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1 Introduction

As first pointed out by Marschak and Andrews [1944], using the inputs and outputs of profit

maximizing firms to estimate production functions gives rise to an endogeneity problem.

The endogeneity problem is caused by the presence of productive factors that are unobserv-

able to the econometrician but that are “transmitted” to the firm’s optimal choice of inputs.

Traditionally, it is assumed that these unobservable factors are captured by a scalar produc-

tivity index that varies across firms and potentially evolves over time. The two standard

and oldest methods of controlling for the endogeneity problem in the production function

are instrumental variables and fixed effect estimation. However these solutions have proven

unsatisfactory on both theoretical and empirical grounds (for a review, see Griliches and

Mairesse [1998] and Ackerberg et al. [2007]).

Using an underlying model of firm dynamics, Olley and Pakes [1996] (OP for short) de-

velop a new solution to the endogeneity problem. (This approach was extended by Levinsohn

and Petrin [2003], LP for short, and Ackerberg et al. [2006], ACF for short.) Implicit in their

approach are two main sets of assumptions: (1) timing assumptions on firm behavior, and
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(2) an assumption that productivity is the only dimension of unobserved firm heterogeneity

for which the econometrician cannot control. While (1) is a restriction from an economic

model of firm behavior, (2) is purely an econometric assumption on the extent of unobserved

heterogeneity in the data.

The main role of assumption (2), which we call the “scalar unobservability” assumption,

is that it allows a firm’s input demand function to be inverted to yield a firm’s productivity

as a function of only variables observable to the econometrician. The inverse of the firm’s

input demand thus acts as a perfect proxy, or replacement function [Heckman and Robb,

1985], for a firm’s productivity. Conditioning on the replacement function thus controls for

the endogeneity problem in the production function.

As implicitly recognized by Bond and Söderbom [2005] and Ackerberg et al. [2006], the

replacement function cannot be used to identify the production function in the presence of

a productive input that is both variable and static. This is an inherent limitation of scalar

unobservability: it does not allow for a source of variation in such inputs to come from

outside of the production function. As a consequence, the replacement function approach

cannot identify gross output production functions when some inputs are variable and static.

While one solution is to focus on value-added production functions instead of gross output,

value-added production functions are problematic for applied work as they rely on a number

of strong restrictions (see e.g., Basu and Fernald [1997]). In general, when the assump-

tions of constant return to scale and perfect competition are violated, using the value-added

production function to recover productivity is no longer a valid option.1 Perhaps more im-

portantly, gross output production functions are required to to study a number of important

empirical problems, such as the problem of revenue production functions (when the econo-

metrician does not observe quantities but rather only revenue), or analyzing productivity

among exporting firms [Rivers, 2009].2

1One exception is the special case of Cobb-Douglas production functions, which is robust to non-constant
returns to scale and specific forms of imperfect competition.

2To recover productivity when revenues come from multiple markets, such as export markets, value added
presents many obstacles.
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In this paper, we show that the firm’s optimization problem (either maximizing profits

or minimizing costs) contains enough identifying information to identify gross output pro-

duction functions, both with and without the scalar unobservability assumption. Through a

suitable transformation of the firm’s first order condition (which we refer to in the paper as

the inverse share equation for reasons that will be made apparent), we are able to exploit this

information. A key feature of the transformation we exploit, i.e., the inverse share equation,

is that it does not suffer from the endogeneity problem that plagues not only the production

function, but also traditional input demand equations. As such, it provides a fundamentally

new source of information relative to the replacement function.

Since the inverse share equation can be derived without appeal to the scalar unobserv-

ability assumption, and it does not require that the econometrician have information on

variables other than those used in the replacement function, it allows us to introduce addi-

tional dimensions of unobserved heterogeneity among firms in the data besides productivity,

such as firm specific demand shocks. As empirical studies have shown, heterogeneity is an

important feature of firm-level data (see e.g., Bartelsman and Doms [2000], Fox and Smeets

[2007]), and consequently allowing for multiple dimensions of firm heterogeneity is critical

to the applicability of productivity analysis. In addition to being advantageous for its own

sake, heterogeneity is a naturally useful source for identification, especially in the context of

gross output production functions, as it provides a source of independent variation in static

and variable inputs.

The key problem with the replacement function approach is that, while firm-level het-

erogeneity beyond productivity is a useful source of identification, it interferes with the

role of the replacement function as a way to control for the endogeneity problem (since the

replacement function relies on scalar unobservability). Our inverse share equation breaks

this tension and gives us a new way to address many recent problems in the application of

production functions. In particular we show that the inverse share equation can be fruit-

fully combined with the replacement function to identify (gross output) revenue productions
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without requiring any information from a parametric demand system. If a parametric de-

mand system is introduced, then (gross output) revenue productions can be identified with

firms having heterogeneous degrees of market power. Both of these results are new to the

literature.

The rest of the paper is organized as follows. In Section 2 we describe the timing of

production decisions that are standard in the literature and review the current structural

approaches for estimating production functions based on scalar unobservability. Section 3

introduces the inverse share equation, which we show provides more information than the

replacement function. In section 4 we show how our method is robust to markets with

imperfect competition, and in particular can be used to estimate the production function in

the presence of revenue rather than quantity data without having to simultaneously estimate

a parametric demand system (which is the current state of the art of the literature). Section

5 presents results from an application to data on Chilean manufacturing firms.

