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Abstract 

 

This paper provides a general description of the relationship between individual decision 

problems and aggregate crime regressions.  The analysis is designed to elucidate the 

behavioral and statistical assumptions that are implicit in the use of aggregate crime 

regressions for both the analysis of crime determinants as well in counterfactual policy 

evaluation.  We apply our general arguments to the question of the deterrent effect of 

capital punishment and show how alternative assumptions affect estimates of the deterrent 

effect. 
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1. Introduction 
 

While Phoebus Dhrymes is best known as an econometric theorist of the highest 

creativity and rigor, he has also been an important contributor to applied economics, in 

particular the areas of productivity growth.1  This paper, while focusing on one of the few 

areas outside of Dhrymes’ direct research interests – crime – nevertheless follows in his 

tradition of exploring the meaning of econometric exercises when one carefully examines 

the assumptions underlying a given analysis.  Our analysis is partially inspired by Dhrymes 

(1985) remarkable critique of claims made by supply-side economists; like him, we hope to 

clarify what can and cannot be claimed when moving from data analysis to policy.   

Despite recent efforts to employ microeconomic data and natural experiments, 

aggregate crime regressions continue to play a significant role in criminological analyses.  

One aspect is predictive, as illustrated by the literature that attempts to link crime to 

unemployment.  A second aspect focuses on policy evaluation:  prominent current 

controversies involving the use of aggregate regressions include the deterrent effect of shall-

issue concealed weapons legislation (Lott and Mustard (1997), Lott (1998), Black and 

Nagin (1998), Ayers and Donohue (2003), Plassmann and Whitley (2003)), the deterrent 

effect of capital punishment (Dezhbakhsh and Rubin (2007), Dezhbakhsh, Rubin, and 

Shepherd, (2003), Donohue and Wolfers (2005), Katz, Levitt and Shustorovich (2001), 

Mocan and Gittings (2001,2006)) and perhaps most controversially, the effects of 

liberalized abortion laws on crime (Donohue and Levitt (2001,2004,2008), Foote and 

Goetz (2008), Joyce (2004) and Lott and Whitley (2007)). 

The goal of this paper is to examine the construction and interpretation of these 

regressions.  Specifically, we wish to employ aspects of contemporary economic and 

econometric reasoning to understand how aggregate crime regressions may be 

appropriately used to inform positive and normative questions.  While by no means 

exhaustive of the relevant issues, we hope our discussion will prove useful in highlighting 

some of the limitations of the use of these regressions and in particular indicate how 

empirical findings may be overinterpreted when careful attention is not given to the link 

                                                 
1On productivity, Dhrymes (1963) is one of his earliest papers while Dhrymes and 
Bartlesman (1998) is an important more recent contribution.   
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between the aggregate data and individual behavior.2  Much of our discussion will involve 

arguments that are well understood from the vantage point of contemporary 

microeconometrics.  While our objective is to provide a connection between current 

microeconometric thinking and the empirical crime literature in economics as well as other 

social sciences, the points we make apply to other applied areas in which aggregate 

regressions are used to test individual level hypotheses.  In spirit, we follow Heckman 

(2000,2005) in trying to clarify how assumptions determine the nature of substantive 

empirical claims. 

The paper is organized as follows.  In Section 2, we describe a standard choice-

based model of crime.  Section 3 discusses how this individual-level model can be 

aggregated to produce crime regressions of the type found in the literature.  Section 4 

discusses the analysis of policy counterfactuals.  Section 5 discusses these general 

arguments in the context of a prominent paper in the capital punishment and deterrence 

literature, Dezhbakhsh, Rubin, and Shepherd (2003). The empirical importance of some 

of the assumptions is demonstrated in Section 6.  Section 7 concludes.   

 

 

2. Crime as a choice 

   

 From the vantage point of economic reasoning, the fundamental idea underlying 

the analysis of crime is that each criminal act constitutes a purposeful choice on the part of 

the criminal.  In turn, this means that the development of a theory of the aggregate crime 

rate should be explicitly understood as deriving from the aggregation of individual 

decisions.  The basic logic of the economic approach to crime was originally developed by 

Gary Becker (1968) and extended by Isaac Ehrlich (1972,1973,1975,1977); for economists, 

Ehrlich’s work represents the classic use of aggregate regressions to understand crime, in 

his context, capital punishment.   

