposite-spin electrons

9as(Ryu) = —e 25" [F1(R,A) + Fy(R, \)], (165)

where F1(R,\) and F3(R, \) are certain parametrized functions and z,s is the correlation
length. Substitution of g7 4 into Eq. (164), followed by analytic integration over A, yields

B = / IR / (R 0/2)p5(R — 0/2))Ges(R. wu du (166)

where (...) indicates averaging over the spherical components of u. In the LAP1 and LAP2
models [206], the opposite-spin contribution to the correlation energy (E”) is obtained by
Eq. (166), the EZ? terms are neglected, and the total correlation energy is approximated as
E. = 2E%%. The LAP3 model [208] takes into account the parallel spin contributions and
approximates them by the formula 7% = (1—1/N,)C,e??", where N, is the number of spin-c
electrons and C), is an empirical factor. The total correlation energy is then given as the sum
of these components. The spherical average in the LAP1-LAP3 models is approximated by
the first term of the Taylor series expansion about R:

(pa(R+u/2)ps(R —u/2)) = 4mp.(R)ps(R), (167)

but in a recent revision [209], called the 71-model, the right-hand side of Eq. (167) is aug-
mented by a correction term that depends on p, |Vpl|, and VZp.

8.4 Functionals based on a density matrix expansion

The exact exchange energy of a closed-shell system can be obtained from the density matrix
p(ry,re) by Eq. (38). Replacing p(ry,re) in this formula by a truncated expansion in p and
its gradients is a natural path to an exchange functional. This idea was pioneered by Negele
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and Vautherin [210] in the framework of nuclear matter theory and developed into practical
exchange functionals for quantum chemistry by Scuseria and coworkers [211-214]. Originally,
Negele and Vautherin expanded p(ry,rs2) in transformed coordinates R = (r; + ry)/2 and
u=r; —ry. Koehl et al. [211] generalized this transformation to

R =ar; + (1 —a)ry, u=r; — Iy, (168)

where 0 < a < % After performing the Taylor expansion of p(R, u) around u = 0, averaging
the series over the angular coordinates of u, expanding the result in Bessel functions j,(u)
and Legendre polynomials P,(R), and truncating the series after the second-order terms,
one obtains [211]
3]1(ku) 35]3(ku) 2 1 2 3 2
R,u) = —pR) + ——— — — | V°p(R) —27(R) + =k“p(R 169
p(R,u) oy PRI+ = (@ —at 5 ) VIp(R) = 27(R) + -k°p(R) |, (169)
where k is the relative momentum of two electrons. Substitution of this density matrix
expansion (DME) into Eq. (38) gives

9 35 1 3
EPMEp] = —W/ {@’)2 + T5af Ka2 —a+ 5) Vip =21+ gk%] } dr. (170)

Note that the choice k = kp, regardless of the value of a, yields the LDA (Dirac) exchange
formula (58) as the first term of EPME[p]. The remaining terms containing Vp, V2p, and 7,
naturally arise as corrections to the LDA.

Surprisingly, the nonempirical functional of Eq. (170) with a = 0 (the implicit choice of
Negele and Vautherin) proved to be a worse approximation than LDA, with a mean absolute
error (m.a.e.) of 3.66 Ej, for a test set of 32 molecules, compared to 1.79 E}, for LDA. Koehl,
Odom, and Scuseria (KOS) suggested treating a as an adjustable parameter and found that
at its optimal value (a = 0.0000638) the error of Eq. (170) drops to 0.087 E},, which is only
about twice as large as the error of B88 (m.a.e.=0.041 E},). By setting a = 0 and optimizing
the coefficients of the p? and p terms they found

A B /1 3
Bl = [ |+ g0 (57— 2 + 2o )| e 1
F F

2

where A = —7.31275 and B = —5.43182. The m.a.e. of the KOS functional for the same
32-molecule test set is only 0.026 Ej,.

Recently, Maximoff and Scuseria [214] worked out the full fourth-order density matrix
expansion (DME4) and proposed a corresponding exchange functional called DME4z. In test
calculations, DME4x produced some of the most accurate atomic and molecular exchange
energies. Developing exchange functionals by incorporating higher orders of the density
matrix expansion may look like a safe bet, but in practice this approach is wrought with
difficulties. High-order density matrix expansions involve unusual ingredients like V" p(r)
and V"7 (r) with n > 1, whose presence causes an extreme numerical sensitivity of exchange-
correlation matrix elements and makes self-consistent calculations difficult to converge.