2 The Timing of Production Decisions

Let Y denote a firm’s output and the vector (L,K,M) denote a firm’s inputs, with L de-

noting labor, K denoting capital, and M denoting all intermediate inputs. We assume that

productivity differences among firms are driven by heterogeneity of a Hicks-neutral form.

The relationship between a firm j’s input and output in period t is expressed as

Yjt = UjtF (Ljt, Kjt,Mjt), (1)

where Ujt represents the Hick’s neutral shock.

Expressed in logs rather than levels (with lowercase letters denoting logs and uppercase

letters denoting levels), (1) becomes

yjt = lnF (Ljt, Kjt,Mjt) + ujt.
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As we will show in the next sections, the central problem in estimating the production

function F within the OP/LP/ACF tradition is the fact that the residual ujt is assumed to

consist of two distinct terms, i.e., ujt = ωjt + εjt. The first term, ωjt, is persistent over time

and is observed before the firm makes its period t input decisions. The second term, εjt,

is an unanticipated shock that the firm does not observe before making its period t input

decisions. Since measurement error in output can also enter εjt we will simply refer to this

term as measurement error. As ωjt is anticipated but εjt is not, the endogeneity problem

is generated due to the dependence between ωjt and the inputs (Ljt, Kjt,Mjt), and we will

refer to ωjt as the firm’s productivity.

In period t, firm j takes its productivity ωjt and capital stock Kjt as state variables that

are fixed for the period. Productivity evolves according to an exogenous Markov process

Pr
(
ωjt|{ωjτ}t−1

τ=1

)
, which is assumed throughout the paper to be first order (an assumption

which can be easily relaxed). Capital is accumulated each period based on last period’s

investment decision Ijt−1, and thus Kjt = K(Kjt−1, Ijt−1). Intermediate inputs Mjt, on the

other hand, are static and variable inputs. They are variable in the sense that they can be

adjusted each period, and they are static in the sense that they have no dynamic implications,

i.e., Mjt does not directly affect the firm’s profit in any future periods.

Regarding labor, the usual assumption used in OP and LP is that Ljt is also a static and

variable input, and thus treated exactly like the intermediate input from the firm’s point of

view. While ACF also assume Ljt to be static and variable, they assume that it is chosen at

some point after Kjt is chosen but before ωjt is fully realized (that is, Ljt is chosen between

t and t − 1). As a consequence, labor becomes a state variable at time t. Since this timing

assumption on labor breaks collinearity concerns between labor and materials (a point we

explain later), we will also maintain it. Instead of being static, the presence of hiring/firing

costs would cause labor to have dynamic implications, and thus lagged labor Ljt−1 would

enter as a state variable to the firm in the period t labor decision. Our discussion applies

equally to the dynamic or static interpretation of labor.
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The first thing we observe about the timing of the model is that, if the measurement

error εjt were excluded from the production function, then the timing assumptions on firm

behavior by themselves secure identification. To see this, express the production function as

yjt = lnF (Ljt, Kjt,Mjt) + ωjt,

and let the first-order Markov process on ωjt be expressed as ωjt = g(ωjt−1) + ηjt. The term

ηjt represents an innovation to the firm’s productivity that, by construction, is orthogonal to

the firm’s information set at period t− 1. For simplicity, assume that the functions F and g

are indexed by a finite-dimensional parameter vector β. Then we can solve for each firm j’s

period t innovation ηjt(β) as a function of model parameters:

ηjt(β) = yjt − lnF (Ljt, Kjt,Mjt)− g[yjt−1 − lnF (Ljt−1, Kjt−1,Mjt−1)].

The parameters β can then be recovered using the the moment conditions implied by the

fact that the firm’s innovation ηjt is orthogonal to the firm’s information set at t − 1, i.e.,

ηjt⊥Kjt, ηjt⊥Ljt−1, ηjt⊥Mjt−1, ηjt⊥Kjt−1, etc.

Once measurement error, εjt, is introduced back into the production function, the above

procedure breaks down. The econometrician can only recover the value of the sum [ωjt +

εjt](β) as a function of the parameter vector. However this signal extraction problem, i.e., the

problem of inferring the Markov process on ωjt from noisy observations on the sum ωjt + εjt,

cannot generically, be solved unless further restrictions are invoked.

In the next subsection we present the assumptions that enable OP/LP/ACF to use a

replacement function to solve this signal extraction problem. In Section 3 we introduce

our approach to production function estimation that combines information from the inverse

share equation with other sources of information, including the production function itself,

We show that this strategy also solves the signal extraction problem and we compare it with

the replacement function.
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2.1 The OP/LP/ACF Approach

Consider a prototypical firm’s static profit maximization problem. Given the state variables

(Ljt, Kjt, ωjt) (recall labor is assumed to be already set at time t by the timing assumptions),

the firm has a profit function at time t of the form

π(Ljt, Kjt, ωjt,∆jt) = max
Mjt

π(Ljt, Kjt,Mjt, ωjt,∆jt), (2)

where ∆jt is a (potentially vector-valued) state variable that captures all other aspects of

the firm’s economic environment, e.g., input and output prices, demand shocks, adjustment

costs, idiosyncratic technological differences, etc.

In order to solve the signal extraction problem in the general model of a profit maxi-

mizing firm presented above, OP/LP/ACF impose the additional assumption that ∆jt = ∆t

which we call the “scalar unobservability” assumption. That is, from the econometrician’s

perspective, the only unobserved state variable that is heterogeneous at the firm level is ωjt.