The choice-theoretic conception does not, by itself, have any implications for the 

process by which agents make these decisions, although certain behavioral restrictions are 

                                                 
2The interpretation of aggregate data continues to be one of the most difficult questions in 
social science; Stoker (1993) and Blundell and Stoker (2005) provide valuable overviews. 
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standard for economists.  For example, to say that the choice of a crime is purposeful says 

nothing about how an individual assesses the various probabilities that are relevant to the 

choice, such as the conditional probability of being caught given that the crime is 

committed.  At the same time, the economic analyses typically assume that an individual’s 

subjective beliefs, i.e. the probabilities that inform his decision, are rational in the sense that 

they correspond to the probabilities generated by the optimal use of an individual’s 

available information.  While the relaxation of this notion of rationality has been a major 

theme in recent economic research, we will use a relatively standard notion of rationality in 

our discussion.  This modeling choice is made both because we regard it as an appropriate 

baseline for describing individual behavior and for simplicity of exposition.  But we 

emphasize that the choice-based approach does not require rationality as we model it. 

 To see how crime choice may be formally described, we follow the canonical 

binary choice model of economics.  Consider the decision problem of a population of 

individuals indexed by  i  each of whom decides at each period t  whether or not to commit 

a crime.  Individuals live in locations l  and it is assumed that a person only commits 

crimes within the location in which he lives.  Suppose the choice is coded as 
  
ω i,t = 1  if a 

crime is committed, 0 otherwise.  The standard form for the expected utility associated 

with the choice ( ), ,i t i tu ω  is  

 

 ( ) ( ) ( ), , , , , , , , , ,i t i t l t i i t i t i i t l t i t i t i tu Z Xω βω γ ω ξ ω ε ω= + + + . (1) 

 

In this expression, 
  
Zl ,t  denotes a set of observable location-specific characteristics and Xi,t  

denotes a vector of observable individual-specific characteristics. In contrast, ( ), ,l t i tξ ω  and 

( ), ,i t i tε ω  denote unobservable location-specific and individual-specific utility terms; each 

will naturally be a function of unobserved location-specific and individual-specific 

characteristics. The distinction between observable and unobservable variables is made 

with respect to the modeler; the individual observes all the variables we have described.  

These unobservable terms represent sources of heterogeneity that are unexplained by the 

model.  Defining the net expected utility of crime commission as 
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 ( ) ( ) ( ) ( ), , , , , , ,1 0 1 0i t l t i i t i l t l t i t i tv Z Xβ γ ξ ξ ε ε= + + − + −  (2)  

 

the choice-based perspective amounts to saying that a person chooses to commit a crime, 

i.e. , 1  i tω = if and only if ,  0i tν > .  The assumption of linearity of the utility function is 

standard in binary choice analysis.  It is possible to consider nonparametric forms of the 

utility function, see Matzkin (1992).  We focus on the linear case both because it is the 

empirical standard in much of social science and because it is not clear that more general 

forms will be particularly informative for the issues we wish to address.  Some forms of 

nonlinearity may be trivially introduced, such as including the products of elements of any 

initial choice of 
  
Xi,t  as additional observables.   

Eq. (1) and its equivalent (2) represent the substantive assumptions of the economic 

theory of crime.  In order to make the theory operational, it is of course necessary to make 

statistical assumptions. First, we restrict the nature of the unobservable heterogeneity with 

four assumptions. 