9 Empirical fits

A pragmatic approach to developing density functional approximations is to expand the
post-LDA correction in a set of suitably chosen parametrized functions and optimize the
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parameters by training the functional to reproduce certain calibration data as accurately as
possible. Of course, fitted parameters appear in many of the previously discussed function-
als, but there they were used only to “clean up” the construction. In this survey, we call
“empirical” or “optimized” only those functionals whose design is avowedly empirical.

Optimization of empirical parameters is often accompanied by relaxing exact constraints.
As a result, many optimized functionals violate some of the basic analytic properties, such
as the uniform density limit of Eq. (46). For instance, Slater’s Xa method [9-11], which is
nowadays regarded as an empirical variant of Dirac’s exchange, clearly does so.

Systematic procedures for optimizing GGA and meta-GGA exchange-correlation func-
tionals have been developed by Becke [215,216], Adamson et al. [217], Handy and cowork-
ers [218-221]. In Becke’s method, the total exchange-correlation energy is written as

Ew=)» E{+E¥+> E”, (172)

where the individual energy components have the form

B7 = [ Lo F (173

EP = / ey (Pas pp) FOP dr, (174)

EY" = / Ceoo (Po)1; FC7 dr. (175)

Here eUFC(p,) = —21/3C, pa/® | eVEC are the correlation energy densities of a uniform electron

gas given by Eqgs. (133) and (134); F' are enhancement factors (functions of p,, Vp, and,
possibly, V2p, and 7,), and 73°C is the self-correlation correction of Eq. (129). Each F is
represented by a polynomial

F = Z W™ (Poy VPoy - ), (176)

m=0

where w is a suitably chosen function derived from approximate expressions for gradient
corrections [215]; ¢, are empirical coefficients determined by least-squares fitting to training
sets of accurate experimental and/or theoretical data. Eqgs. (172)—(176) underly several em-
pirical functionals, such as Becke’s 1997 (B97) exchange-correlation [215], Schmider—Becke’s
1998 hybrid GGA (SB98h) [222] and hybrid meta-GGA (7-SB98h) [223], the GGA of Ham-
precht, Cohen, Tozer, and Handy (HCTH) [219], its various reparametrizations (HCTH /120,
HCTH/147 [224], and HCTH/407 [225]), and 7-HCTH [226].

In 1997, Van Voorhis and Scuseria [212] argued that, since electron densities in chemistry
are not uniform, one may generalize the density matrix expansion of Eq. (169) by replacing
the fixed k = kr by a variable k? — k2w(x, ), where w(x, z) is a function of x = |Vpl|/p*/?
and z = 2(7/p°/® — Cr). Accordingly, they proposed two exchange functionals of the form

bix? +b

, (177)

w(z, 2)
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where w(z, z) = 1+ a12? + sz, and a, by, by, ay, a are empirical parameters. The resulting
approximations were found to be in a better agreement with the Hartree-Fock values than
most of the other exchange functionals available at the time.

In 1998, Van Voorhis and Scuseria extended this approach [213] to include more terms:

a bix? + bz cixt + cox’z + c32?
w(zx, z) w?(z, 2) w3(z, 2)

F(x,2) = , (178)

where a, b;, and ¢; are empirical parameters. The form of the function w(z, z) = 1+a(z?+2)
was chosen to satisfy certain nonuniform scaling relations. Notice that neither VS97 nor VS98
reduces to the LSDA for uniform densities.

For the VS98 correlation, Van Voorhis and Scuseria [213] assumed the general form of
Eq. (174) and (175) with the Perdew—Wang parametrization [114] of €ZSP4(p,, p3). Hop-
ing for cancellation of errors, they chose the factors F(x,z) and F7°(z,2) to have the
same analytic form as the exchange enhancement factor of Eq. (178). The VS98 exchange-
correlation functional (also referred to as VSXC, after the keyword in GAUSSIAN) has 21
empirical parameters (the exchange component, the parallel-, and opposite-spin correlation
components have 7 parameters each), and is the most accurate functional in existence for
atomization energies, surpassing even the hybrid functionals (see Table 2 below). Also, be-
cause the parameters of VS98 were optimized for exchange and correlation together, neither
component is accurate separately. Nevertheless, the analytic form of Eq. (178) is very flex-
ible, so that a suitable reparametrization of the stand-alone VS98 exchange functional can
produce excellent approximations to the exact exchange energies [213].