As recognized by Bond and Söderbom [2005] and Ackerberg et al. [2006], this assumption

comes at the cost of requiring that the intermediate input Mjt be excluded from the pro-

duction function. To see why, recall that the intermediate input Mjt is a static and variable

input, and hence is a function of the firm’s state at time t, which under scalar unobserv-

ability implies the functional relationship Mjt = Mt(Ljt, Kjt, ωjt). Thus in the production

function, Mjt is clearly an endogenous variable as it is partly a function of the econometric

error term ωjt. However there is no source of cross sectional variation in Mjt other than the

firm’s remaining productive inputs (Ljt, Kjt, ωjt), and hence no exclusion restriction to vary

the intermediate input from outside of the production function. Without such a source of

variation, which we refer to as the “collinearity problem” to follow the language of ACF, the

production function cannot generically be identified in the presence of Mjt. Thus, scalar un-

observability requires the researcher to net out intermediate inputs Mjt from the production

function (which is a potentially perilous task, a point discussed further below), and measure
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output as value added ỹjt,

Given value added ỹjt, the advantage of scalar unobservability is that it allows a firm’s

demand for input i (be it static or dynamic) to be expressed as ijt = d(Ljt, Kjt, ωjt,∆t) =

dt(Ljt, Kjt, ωjt) where dt is a strictly increasing function of ωjt under suitable regularity

conditions.3 This implies that the input demand equation can be inverted to yield ωjt =

d−1
t (Ljt, Kjt, ijt), and the inversion mapping ωjt = d−1

t (Ljt, Kjt, ijt) can then be replaced into

the production function to yield

ỹjt = lnF (Ljt, Kjt) + d−1
t (Ljt, Kjt, ijt) + εjt

= Φt(Ljt, Kjt, ijt) + εjt. (3)

By running a time-varying nonparametric regression of ỹjt on (Ljt, Kjt, ijt) the measurement

error εjt can be recovered from equation (3). Observe that this regression does not suffer from

collinearity concerns since ωjt acts as a source of variation in ijt independent of (Ljt, Kjt)

(recall Ljt was chosen in between period t and t−1 (say at time t−b), and Kjt was chosen at

t− 1). Since εjt is independent of (Ljt, Kjt, ijt), Φt is identified. Since the input ijt is being

used to proxy for productivity ωjt in (3), we will refer to dt at times as the proxy demand

equation.

Recovering εjt from equation (3) is the main econometric role of the OP/LP/ACF first

stage (a point recognized by ACF), which allows one to recover Φjt = Φt(Ljt, Kjt, ijt) =

lnF (Ljt, Kjt) + ωjt. Once Φjt is recovered, the underlying timing assumptions can be im-

plemented without a signal extraction problem (since the measurement error εjt has already

been recovered and subtracted out from the model in the first stage). That is, we can write

each firm j’s period t innovation ηjt(β) as a function of model parameters:

ηjt(β) = Φjt − lnF (Ljt, Kjt)− g[Φjt−1 − lnF (Kjt−1, Ljt−1)]

3OP use investment as the input, whereas LP use the intermediate input.
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and form moments of it with the firm’s information set at t−1, as was shown in the previous

section.

To summarize, implementing the OP/LP/ACF replacement function requires the as-

sumption that productivity, ωjt, is the only source of unobserved heterogeneity across firms.

This comes at the cost of requiring the researcher to assume that one can express the value-

added form of the production function. In general, when the assumptions of constant returns

to scale and perfect competition are violated, using the value-added production function to

recover productivity is no longer valid (see e.g., Basu and Fernald [1997]). Furthermore, for

a range of applications that include revenue production functions, and the production deci-

sions of exporting firms, value-added production functions are not the primitive of interest

even if one is willing to assume that value added is well defined.

Under the replacement function approach of OP/LP/ACF, any attempt to add back

intermediate inputs Mjt into the production functions requires either additional information,

or an independent source of variation ζjt that comes from outside of the production function

and shifts around Mjt, i.e., M,jt = Mt(Ljt, Kjt, ωjt, ζjt). However, the existence of any such

source of variation violates the scalar unobservability assumption as ζjt would also affect the

demand for the invertible input ijt, i.e., ijt = dt(Ljt, Kjt, ωjt, ζjt), thereby invalidating the

replacement function.

3 The Inverse Share Equation

We now show that the apparent tension between identifying gross output production func-

tions and controlling for the endogeneity problem can be resolved by exploiting information

not used in the replacement function approach, but that is nevertheless contained in the

firm’s problem given by equation (2). We take advantage of this information by transform-

ing the firm’s FOC in such a way that it that both contains information on the underlying

production function and does not suffer from an endogeneity problem. This transformation,
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which we refer to as the inverse share equation for reasons that will be made apparent, allows

for identification of gross output production functions both with and without scalar unob-

servability. That is, we can use the inverse share equation to generalize scalar unobservability

and allow firms to be heterogeneous in dimensions other than productivity.

We begin, however, by maintaining the assumption that all unobserved heterogeneity

across firms is captured by productivity ωjt, and show how to identify a gross output pro-

duction function In order to explain the mechanics of the inverse share equation, we first

assume that firms behave as price takers in the product market.4In the next section, we

generalize the inverse share equation to allow for imperfect competition among firms.

Recall the econometric form of the production function,

Yjt = eωjteεjtF (Ljt, Kjt,Mjt).