 

      A.1 ( ) ( )( ), ,1 0 0i i t i tE ε ε− =  (3) 

 

A.2 ( ) ( ), ,1 0  i t i tε ε− independent of ( ) ( ), ,1 0  l t l tξ ξ−  (4) 

 

A.3 ( ) ( ), ,1 0i t i tε ε−  independent of Xi,t ,Zl ,t  (5) 

 

A.4 ;  ,i j i j i jβ β γ γ= = ∀  (6) 

 

The first three assumptions relate to the model errors.  Assumption A.1, that the 

differences in individual utility errors have 0 mean is without loss of generality so long as 

either ,i tX  or 
  
Zl ,t  includes a constant term.  Assumption A.2 allows us to consider the two 

types of unobservables separately.  Assumption A.3 corresponds to the assumption of the 

orthogonality of regressors and errors in the linear model.   Assumptions A.2 and A.3 are 
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sufficient rather than necessary; relaxation is not of interest for the issues we address.  

Assumption A.4, which imposes parameter homogeneity, is very standard in empirical 

work, even though it is not an implication of the choice-based approach.  When the 

parameters relate to policy variables, this helps rule out treatment effect heterogeneity, 

something that may be quite important; see Abbring and Heckman (2007) for a 

comprehensive survey.   

 Under our utility specification, it is immediate that a positive net utility from 

commission of a crime requires that ( ) ( ) ( ) ( ), , , , , ,1 0 0 1i t l t l t l t i t i tX Zγ β ξ ξ ε ε+ + − > − .  

Conditional on 
  
Xi,t ,

  
Zl ,t , and ( ) ( ), ,1 0l t l tξ ξ− , the individual choices are stochastic, with the 

distribution function of ( ) ( ), ,0 1i t i tε ε− , which we denote by Gi,t , determining the 

probability that a crime is committed. 3  Formally,  

 

 ( ) ( )( ) ( ) ( )( ), , , , , , , , , ,Pr 1 , , 1 0 1 0i t l t i t l t l t i t l t i t l t l tZ X G Z Xω ξ ξ β γ ξ ξ= − = + + − . (7) 

 

This conditional probability structure captures the basic microfoundations of the economic 

model of crime. It is worth noting that this formulation represents a relatively elementary 

behavioral model in that we ignore issues such as 1) selection into and out of the 

population generated by the dynamics of incarceration and 2) those aspects of a crime 

decision at t  in which a choice is a single component in a sequence of decisions which 

collectively determine an individual’s utility, i.e. a more general preference specification is 

one in which agents make decisions to maximize a weighted average of current and future 

utility, accounting for the intertemporal effects of their decisions each period. While the 

introduction of dynamic considerations into the choice problem raises numerous issues, 

e.g. state-dependence, heterogeneity and dynamic selection, these can be readily dealt with 

                                                 
3We allow the distribution function ,i tG  to vary across individuals (and time) in order to 

accommodate the linear probability model described below. Of course, there is no 
behavioral reason why ,i tG  needs to be constant across individuals or across time; outside 

the linear probability model, the assumption that it is constant is nevertheless standard. 
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using the analysis of Heckman and Navarro (2007), albeit at the expense of considerable 

complication of the analysis. 

 

   

3. Aggregation 

  

How do the conditional crime probabilities for individuals described by (7) 

aggregate within a location?  Let ρl ,t  denote the realized crime rate in locality  l  at time t .  

Notice that we define the crime rate as the percentage of individuals committing crimes, 

not the number of crimes per se, so we are ignoring multiple acts by a single criminal.  

Given our assumptions, for the location-specific choice model (7), if individuals are 

constrained to commit crimes in the location of residence, then the aggregate crime rate in 

a locality is determined by integrating over the observable individual-specific heterogeneity 

in the location’s population. Letting FXl ,t
denote the empirical distribution function of 

  
Xi,t within l ,  the expected crime rate in a location at a given time is 

 

 ( ) ( )( ) ( ) ( )( )
, ,, , , , , , , ,, , 1 0 1 0

l t l tl t l t X l t l t i t l t l t l t XE Z F G Z X dFρ ξ ξ β γ ξ ξ− = + + −∫ . (8) 

 

 In order to convert this aggregate relationship to a linear regression form, it is 

necessary to further restrict the distribution function Gi,t : 

 

A.5 ,i tdG is a uniform density. (9) 

 

Notice that this assumption does not imply that ,i tG  is constant.  Applying A.5 to (8), the 

crime rate in locality l obeys 

 