Another approach is to optimize linear combinations of several existing functionals,

By = Z CkESZ)a (179)
k

possibly with a focus on a particular property. Internal parameters of individual functionals
Ef(’(f) may also be subject to reoptimization. This type of approximations is represented
by EDF1 (“empirical density functional 1”) of Adamson, Gill, and Pople [217], which was
optimized to yield accurate thermochemistry, and EDF2 of Lin, George, and Gill, optimized
to give accurate vibrational frequencies [227].

In search for a functional that would accurately reproduce the Hartree-Fock energies of
first and second-row atoms, Handy and Cohen [228] refined Becke’s 1986 exchange approxi-
mation [Eq. (91)] by optimizing the coefficient of the LSDA term and revising the gradient
correction. The enhancement factor of their functional, called OPTX, is given by

2 2
FOPTX (o) — ¢ [ v(c15) } ’ 180

where s is the reduced gradient of Eq. (79), a; = 1.05151, ay = 1.43169, v = 0.006 are
empirical parameters, and ¢; = 2(672)/% and ¢, = (21/2C,) L. Tests of the OPTX functional
paired with LYP indicate [229] that the OLYP model is perceptibly more accurate than
BLYP, although not as accurate [180] as meta-GGAs or hybrid functionals (see also Table 2).

Several reparametrizations of standard functionals like the B97 GGA and the VS98 meta-
GGA have been discussed in Ref. [230].
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Xu and Goddard (XG) [231] proposed an exchange functional of the form
FEC(s) = L+ a[F™(s) — 1] + ao[ T (s) — 1], (181)

where the mixing parameters a; = 0.722 and ay; = 0.347 were determined by least squares
fitting to the total energy of 10 atoms and atomization energies of 38 molecules. In combi-
nation with the LYP correlation, the XG exchange functional is reported to show superior
performance for transition metals, hydrogen- and van der Waals complexes.

Purely empirical functionals often work well, because satisfaction of many secondary
constraints (the uniform, high- and low-density limits, density scaling transformations, and
so on) is not essential for a good performance for usual properties (“molecules do not behave
like the uniform electron gas”). The price for avoiding the hard work of constraint satisfaction
is that optimized functionals may fail badly in situations for which they were not “trained”.

10 Mixing exact and approximate exchange

Functionals that combine GGAs or meta-GGAs with exact exchange of Eq. (38) are called
hybrids. At present, hybrid functionals outnumber any other group of exchange-correlation
approximations. “Hybridization” has been embraced widely because it greatly improves
performance of “pure DFT” functionals and is easy to implement.

10.1 Global hybrids

The idea of mixing density functional approximations with exact (Hartree-Fock-like) ex-
change rests on theoretical considerations involving the adiabatic connection formula [Eq. (28)].
Becke [232] reasoned that, since E}"0 = B2t and EX~! ~ EUSPA| the integral over A in
Eq. (28) can be approximated by the mean value theorem:

~ l exact LSDA
E. ~ 5 (BZet + E0PR) . (182)

Eq. (182) has been termed the “half-and-half” theory [232]. The extent and validity of this
approximation were analyzed in detail by Levy, March, and Handy [233], as well as Proynov
et al. [207].

Soon thereafter, Becke proposed [234] a more empirical yet much more accurate three-
parameter hybrid model

Eye = agES* + (1 — ag) EYPA 4 a AESCA 4 EESPA 1 AECCA, (183)

where AESSA and A ESSA are gradient correction parts of the GGA exchange and correlation

functionals, and ag, ay, and a. are adjustable parameters. The original three-parameter
hybrid functional of Becke [234] has the form

E)]?C?)PWQI _ aoEixact + (1 o (Z())E)I:SDA + aXAE)]?88 + E(I:SDA(PWQQ) + acAE(l;’W917 (184)

where AEB® is the beyond-LSDA part of the B88 exchange, EESPAPWI) 4o the Perdew—
Wang parametrization [114] of the LSDA correlation, AEYW?! is the gradient correction of
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Table 1: Parameters (in Ej) of the VWN and VWN-RPA correlation functionals [113] of
Eq. (73). The value of Agg is given by Eq. (70).