For any choice of inputs, however, the firm expects a quantity of output

Qjt = eωjtF (Ljt, Kjt,Mjt). (4)

Let ρjt equal the intermediate input price and Pjt equal the output price. The first-order

condition with respect to M yields,

PjtFM(Ljt, Kjt,Mjt)e
ωjt = ρjt. (5)

Multiplying the LHS of (9) by
F (Ljt,Kjt,Mjt)

F (Ljt,Kjt,Mjt)
and using the definition of Qjt in (4) gives

PjtQjt
FM(Ljt, Kjt,Mjt)

F (Ljt, Kjt,Mjt)
= ρjt.

4In the standard application of OP/LP/ACF to plant level data, output is measured by deflating a firm’s
revenue by an industry-level deflator. This assumes that all firms in the industry have the same output prices
and thus assumes away product differentiation, and as the asymptotics are taken as the number of firms in
the cross section (i.e., market) grow large, perfect competition is implicitly being assumed.
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Observe that the first-order condition has been transformed so that ωjt no longer appears

in it. The firm’s productivity ωjt has been subsumed in the profit maximizing output, Qjt.

Since Yjt = eεjtQjt, we can transform the FOC further to give

PjtYjt
ρjtMjt

=
F (Ljt, Kjt,Mjt)

FM(Ljt, Kjt,Mjt)Mjt

eεjt .

Finally letting Sjt =
PjtYjt
ρjtMjt

denote the intermediate input’s inverse revenue share, the trans-

formed FOC in logs is

sjt = lnF (Ljt, Kjt,Mjt)− lnFM(Ljt, Kjt,Mjt)−mjt + εjt (6)

We refer to equation (6) as the inverse share equation.

The first thing to notice about the inverse share equation (6) is that, when viewed as

a regression of sjt on (Ljt, Kjt,Mjt), there is no endogeneity problem present. This is due

to the fact that the transformation of the FOC used above has incorporated ωjt into the

dependent variable sjt, which is an observable variable in the data since both the nominal

intermediate input bill and nominal revenue are both primitives in plant level data. Moreover,

the regression is identified as ωjt acts as an independent source of variation in Mjt separate

from (Ljt, Kjt) (by the timing assumptions and the fact that ωjt does not appear on the RHS

of (6)).

The second thing to notice is that the inverse share equation contains more information

than the replacement function from the first stage of the OP/LP/ACF procedure. To see

why, observe that we could in principle treat (6) nonparametrically as

sjt = φ(Ljt, Kjt,Mjt) + εjt.

Thus a nonparametric regression of sjt on (Ljt, Kjt,Mjt) identifies εjt. However, as discussed

in Section 2.1, recovering εjt is the main econometric function of the replacement function.
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Thus if we treated φ nonparametrically, the inverse share equation would be as informative

as the replacement function. However, by treating (6) purely as a nonparametric regression,

we are ignoring information. Notice that φ is actually a known function (a partial differential

equation) of the production function F itself, and thus the regression (6) can directly identify

features of F in addition to “just” recovering εjt.

Take, for example, the case of a Cobb-Douglas production function (in logs):

yjt = αlljt + αkkjt + αmmjt + ωjt + εjt.

In this case, mjt can be written as a linear function of ljt, kjt, ωjt and the lack of identification

of the gross output production function is most apparent because mjt literally drops out of

the production function. Thus αm cannot be identified using the OP/LP/ACF replacement

function. However, when one writes the inverse share equation

sjt = − lnαm + εjt

it is obvious that one can first recover αm from it. Notice that, by using the inverse share

equation (as opposed to, for example, the conditional demand for Mjt) the estimating equa-

tion does not contain an endogeneity problem due to the presence of ωjt on the right hand

side.5

The general form of the inverse share equation (i.e., equation (6)) makes it apparent

that it can be used as a source of identifying information for any production function F

(not only Cobb-Douglas). It is this additional information that restores the ability to work

5Motivated by concerns other than endogeneity in the production function, the use of shares in the
Cobb-Douglas case dates to (at least) Solow’s 1957 growth accounting exercise. While different variations
of the idea exist, typically the goal of using shares is to calibrate all of the parameters of the production
function (sometimes with the ultimate goal of recovering productivity) using only the information contained
in the shares. These index methods require imposing (sometimes implicitly) potentially strong assumptions,
including assumptions about returns to scale and/or perfect competition and/or assumptions about the
nature of the approximation errors introduced when computing parameters this way. In contrast, as we
show, the inverse share equation can be used to structurally estimate the production function and relax a
number of these strong assumptions.
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with gross output production functions even under the scalar unobservability assumption.

This feature, that the FOC contains information about the production function itself, is

sometimes exploited via the estimation of input demands arising from the FOC (see for

example Hamermesh [1993] for a basic reference and Doraszelski and Jaumandreu [2006] for

a recent application). On the other hand, the use of the inverse share transformation that we

propose in this paper is free of the endogeneity problem present in both the conditional input

demand function for Mjt and the production function itself. Furthermore, the inverse share

equation does not require the analyst to observe input and output prices (observing prices

is required to estimate input demand functions).6 Finally, the inverse share transformation

gives rise to a closed-form estimating equation (6) that is applicable to any production

function F as opposed to the input demands which, in a number of important cases, can

only be defined implicitly (as occurs for example with a CES technology).