 ( ) ( ), , , , , ,1 0l t l t l t l t l t l tZ Xρ β γ ξ ξ θ= + + − + , (10) 
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where 
  
Xl ,t  is the empirical mean of Xi,t  within  l  and  

( ) ( )( ),, , , , , ,, , 1 0
l tl t l t l t l t X l t l tE Z Fθ ρ ρ ξ ξ= − −  captures the difference between the realized 

and expected crime rate within a locality.  This is the basic statistical model employed in 

aggregate crime regressions.  As is standard in any exercise of this type (cf. Heckman 

(2000,2005)) the transition from eq. (1) to eq. (10) is done with loss of generality with 

respect to individual behavior, i.e. assumptions A.1-A.7 all restrict individual behavior, the 

extent to which this renders analyses based on (10) noncredible is a distinct issue.  

 In our subsequent discussion, we will assume that all location-specific variables are 

exactly measured; in other words, we assume that the entire set of individuals in each 

locality is observed. This assumption ignores sampling issues.  The crime literature has in 

fact spent considerable time exploring sampling questions with respect to major data sets 

such as the Uniform Crime Reports (UCR) and National Crime Victims Survey (NCVS); 

see Lynch and Addington (2007).  These arise in the UCR, for example, because of 

differences in reporting practices across police departments. While these issues are 

important, they are not germane to the questions we wish to explore. 

 Our construction of eq. (10) from choice-based foundations provides a basis for 

understanding when standard aggregate crime regressions may be interpreted as 

aggregations of individual behavior.   We argue that there are at least three aspects of this 

construction that indicate limitations in the interpretability of standard aggregate crime 

regressions. 

 

i. linear probability model 

 

The assumption of the linear probability model is of concern since it implicitly 

restricts the random utility terms in ways that are well known to be odd; specifically, in 

order for the individual choice probabilities to always lie in the interval [0,1], it is necessary 

for the support of the random utility terms to depend on the deterministic utility 

components. This sensitivity of the support to the deterministic utility component is in fact 

inconsistent with Assumptions A.2 and A.3.  It might be possible to construct random 

utility terms which preserve weaker versions of the assumptions, e.g. median 
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independence, but such cases are very special.  Unfortunately, as is well known, other 

random utility specifications do not aggregate in a straightforward manner.  To illustrate the 

problem, note that if one assumes that ( ), ,i t i tε ω  has a type-I extreme value distribution, 

which is the implicit assumption in the logit binary choice model, then 

( ) ( )( )
( ) ( )( )

, , , , , ,

, , , , , ,

Pr 1 , , 1 0
log

1 Pr 1 , , 1 0
i t i t l t i t l t l t

i t i t l t i t l t l t

Z X

Z X

ω ξ ξ

ω ξ ξ

⎛ ⎞= −
⎜ ⎟
⎜ ⎟− = −⎝ ⎠

 will be linear in the various payoff 

components, but will not produce a closed form solution for the aggregate crime rate.    

 

ii. instrumental variables 

 

On its own terms, the derivation of the linear aggregate crime model from 

individual choices indicates how aggregation affects the consistency of particular estimators 

and by implication affects how instrumental variables ought to be employed.  The 

assumption we impose on the relationship between observables and unobservables, A.3, 

requires that individual unobservables are independent of the observables.  The 

assumption does not require that the location-specific unobservables ( ), ,l t i tξ ω  are 

independent of the aggregate observables that appear in the utility function 
  
Zl ,t  or those 

variables that appear as a consequence of aggregation Xl ,t . There is no a priori reason why 

the regression residual ( ) ( ), , ,1 0l t l t l tξ ξ θ− +  should be orthogonal to any of the regressors 

in (10).  This means that all the variables in (10) should potentially be instrumented.  

Hence in our judgment the focus on instrumenting the endogenous regressors that one 

finds in empirical crime analyses is often insufficient in that, while this strategy addresses 

endogeneity, it does not address unobserved location-specific heterogeneity.  Notice that if 

individual-level data were available, this problem would not arise since one would normally 

allow for location-specific, time-specific and location-time-specific fixed effects for a panel.    