VWN VWN-RPA
Parameter e (ry) el (ry) —a.(rs) el (ry) el (ry)
A AGB AGB/2 1/671'2 AGB AGB/2
T —0.10498 —0.32500 —0.00475840 —0.409286 —0.743294
b 3.72744 7.06042 1.13107 13.0720 20.1231
c 12.9352  18.0578  13.0045 42.7198 101.578

the PW91 correlation [the second term on the right-hand side of Eq. (114)], and ay, ay, and
a. are empirical constants. The optimal values of these constants were determined by a fit to
a series of atomization energies, ionization potentials, and proton affinities to give ag = 0.20,
ay = 0.72, and a. = 0.81 [234].

Using Eq. (184) as a template, the developers of the GAUSSIAN program [32] introduced
two other well-known three-parameter hybrid functionals, BSLYP and B3P86. Unfortu-
nately, these two functionals are scantily documented in the literature. The original paper
by Becke [234] contains no mention of either BSLYP or B3P86. B3LYP debuted very in-
conspicuously in a paper titled “Ab initio calculation of vibrational absorption and circular
dichroism spectra using density functional force fields” [235], while B3P86 is defined solely
by its implementation in the GAUSSIAN program. To complicate the matter, the BSLYP
functional is coded in GAUSSIAN not exactly as intended in Ref. [235]. We would like to use
this opportunity to clarify several issues concerning these functionals.

The B3LYP hybrid, as implemented in the GAUSSIAN program, is given by

E)]?CSLYP — agEixaCt + (1 . CL())E)I;SDA 4 (IXAEESE; + (1 . CLC)E;/WN_RPA + CLCE(I;YP, (185)

where ag, ay, and a. have the same values as in B3PW91. Because the LYP correlation
functional is not of the “LSDA + gradient correction” form, it cannot be naturally separated
into local and nonlocal parts. This is why the coefficient a. in Eq. (185) multiplies the entire
LYP correlation energy, not the gradient correction for correlation, as in B3PW91. To avoid
double-counting, the amount of local correlation is reduced by a.. It is this VWN term
that became the source of confusion. When defining B3LYP, Stephens et al. [235] had in
mind: (a) Eq. (73) with the parameters fitted to the exact Ceperley—Alder data; (b) the
VWN interpolation scheme of Eq. (77). Instead, B3LYP was implemented: (a) with the
parameters of Eq. (73) fitted to reproduce the random-phase approximation (RPA) values
of the correlation energy of the uniform electron gas; (b) using the obsolete Barth-Hedin
interpolation formula of Eq. (76). The Barth-Hedin interpolation is “form I” of the VWN
paper, not “form III”, as is stated in the GAUSSIAN manual and in the literature [236]. The
correct VWN parametrization of the LSDA correlation energy was added to the GAUSSIAN
program later along with the keyword VWNS5 (the parametrization was referred to as “form
V” in the VWN paper). The parameters of the intended VWN and the implemented VWN-
RPA forms are listed in Table 1. All other terms in Eq. (185) are unambiguous. Hertwig and
Koch [236] compared both variants of BSLYP and found that, luckily, the “wrong” B3LYP
is actually more accurate!
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The B3P86 hybrid also uses VWN-RPA as the local correlation component
EB3PS6 _ g pexact | (1 _ q )ELSDA 4 g AEBSS | EYWN-RPA 4 o A pPSS (186)

where AEP® is the second term on the right-hand side of Eq. (122), and the coefficients
ag, ay, and a. have the same values as in BBPW91. The original BBPW91 functional was
designed to be exact for a uniform density. In contrast, neither B3LYP nor B3P86 has this
property, because LYP and VWN-RPA energies are not exact for a uniform electron gas.

In the wake of the success of BSPW91, Becke also introduced [168] a one-parameter
simplification of Eq. (183),

Eye = aoEY + (1 — ag) E)' T + EPTT, (187)

which proved to be almost as accurate as three-parameter hybrids. Perdew, Ernzerhof and
Burke [237] provided a theoretical justification for one-parameter GGA hybrids and gave a
theoretical estimate of the mixing coefficient suitable for calculations of atomization energies
of typical molecules: ag = 1/4. A rigorous formal treatment of hybrid schemes was also
given by Gorling and Levy [238].

Adamo and Barone [239] empirically readjusted two parameters of the PW91 exchange
based on an analysis of the low-density, large-gradient, regions important in van der Waals
systems, and combined their modified functional (mPW91) with the PW91 correlation to
form a one-parameter hybrid, named mPW1PWO91. This functional is given by Eq. (187)
with EPFT = pmPWol - pDET — pPWOL “and ay = 0.25.