To see the more general applicability of the inverse share equation outside of Cobb-

Douglas, consider, for example, a CES technology

Yjt = eωjteεjt
(
αlL

δ
jt + αkK

δ
jt + αmM

δ
jt

) r
δ (7)

and the log inverse share equation it generates:

sjt = − ln (αmr)− δmjt + ln
(
αlL

δ
jt + αkK

δ
jt + αmM

δ
jt

)
+ εjt. (8)

Notice that, in principle, one can identify all of the parameters of a CES production function

from the inverse share equation alone. The fact that Mjt is a function of (Ljt, Kjt, ωjt) (i.e.,

the collinearity problem in the production function) is not a problem in the inverse share

equation because ωjt is not on the right hand side of the inverse share equation, and as such

6If such observable price variation existed and could be observed by the analyst, then controlling for such
prices in the proxy demand equation would allow for identification of gross output production functions, as
prices act as an independent source of variation. The problem is that input and output prices are usually
not reliably observed - if they were, then IV estimation of the production function becomes possible.
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it is a valid source of variation to identify the coefficient on Mjt.

As a final example,7 consider the case of the translog production function:

qjt = αlljt + αkkjt + αmmjt + βll
2
jt + βkk

2
jt + βmm

2
jt

+γ1ljtkjt + γ2ljtmjt + γ3kjtmjt + ωjt + εjt.

In this case, the inverse share equation is

sjt = − ln (αm + 2βmmjt + γ2ljt + γ3kjt) + εjt.

As before, this equation does not suffer from endogeneity problems because ωjt is not on

the right hand side, and thus ωjt can act as an independent source of variation in mjt.

Furthermore, the information contained in the inverse share equation is enough to identify

all of the coefficients associated with Mjt in F , and so collinearity of the variable and static

input mjt is no longer a problem for the use of gross output production functions.

4 Imperfect Competition

We have motivated the inverse share equation on the basis of the assumption that firms act

as price takers in the product market. We now show that the inverse share equation can

also be used to think more generally of models of imperfect competition. As we show in

this section, by progressively incorporating the information used previously in the literature

along with the inverse share equation, we can allow for more general forms of imperfect

competition (and/or weaken the requirements about the data available to the analyst) than

the existing literature can do for each set of assumptions. To do so, we consider the firm’s

cost minimization problem.8

7The same approach works for other technologies like, for example, the generalized quadratic (also know
as a Diewert technology).

8The cost minimization approach is appealing because the construction of the inverse share equation does
not depend on assumptions about product market competition. Consequently, one can use the inverse share
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Recall that Q is the firm’s expected output and Y = eεQ is output as observed by the

econometrician. At time t, firm j′s problem is

min
Mjt

ρjtMjt + Λjt (Qjt − F (Ljt, Kjt,Mjt) e
ωjt) ,

where, from standard envelope arguments, it follows that the multiplier Λjt is the marginal

cost of firm j at the optimum. The first-order condition with respect to M yields

ΛjtFM(Ljt, Kjt,Mjt)e
ωjt = ρjt. (9)

Multiplying the LHS of (9) by
MjtF (Ljt,Kjt,Mjt)

F (Ljt,Kjt,Mjt)
and using the definition of Qjt gives

ΛjtQjt
MjtFM(Ljt, Kjt,Mjt)

F (Ljt, Kjt,Mjt)
= ρjtMjt.

Observe that the first-order condition has been transformed so that ωjt no longer appears in

it (and is subsumed in Qjt). Multiplying the LHS by
Pjt
Pjt

and using the definition of Yjt, we

transform the FOC further to yield

sjt = θjt + lnF (Ljt, Kjt,Mjt)− lnFM (Ljt, Kjt,Mjt)−mjt + εjt, (10)

where we have replaced the log of the markup, ln
(
Pjt
Λjt

)
, with θjt. Observe that equation (11)

nests the inverse share equation (6) that was derived under perfect competition, the only

difference being the addition of the markup term θjt, which is 0 under perfect competition.

We now develop the use of the inverse share equation (10) to estimate production func-

tions among imperfectly competitive firms. It is critical whether the analyst has access to

direct data on quantities or only revenues as the measure of output of the plant. We will

first proceed under the assumption that the analyst has access to quantity data, and then in

equation within the cost minimization approach to analyze non-profit maximizing firms and other forms of
competition where the profit maximization assumption is not appropriate.
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Section 4.3 consider the problem of revenue production functions. As we will see, quantity

data allows us to be more flexible in allowing heterogeneity in market power amongst firms.

4.1 Breaking Scalar Unobservability: An illustration with Con-

stant Markups

In order to fix ideas, we first show how to incorporate a simple restriction on imperfect

competition that arises when firms have constant elasticity residual demand curves. This is

the restriction that all firms have the same markup, i.e., θjt = θt. This restriction can be

incorporated into both the OP/LP/ACF framework and the inverse share equation. We then

show that while the inverse share equation remains valid in the presence of other sources

of unobserved heterogeneity, even in this simple setting adding such heterogeneity breaks

scalar unobservability and the replacement function approach. This basic fact, that the

inverse share equation can handle sources of heterogeneity, is the driving force behind the

extensions we develop in the remainder of the paper.

To understand why the OP/LP/ACF approach can allow for potentially time-varying

markups that are constant across firms, simply notice that the proxy demand equation can

be written as

ijt = d̃t (Ljt, Kjt, ωjt, θt)

= dt (Ljt, Kjt, ωjt) .

That is, since the nonparametric demand equation is allowed to be time-varying it absorbs

the time-varying markups and the procedure is completely unchanged.