The need for instruments does not, of course, imply that valid instruments are 

available.  In general, there do not exist good reasons to believe that lagged values of  Zl ,t  

and 
  
Xl ,t  are orthogonal to ( ) ( ), , ,1 0l t l t l tξ ξ θ− + since a researcher will usually not have a 
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theory of the determinants of ( ) ( ), , ,1 0l t l t l tξ ξ θ− + .  The reason for this is that the variables 

which appear in 
  
Zl ,t  and 

  
Xl ,t  are generally based on reasonable guesses about the sources 

of individual-specific and location-specific heterogeneity; as such, their relationship to 

unobserved heterogeneity is indeterminate.  Put differently, the presence of one of these 

variables in a crime model does not usually rule out any other variable and so does not rule 

out those determinants that have been omitted from the specification.  Brock and Durlauf 

(2001) describe this problem as theory openendness in arguing that many candidate 

instrumental variables in the economic growth literature are invalid in that they correlate 

with the associated regression errors.  The same problems arise in crime contexts. 

 

iii. parameter heterogeneity  

 

 The linear probability assumption matters for a third reason, which relates to the 

significance of Assumption A.4, i.e. parameter homogeneity.  If this assumption is relaxed, 

the crime rate within locality l  will equal  

 

 
( ) ( )( )

( ) ( )( )
,

,

, , , ,

, , , ,

, , 1 0

1 0

l t

l t

l t l t X l t l t

i t l t l t l t X

E Z F

G Z X dF dF dFβ γ

ρ ξ ξ

β γ ξ ξ

− =

+ + −∫∫∫
 (11) 

 

where Fβ  and Fγ  are the distribution functions for these parameters when calculated 

across i .  Under Assumption A.5, this heterogeneity has no qualitative effect, as (11) holds 

when evaluated at the mean values of β  and γ . For other probability structures, this will 

not be the case.  As suggested above, once one introduces a role for moments other than 

the mean of the policy-specific parameters to affect the aggregate, this introduces new 

complications in evaluating the aggregate effects of policy changes.  

Methods are available to allow for analysis of aggregate data which account for 

parameter heterogeneity; Berry, Levinsohn, and Pakes (1995) is a seminal contribution, but 

has not been previously applied in crime contexts. 
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4. Policy effect evaluation 

 

 How can an aggregate crime regression be used to evaluate a change in policy?   

Given our choice-theoretic framework, a policy evaluation may be understood as a 

comparison of choices under alternative policy regimes A  and B .   The net utility to the 

commission of a crime will depend on the regime, so that  

 

 ( ) ( ) ( ) ( ), , , , , , ,1 0 1 0A A A A A A A A A
i t l t i t l t l t i t i tv Z Xβ γ ξ ξ ε ε= + + − + −  (12) 

  

and 

 

 ( ) ( ) ( ) ( ), , . , , , ,1 0 1 0B B B B B B B B B
i t l t i t l t l t i t i tv Z Xβ γ ξ ξ ε ε= + + − + −  (13) 

 

respectively.  The net utility to individual i  of committing a crime equals 

 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )

,

, , , , , ,

, , , , , ,

, , , , ,

, , , , ,

1 0 1 0

1 0 1 0

1 0 1 0

i t

A A A A A A A A
l t i t l t l t i t i t

B B A A B B A A
l t l t l t l t i t i t

B B A A
l t l t l t l t l t

B B A A
l t i t i t i t i t

v

Z X

D Z Z D X X

D

D

β γ ξ ξ ε ε

β β γ γ

ξ ξ ξ ξ

ε ε ε ε

=

+ + − + − +

− + − +

− − −

− − −

 (14) 

 

where 
  
Dl ,t = 1 if regime B   applies to locality l  at t ; 0  otherwise.  The analogous linear 

aggregate crime rate model is  

 

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )( )

,

, , , , , , , ,

, , , , , , , , , ,1 0 1 0 1 0

l t

A A A A B B A A B B A A
l t l t l t l t l t l t l t l t

A A A B B A A B A
l t l t l t l t l t l t l t l t l t l t

Z X D Z Z D X X

D

ρ

β γ β β γ γ

ξ ξ θ ξ ξ ξ ξ θ θ

=

+ + − + − +

− + + − − − + −

 (15) 
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The standard approach measuring how different policies affect the crime rate, in 

this case regimes A versus B , is to embody the policy change in Zl ,t
A  versus 

  
Zl ,t

B  and to 

assume that all model parameters are constant across regimes, i.e.  