A one-parameter hybrid version of the PBE exchange-correlation functional, called here
PBEh (other names of the same functional include PBEO and PBE1PBE) was introduced
by Ernzerhof and Scuseria [240] and extensively studied by Adamo and Barone [241]. It has
the form of Eq. (187) with DFT=PBE and ay = 0.25.

The hybrid TPSS functional (TPSSh) [180] is also given by Eq. (187) with DFT=TPSS
and the mixing parameter ap = 0.10, which was determined by minimizing the mean absolute
error in the enthalpies of formation of 223 G3/99 molecules. TPSSh satisfies the same exact
constraints as the original TPSS. The fact that the value of ay in TPSSh is smaller than
for a typical GGA hybrid suggests that meta-GGAs are better approximations to the exact
exchange functional than GGAs.

Owing to ease of construction and agreeable performance, empirical hybrid functionals
of the “mix-and-optimize” type have been proliferating in the literature over the past few
years. These are functionals of the form

Bye = Ey + Be + a B, (188)

where F, and FE., are optimized simultaneously with a,, an empirical parameter. Examples
of such hybrids include B97-1 [219], revised in Ref. [230], B97-2 [221], the Schmider-Becke
hybrid GGA (SB98h) [222], 7-SB98h [223], the -HCTH hybrid [226], and the Boese-Martin
functional for kinetics (BMK) [242].

Cohen and Handy [243] presented a hybrid functional similar to B3LYP that is based on
the exchange functional OPTX of Eq. (180). This functional, named O3LYP, is given by

E}(()C3LYP — CLQE)G(X&Ct + bQE)I;SDA + (IXAEXOPTX + (1 o ac)E(YWN + CLCE(%YP, (189)
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where ap = 0.1161, by = 0.9262, a, = 0.8133, and a. = 0.81. Numerical studies show
that O3LYP is overall more accurate than B3LYP for atoms and molecules, although not
by much [229,244-246]. Note also that the fractions of approximate and exact exchange in
Egs. (188) and (189) no longer add up to 1. This means that the exchange components of
these functionals do not reduce to EXSPA for uniform densities.

Very recently, Xu and Goddard [231] introduced a B3LYP-style hybrid version of their
“extended” GGA functional of Eq. (181). Termed X3LYP, this functional uses reoptimized
parameters in the AEXY part [a; = 0.675, ay = 0.235 in Eq. (181)] and is given by

E))(E:SLYP — aOEixaCt + (1 _ ao)E)%SDA + aXAE))((G + (1 _ CLC)E(YWN_RPA + CLCE%YP, (190)

where ag = 0.218, a, = 0.709, and a. = 0.871 are also reoptimized. The performance of
X3LYP appears to be comparable or better than that of other hybrid functionals [231].

A one-parameter hybrid functional combining the B88 exchange and B95 correlation has
been proposed by Zhao et al. [247]. In another recent work, Zhao et al. [248] initiated the
development of “doubly hybrid” functionals—empirical linear combinations of the Hartree—
Fock, approximate DFT, and ab initio (e.g., MP2) energy terms.

10.2 Local hybrids

Although conventional hybrid functionals offer the best accuracy, they suffer from the same
problems that plague GGAs and meta-GGAs, especially the self-interaction error (SIE).
The SIE arises from inexact cancellation of spurious Coulomb self-interaction energy by
approximate exchange. The exact exchange functional is, of course, self-interaction free.
Inclusion of a fraction of exact exchange in global hybrid functionals alleviates, but does
not solve completely, this problem. Adding a self-interaction correction [77] to the existing
functionals to satisfy the constraint of Eq. (44) is an interesting method [249], but it is not
straightforward to implement and apply.

A different approach to this problem is offered by local hybrid (Lh) [93] or hyper-GGA [72]
scheme, in which the amount of approximate and exact exchange is determined by the local
mixing function

B = [ {alw)e= o) + [1 - ale)) 77w + 27T . (191)
where €¥*2¢*(r) is the exact exchange energy density. The mixing function a(r) must assume
values between 0 and 1 and reduce to 1 for any one-electron density. This ensures that the
self-interaction error is eliminated in one-electron-like regions which are particularly sensitive
to the SIE. The local hybrid scheme can also be viewed as a generalization of global hybrid
functionals.