On the other hand, under the constant markups restriction, the inverse share equation is

given by

sjt = θt + lnF (Ljt, Kjt,Mjt)− lnFM (Ljt, Kjt,Mjt)−mjt + εjt. (11)
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Notice that once we control for time-varying intercepts in equation (11), εjt can be recovered

and used to solve the signal extraction problem exactly as in Section 3.

While both methods can allow for time varying markups, the fact that we can work with

gross output while the OP/LP/ACF approach cannot remains. A natural way to escape the

collinearity problem that forces them to work with value added is to introduce unobserved

firm-level heterogeneity, other than ωjt, that shifts input demand. However, this is the very

form of heterogeneity ruled out by scalar unobservability. An additional advantage of the

inverse share equation is that it allows for such additional heterogeneity to be exploited.

As an example, now consider introducing a firm-level demand shock (Ξjt), which is ob-

servable to the firm but not the econometrician. As the constant markup assumption is

consistent with firms having identical constant elasticity residual demand curves in equilib-

rium, we take the demand shock Ξjt to be one that affects the level of demand but not its

curvature. That is, letting Djt denote firm j’s residual demand curve in equilibrium at time

t, we have Djt(pjt) = ΞjtD(pjt,∆t), where Dt is an iso-elastic demand function.

Observe that the demand shock Ξjt will be a second unobservable (in addition to ωjt)

entering into the firm’s period t input decisions. The input ijt is now determined as ijt =

d̃t(Ljt, Kjt, ωjt,Ξjt) violating the scalar unobservability assumption, i.e., this function can

no longer be inverted to express ωjt as a function only of observables. The presence of

Ξjt invalidates the application of the replacement function (absent additional assumptions9),

although it is an inherently useful source of variation in the intermediate inputMjt that comes

from outside of the production function. The inverse share, on the other hand, remains a

valid transformation of the firm’s FOC despite the presence of Ξjt. Indeed (11) could be

treated nonparametrically as sjt = φt(Ljt, Kjt,Mjt)+εjt to recover εjt. Therefore, yjt−εjt =

9An alternative approach to solving the scalar unobservability problem is to use the idea of a bijection
introduced in Ackerberg et al. [2007]. They propose that, if there exists a variable (such as advertising
expenditures) which together with the firm’s input used in the proxy demand equation, form a bijection for
the two unobservables, then this system can be inverted to solve and control for both unobservables as a
function of observables. One problem with this approach is that it requires that the researcher have access
to such a variable in the data. Furthermore, to the best of our knowledge, no one has shown equilibrium
conditions under which such a valid bijection exists.
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logF (Ljt, Kjt,Mjt) + ωjt can be identified off the timing moments without concern for the

collinearity problem as Ξjt is acting as the independent source of variation in Mjt.

An additional implication of equation (11) is that, by using the inverse share equation,

the growth in the markups can be recovered without further assumptions. If the intercept

of equation (11) can be identified, then the level of the markups can also be recovered.

While it may seem that separating the markups from the intercept requires an arbitrary

normalization, this is only because of the nonparametric way in which we present the problem.

To understand why, in general, this is not a problem, consider the following examples.

In the case of a CES production function, the inverse share equation under symmetric

differentiation is given by

sjt = θt − ln (αmr)− δmjt + ln
(
αlL

δ
jt + αkK

δ
jt + αmM

δ
jt

)
+ εjt

= µt − δmjt + ln
(
αlL

δ
jt + αkK

δ
jt + αmM

δ
jt

)
+ εjt,

where µt = θt − ln (αmr). Adding the identifying information from the production function

allows us to recover r separately from the markups θt. If the production function is translog

instead, the inverse share equation alone is enough to identify the markups since we have

sjt = θt − ln (αm + 2βmmjt + γ2ljt + γ3kjt) + εjt.

4.2 Firm-Specific Markups

We now extend the analysis from the previous section by continuing to assume that the

analyst can observe quantities directly, but no longer assuming that all firms have the same

markup. In the previous section we assumed that markups were constant as an illustration

of how the inverse share equation can take advantage of unobserved firm level heterogeneity

while at the same time avoid gaining a new econometric error term. However, because the

inverse share equation allows us to break the scalar unobservability assumption, we can
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now combine the OP/LP/ACF idea of the proxy demand equation with the inverse share

equation to relax the assumption that markups do not vary across firms. This is an important

extension since, to the best of our knowledge, the previous literature has only been able to

allow for common markups across firms.

In terms of our earlier example, we now let a firm’s equilibrium residual demand function

take the more flexible form Djt = D(pjt,Ξjt,∆t), and drop the iso-elastic requirement on D.

Instead we assume that the demand shock Ξjt increases a firm’s market power, i.e., controlling

for a firm’s cost, a firm that receives a higher Ξjt earns a higher markup θjt. We can formalize

this restriction by assuming that the demand shock and supply shock (ωjt,Ξjt) are the only

two unobservable (to the econometrician) state variables at the firm level. That is, we relax

scalar unobservability by introducing the second econometric unobservable Ξjt. Thus the

markup can be expressed as θjt = Ft(Ljt, Kjt, ωjt,Ξjt), and we use the restriction that Ft

is increasing in Ξjt. Hence we can invert this function to yield Ξjt = F−1
t (Ljt, Kjt, ωjt, θjt),

where F−1
t is increasing in θjt.