The simplest function that fulfills these requirements is due to Becke [169]

Tw (r)
= _ 192
ofr) = 22 (192)
Its use in the above local hybrid scheme was first reported by Jaramillo et al. [93]. This
particular choice of a(r) improves equilibrium geometries and binding energies of two-center,
odd-electron symmetric cations such as Hy , Hej, (HF)3 (the notorious problem discussed, for
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example, in Refs. [250] and [251]), and hydrogen abstraction barriers, but gives disappointing
results for atomization energies [93]. The search for better mixing functions will certainly
continue in the future [72]. It is clear that a local hybrid, if designed well, cannot be worse
than the parent global hybrid.

10.3 Screened hybrids

Screened Coulomb interaction techniques find many interesting applications in modern quan-
tum chemistry. For example, Gill and coworkers [252-256] describe an algorithm aimed at
speeding up the computation of the Coulomb energy based on splitting the Coulomb operator
1/u (where u = 112) into short-range (SR) and long-range (LR) components:

I 1—erf(wu) erf(wu)

— = + ; (193)
u u u
—_—————— ——
SR LR

where erf(wu) is the error function and w is an adjustable parameter. Their idea is to ap-

proximate the slowly-decaying 1/u operator with the fast-decaying SR term plus corrections

for the LR part. This reduces dramatically the required number of two-electron integrals.

Savin and coworkers [257-260] use Coulomb screening to handle atomic and molecular near-

degeneracy effects by combining multideterminantal wave functions with density functionals.
In the context of DFT, the partitioning of 1/u is equivalent to representing FEy. as

Exe = Eg'(w) + Bl'(w). (194)

The short-range component of exact exchange is obtained from electron repulsion integrals
calculated with the screened Coulomb potential:

1 — erf(wrg)

o) = [ [ e) () . (195)

T12

To evaluate the long-range part of the DFT exchange energy, one inserts the screened
Coulomb potential into Eq. (33) to obtain

EDFTLR(,) — 27r/dr/ erf(wu) uhy (r, u) du. (196)
0
For example, for the LDA exchange this gives [258, 261]
2 1
ELPALR () — CX/PMS; [Zﬁerf (g) — 3+ &+ (26 - 53)6_1/52 dr, (197)

where £ = w/kp.

Recently, Heyd et al. [262] used the screening of 1/u to adapt global hybrid functionals
to calculations of periodic systems with small band gaps. Such an adaptation is necessary
because direct evaluation of exact exchange in periodic systems with metallic character is
prohibitively expensive, rendering conventional hybrids utterly impractical for many solids.
Heyd et al. start with rewriting the one-parameter global hybrid functional of Eq. (187) as

E;JCDFTh —a [EixaCt’SR(w) + EﬁxaCt’LR(wﬂ + (1 o a)E)]?FT + E?FT, (198)
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choose DFT=PBE, and then replace E<*%LR (), the slowest-decaying term, by EFBELR(y):
E)u:CPBEh —a [E)(ixact,SR<w) 4 E)}?BE’LR<W):| 4 (1 . G/)E)I()BE 4 EfBE (199)

Since the explicit PBE exchange hole is known [189], EYBELR can be obtained analytically
(for details, see Ref. [262]). For a = 1/4 and w = 0, the wPBEh functional is equivalent
to PBEh, while in the limit w — oo it reduces to the PBE GGA. Extensive tests [262-264]
show that wPBEh is an excellent approximation to the original PBEh functional and that
the computational cost of wWPBEh for solids is much closer to that of PBE than PBEh. A
revised version of wPBE, called HSE [263], gives spectacular results in calculations of band
gaps of semiconductors [264].

Other researchers [265-268] have used Coulomb screening to describe long-range inter-
actions between atoms and molecules within hybrid DFT. In these methods, the LR com-
ponent of exact exchange is kept, yielding the correct tails of the exchange potential and
energy density, while the SR part is approximated by GGA or meta-GGA functionals. The
fraction of exact exchange increases with r5, which is precisely the opposite of the trend
in Eq. (199). The resulting LR-corrected approximations, called “Coulomb-attenuated hy-
brids” [267], show improved performance for polarizabilities of long chains, Rydberg excita-
tions, charge transfer, and van der Waals interactions.

Eq. (196) represents the proper way of screening exchange but, unfortunately, it requires
knowing the explicit expression for the exchange hole. For most exchange functionals, hy(r, u)
is not known. In such cases, the screened DFT exchange energy can be approximated as

EDTIN ) [ Ao, ) FOP Y, V. (200)
where elPALR is the exchange energy density in Eq. (197) and F is a GGA or meta-GGA
enhancement factor. Although Coulomb screening of a density functional by Eq. (200) is only

an approximation to the exact procedure, it is easy to implement for almost any exchange
functional and has been commonly used in practice [265-268].

11 Implementation and performance

The self-consistent field procedure in Kohn-Sham DFT is very similar to that of the con-
ventional Hartree-Fock method [269]. The main difference is that the functional Ey.[p] and
matrix elements of vy (r) have to be evaluated in Kohn—Sham DFT numerically, whereas the
Hartree—Fock method is entirely analytic. Efficient formulas for computing matrix elements
of v (r) in finite basis sets have been developed [270,271], along with accurate numerical
integration grids [272-277] and techniques for real-space grid integration [278, 279].

For an exchange-correlation functional of the form

Eyclp] = / exc(p, [Vp|, V?p) dr, (201)

the exchange-correlation potential is given by the rules of calculus of variations [280)]

0Fy.  Oexc Oexe o [ Oexe
o= e e g [ Do e ) 202
=, o Y (wp)*v (8V2p> (202)
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If ex. also depends on ¢; or 7, then explicit differentiation with respect to p is no longer
possible and the optimized effective potential (OEP) method [47-55] should be used. In
practice, the determination of the OEP is often avoided by departing slightly from the
true Kohn—Sham scheme and minimizing the energy functional with respect to Kohn—Sham
orbitals [271], that is, by assuming

0 Exe
0p;

For functionals having the form of Eq. (201), both approaches are equivalent because by the
chain rule

0 / 0E. op(r') ., / 0B Op N, OFE«. Op  0Fy
= dr’ = Or—r)dr' = =
00; op(r’') 66 (r) op(r') 0; ( ) op 097 dp

In the general case of orbital-dependent functionals, minimization with respect to orbitals
is only an approximation to the true Kohn-Sham scheme [281-285] (see also Ref. [58] con-
cerning the gauge invariance problem with conventional 7-dependent functionals).

Table 2 compares the performance of most density functionals discussed in this review for
selected atomic and molecular properties. The list of molecules comprising the G3 thermo-
chemical test set is given in Refs. [286] and [287]. The G3/IP, G3/EA, and G3/PA test sets
are described in Ref. [288]. The T-96R and T-82F sets are defined in Ref. [180]. All other
computational details can be found in Ref. [180]. The results in Table 2 show that LSDA is al-
ready a great improvement over the Hartree—Fock method. GGA functionals further increase
the accuracy for molecular binding energies, electron and proton affinities. Meta-GGAs and
hybrid functionals generally provide the most accurate predictions for all properties. Note
that the recent nonempirical functionals are now vying with the best fitted functionals for the
top places in the performance ranking. Systematic numerical studies of density functionals
for other properties regularly appear in the literature [181, 194, 246, 288-293].

Vxe @i = (203)

b (204)

12 Conclusion

Back in the 1960s, hopes for future progress in electronic structure theory were associated
with correlated wave function techniques and the tantalizing possibility of variational cal-
culations based on the two-electron reduced density matrix [294]. Density functional theory
was not on the quantum chemistry agenda at that time. The progress of wave function
techniques has been remarkable, as documented elsewhere in this volume. In contrast, the
density matrix approach has not yet materialized into a competitive computational method,
despite many persistent efforts [295]. Meanwhile, approximate DFT has become the most
widely used method of quantum chemistry, offering an unprecedented accuracy-to-cost ratio.

A few personal reminiscences of the time when DFT was entering mainstream quantum
chemistry are appropriate here. In March of 1992, while the first author of this review was
actively working on coupled cluster theory, John Pople visited Rice University to deliver the
Franklin Memorial Lecture. The subject of his talk was the impressive performance of the
BLYP functional for thermochemistry, especially as judged by its low computational cost
relative to the G2 theory. Pople was on his way to the Sanibel Symposium and gave the
author a preprint of Ref. [296], which later became Pople’s first publication on DFT (see

43



Table 2: Mean absolute deviations (m.a.d.) from experiment for standard enthalpies of formation (AgHSog),
ionization potentials (IP), electron affinities (EA), proton affinities (PA), equilibrium bond lengths (r.), and
harmonic vibrational frequencies (w.) computed with approximate functionals using the 6-3114++G(3df,3pd)
basis set. The fully nonempirical functionals in this table are HF, LSDA, PW91, PBE, and TPSS.