Moreover, the firm’s proxy demand ijt can be expressed as the outcome of the policy

d̃t(Ljt, Kjt, ωjt,Ξjt) For the same reason that the proxy demand d̃t is increasing and hence

invertible in ωjt (high productivity today signals more profitability tomorrow all else being

equal), we have that proxy demand d̃t is also increasing and hence invertible in the demand

shock Ξjt. It follows that

ijt = d̃t(Ljt, Kjt, ωjt,F−1
t (Ljt, Kjt, ωjt, θjt)) = dt(Ljt, Kjt, ωjt, θjt), (12)

where the function dt is increasing and hence invertible in θjt.
10

Now, combining the proxy demand equation (12) with the inverse share equation (10)

and the production function, yields the following system of equations:

10There is a slight abuse of notation here in that previously dt had only three arguments, whereas now it
also includes θjt as a fourth agrument. We do this so that the primary function of interest in each section is
always just dt.
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ln

(
PjtYjt
ρjtMjt

)
= θjt + lnF (Ljt, Kjt,Mjt)− lnFM (Ljt, Kjt,Mjt)−mjt + εjt,

yjt = lnF (Ljt, Kjt,Mjt) + ωjt + εjt,

ijt = dt (Ljt, Kjt, ωjt, θjt) .

Given that the proxy demand equation is an increasing function of the firm’s markup, this en-

sures that this system of equations has a unique solution for the econometric unobservables:

εjt, ωjt, θjt. Solving for these econometric unobservables for any guess of the parameter vector

(F, g, dt) (where recall g denotes the first-order Markov process on ωjt), we can then imple-

ment the timing restrictions on productivity (i.e., ηjt(β) = ωjt (β) − g (ωjt−1 (β))), use the

orthogonality of εjt to the covariates, form moments and identify the model). Additionally

(or alternatively) one can impose timing assumptions on the markups, say θjt = G (θjt−1)+ζjt

and also form moments with respect to ζjt to aid in identification.

4.3 Revenue Production Functions: Constant Expected Markups

Revenue production functions arise because in practice we often do not observe output in

quantities but instead only observe revenues. The typical solution in the literature is to

deflate revenues using an industry-level deflator,

rjt − pt = yjt = lnF (Ljt, Kjt,Mjt) + ωjt + (pjt − pt) + εjt. (13)

where rjt and pt denote revenue and the deflator respectively. As pointed out by Klette and

Griliches [1996], this leads to an endogeneity problem, because inputs will likely be correlated

with a firm’s output price. A recent solution to this problem is to model the unobserved

prices by specifying a demand system, typically a simple parametric CES demand system.

For example, De Loecker [2007] uses a one parameter constant elasticity demand system:
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Qjt = Qt

(
Pjt
Pt

) 1
η

ΞjtΥjt (14)

where Ξjt is an observed (to the firm) and potentially persistent demand shock, and Υjt

is an independent and unobserved demand shock. This strategy, introduced by Klette and

Griliches [1996], crucially depends on the ability of the researcher to form a valid quantity

index Qt (to use as a demand shifter) which, when paired with the production function,

identifies the unique demand parameter η. Moreover, as we showed in Section 4.1, the

presence of Ξjt breaks scalar unobservability.

In this section we show that, by combining the information given by the inverse share

equation and the proxy demand equation of OP/LP/ACF (for example investment), we can

control for unobserved prices without imposing the strong parametric assumption that iso-

elastic demand curves take the particular functional form in (14). Rather we use the weaker

restriction implicit in (14) that firms have constant markups in equilibrium. This approach

offers two basic advantages over the literature to date. First, we can let the the elasticity of

demand η vary over time since we don’t rely on variation in the aggregate quantity index qt

to identify it. Second, and perhaps more importantly, we are able to control for other sources

of unobserved heterogeneity (in addition to ωjt), without having to bring in outside data or

impose additional assumptions (that is, without having to rely on the high level assumption

of a bijection between (ωjt,Ξjt) and the two inputs (i1jt, i
2
jt), as discussed in Footnote 9).

We thus abstract from (14) and express demand as:

Qjt = ΥjtΞjtD(Pjt,∆t). (15)

where D () is a constant elasticity demand system, Ξjt > 0 is the (potentially persistent)

demand shock observed by the firm at the time inputs are being chosen, Υjt > 0 is an

independent demand shock that is realized after inputs are chosen, and ∆t consists of market-

level variables which affect demand, but do not vary across firms. In this case, expected
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markups will be equalized across firms, i.e., E (Θjt) = Θt (where Θt is determined by the

Lerner index and the elasticity of D(·,∆t)) and Ξjt will enter into the firm’s period t input

decisions. That is, while actual markups Θjt =
Pjt
Λjt

will be firm specific due to the Υjt

demand shocks, firms will have ex-ante symmetric markups.

To see how we can use this information to estimate revenue production functions, ob-

serve that the expected demand function implies that, in equilibrium, the firm’s expected

price E (Pjt) can be expressed as E (Pjt) = Pt(Ljt, Kjt, ωjt,Ξjt). Furthermore, by definition,

E (Pjt) = ΘtΛjt where Λjt is the firm’s short-run marginal cost (at the firm’s optimum in

equilibrium) and Θt is the expected markup. Hence, we can write Λjt = P̃t(Ljt, Kjt, ωjt,Ξjt).