Property (units of m.a.d.) / Test set (size)

A¢HSgs (keal/mol) IP (eV) EA (eV) PA (kcal/mol) 7. (A) we (cm™1)

Method G3 (223) G3/IP (86) G3/EA (58) G3/PA (8) T-96R (96) T-82F (82)
HF 211.5 1.03 1.10 3.1 0.025% 136.2¢
LSDA® 121.4 0.23 0.24 5.9 0.013¢ 48.9¢

Generalized gradient approximations
BLYP 9.5 0.29 0.12 1.6 0.022 55.2
BPWI1 9.0 0.24 0.11 14 0.017 414
BP86 26.3 0.21 0.19 1.3 0.017 45.5
PWI1 23.6 0.22 0.14 1.6 0.014 39.8
PBE 22.2 0.24 0.12 1.6 0.016 42.0
HCTH/407 7.2 0.23 0.19 1.9 0.014 39.9
OLYP 5.9 0.29 0.15 1.7 0.018 40.2

Meta-generalized gradient approximations
VS98 3.5 0.23 0.13 1.6 0.013 33.9
BKCIS 7.2 0.22 0.20 1.5 0.019¢ 45.1¢
PKZB 7.0 0.31 0.15 1.8 0.027 51.7
TPSS 5.8 0.24 0.14 1.8 0.014 30.4
BRxB88c/ 14.6 0.22 0.14 2.7 0.026 48.7

Hybrid functionals
B3PWOI1 3.9 0.19 0.14 1.1 0.009 36.2
B3LYP 4.9 0.18 0.12 1.2 0.010 33.5
B3P86 26.1 0.55 0.59 1.0 0.008 37.0
mPWI1PW91 4.1 0.19 0.16 1.1 0.010 42.9
PBEh 6.7 0.20 0.17 1.1 0.010 43.6
HSE 6.0 0.22 0.12 1.0 0.009 43.9
O3LYP 3.7 0.22 0.13 1.5 0.012 33.7
B97-1 4.9 0.19 0.11 1.0 0.012 32.5
B97-2 4.7 0.18 0.14 2.2 0.012 40.9
SB98hY 3.9 0.18 0.11 0.9 0.012 33.8
TPSSh 3.9 0.23 0.16 1.8 0.010 26.7

@ Excludes Bes (no binding).

b Using the Perdew—Wang representation of the LSDA correlation energy [114].
¢ Excludes F3 and SF (no convergence).

4 Excludes FJ (no convergence).

¢ Excludes Cy (no convergence).

f From Ref. [188].

9 Fit 2c in Table III of Ref. [222]. The GAUSSIAN keyword is B98.

also Ref. [297]). Pople credited the lecture by Axel Becke at the 7th International Congress
of Quantum Chemistry in Menton in the Summer of 1991 as a turning point in his views
on DFT. With the help of Peter Gill by email correspondence, the author promptly added a
numerical quadrature code to his Hartree-Fock program and was comparing coupled-cluster
results to DFT in a matter of weeks [298].

Impressive as the performance of modern density functionals is, none of the practical
approximations is still suitable for general use. LSDA, GGAs, meta-GGAs, and global
hybrids all systematically underperform or simply fail for several broad classes of problems
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such as: left-right correlation, van der Waals interactions, negative ions, orbital spectra
and band structure, open-shell singlet diradicals, etc. Even for thermochemistry of small
molecules, none of the currently available density functionals has yet achieved an accuracy
better than a few kcal/mol. In principle, there is no doubt that DFT can describe all such
systems, provided that accurate Kohn—Sham exchange-correlation potentials and functionals
are used. This has been demonstrated convincingly by generating the exact vy.(r) via ab
initio methods and solving the corresponding Kohn—Sham equations [52, 91, 299-304]. Given
the formidable complexity of the true exchange-correlation functional and the magnitude of
the reward, development of better approximations is certain to remain a “promising and
charming” subject for years to come.
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Erratum for the actually published version—Chapter 24 in: Theory and Applications of
Computational Chemistry: The First 40 Years (A Volume of Technical and Historical Perspectives),
edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria, Elsevier, Amsterdam (2005).

p. 675: Eq. (28) should not contain a factor of 1/2. (Pointed out by Oded Hod).
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