As long as the firm’s short-run marginal cost is increasing in output (as it will be so long

as the production function is concave in Mjt) and increased levels of the demand shock Ξjt

induce the firm to expand output, P̃t will be an increasing function of Ξjt. This monotonic-

ity implies that P̃t can be inverted to yield Ξjt = Vt(Ljt, Kjt, ωjt,Λjt). The fact that we can

express the demand unobservable as a function of the marginal cost implies that the firm’s

proxy demand equation ijt = d̃t(Ljt, Kjt, ωjt,Ξjt) can now be expressed as

ijt = d̃t(Ljt, Kjt, ωjt, Vt(Ljt, Kjt, ωjt,Λjt))

= dt(Ljt, Kjt, ωjt,Λjt).

As d̃t is increasing in Ξjt, then dt is increasing in Λjt, and hence can be inverted to yield

λjt = ψt(Ljt, Kjt, ijt, ωjt) (16)

where ψt is decreasing in ωjt and λjt = ln (Λjt).

We can then rewrite the revenue production function as

rjt = lnF (Ljt, Kjt,Mjt) + pjt + ωjt + εjt

= lnF (Ljt, Kjt,Mjt) + ωjt + θt + λjt + ωjt + (εjt + υjt) , (17)
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where θt = lnE (Θjt) = ln (Θt) and υjt = ln (Υjt). Finally, the inverse share equation can be

rewritten as

ln

(
PjtYjt
ρjtMjt

)
= θt + lnF (Ljt, Kjt,Mjt)− lnFM (Ljt, Kjt,Mjt)−mjt + (εjt + υjt) . (18)

Equations (16), (17) and (18) form a system of three equations in three econometric

unobservables (ωjt, (εjt + υjt) , λjt). For any guess of the parameters of (F, g, ψt) and the

expected markups θt, (εjt + υjt) can be recovered directly from the inverse share equation.

Then, from fact that ψt is decreasing in ωjt, (ωjt, λjt) can be solved for uniquely from the

other two equations. Since we can solve for all of the econometric unobservables, we can

form moments as before to identify the model.

4.4 Revenue Production Functions: Firm-Specific Markups

Lastly, in this section we show that by using a general parametric form of the iso-elastic de-

mand system, we can use the inverse share equation to let firms have heterogeneous markups

even in the presence of revenue production functions. Let the inverse demand system be given

by the following:

Pjt =

(
Qjt

Qt

)ηjt

Pt

where ηjt is the inverse of the elasticity of demand, and 1
1+ηjt

is the resulting markup.

In this case, the resulting system of equations is the following:

ln

(
PjtYjt
ρjtMjt

)
= − ln (1 + ηjt) + lnF (Ljt, Kjt,Mjt)− lnFM (Ljt, Kjt,Mjt)−mjt + εjt

rjt − pt = (1 + ηjt) lnF (Ljt, Kjt,Mjt) + (1 + ηjt)ωjt − ηjtqt + εjt

ijt = dt (Ljt, Kjt, ωjt, ηjt) .
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When a unique solution to this system of equations exists (which will be the case under

standard monotonicity conditions and provided a bound condition in the data holds), one

can solve for (εjt, ωjt, θjt) and implement the timing restrictions on ωjt and/or θjt to estimate

the model.

5 Empirical Illustration

To illustrate our methodology, we apply a simple version of our empirical strategy based on

the inverse share equation to the same Chilean manufacturing data used in Levinsohn and

Petrin [2003]. In particular, the dataset we use is identical to that employed by Greenstreet

[2007], which is constructed using the most precise industry deflators and capital variables

(the appendix to Greenstreet [2007] contains an extensive description). We focus on the

largest industry, namely 311 (food products). We employ a three input gross output produc-

tion function in labor, capital and an aggregated intermediate input formed from materials,

fuels, electricity, and services).

For our data, the output measure is constructed as deflated revenue. As this is a valid

measure under the assumption that all firms in the data are competing in the same homoge-

neous goods industry, we use the assumption of price-taking behavior in the output market

for consistency with the interpretation of deflated revenues as quantity. We can use the

theory of the inverse share equation to reject Cobb-Douglas production functions under this

specification - if we regress sjt on (Ljt, Kjt,Mjt), an implication of Cobb-Douglas would be

that only the intercept should predict sjt. This is easily rejected, as the firm’s share, sjt,

exhibits persistence over time.

We instead use the CES production function because it can explain the persistence in sjt.

In particular, we use the inverse share equation (8) along with the CES production function

itself (7) to solve for the two econometric errors (ωjt(αl, αk, αm, r, δ), εjt(αl, αk, αm, r, δ)) as a

function of the parameter vector (αl, αk, αm, r, δ). We then implement the timing moments
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Table 1: CES Point Estimates

Parameter Point Estimate

αl .816
αk .049
αm .134
δ .406
r .995

Avg. Labor Elas. .216
Avg. Capital Elas. .136

Avg. Intermediate Input Elas. .643

to estimate the parameters of the production function. We take a dynamic view of labor and

treat Ljt as a state variable in period t and hence orthogonal to the period t innovation ηjt.

Note that the scale of αl, αk, and αm is generically not identified separately from the mean

of productivity. As a result, one normalization is necessary. We normalize them such that

they add to one. The results are reported in Table 1.

Our estimates imply constant returns to scale (r = .995). The implied elasticity of substi-

tution of 1.68 signifies a departure from Cobb-Douglas (which has an elasticity of substitution

of 1), but not an extreme departure. Also note that, since the elasticity of output with respect

to the inputs now depends on the level of the inputs, it is heterogeneous across observations

in the sample. Therefore, we report the average elasticity among firms.
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