  

 

A.6 = ; A B A Bβ β β γ γ γ= = =  (16) 

 

This allows the policy effect to be measured by ( ), ,
B A
l t l tZ Z β− .  In addition, it is necessary 

that  

 

A.7 ( ) ( ) ( ) ( )( ), , , ,1 0 1 0 0B B A A
l t l t l t l tξ ξ ξ ξ− − − =  (17) 

 

i.e. that the change of regime does not change the location-specific unobserved utility 

differential between committing a crime and not doing so.  This requirement seems 

problematic as it means that the researcher must be willing to assume that the regime 

change is fully measured by the changes in Xl ,t  and Zl ,t .  Changes in the detection 

probabilities and penalties for crimes typically come in bundles and not all aspects of these 

are measured (or measurable) and so A.7 seems unlikely to hold in practice even if A.6 

holds.  We will argue below that there are cases, specifically capital punishment, where this 

does not receive adequate attention in the relevant empirical formulations.    

  

 

5.  Application to capital punishment: theory  

 

 In this section, we describe how some of our arguments matter by considering their 

implications for the study of capital punishment.  For this discussion we focus on the 

empirical study of deterrent effects by Dezhbakhsh, Rubin, and Shepherd (2003); we 

denote this paper as DRS.  We choose this paper both because it has been quite influential 

in resurrecting the capital punishment/deterrence literature and because it has recently 
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come under criticism by Donohue and Wolfers (2005), denoted as DW.  Our analysis is 

designed to see to what extent the specific issues we have raised affect deterrence 

inferences.  In doing so, we do not mean to suggest that other issues are not important. For 

example DW argue that the DRS results are driven by California and Texas; an assessment 

of their argument would require an investigation of the appropriateness of exchangeability 

assumptions for state-level crime data, which is beyond the scope of this paper. Nor do we 

address potential criticisms of both DRS and DW, for example, both papers ignore 

possible spatial dependence in errors.4   

The behavioral foundations of DRS recognize that the consequences for the 

commission of a murder involve three separate stages: apprehension, sentencing and 

carrying out of the sentence.  Defining the variables C = caught, S = sentenced to be 

executed and  E = executed, DRS estimate regressions of the form 

 

 ( ) ( ) ( ), , , , , , ,l t l t l t l t C l t S l t E l tX Z P C P S C P E Sρ α γ β β β β κ= + + + + + +  (18) 

 

where 

 

( ),  l tP C = probability of being caught conditional on committing a murder, 

( ),l tP S C = probability of being sentenced to be executed conditional on being caught, 

( ),l tP E S = probability of being executed conditional on receiving a death sentence. 

 

 

Here Zl,t  denotes location-specific variables other than those associated with the death 

penalty and ( ) ( ), , , ,1 0l t l t l t l tκ ξ ξ θ= − +  is the composite regression error.  

 

i. microfoundations 

 

                                                 
4We thank an anonymous referee for this observation. 
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 From the perspective of our first argument, that aggregate models should flow from 

individual behavioral problems, the DRS specification can be shown to be flawed.  

Specifically, the way in which probabilities are used does not correspond to the 

probabilities that arise in the appropriate decision problem. For an individual who commits 

a murder, the potential outcomes are NC = not caught, CNS = caught and not sentenced 

to death,  CSNE = caught, sentenced to death, and not executed, and  CSE = caught, 

sentenced to death and executed. The expected utility is therefore 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, , , ,

, , . ,

Pr Pr

Pr Pr .
l t i t l t i t

l t i t l t i t

NC u NC CNS u CNS

CSNE u CSNE CSE u CSE

+ +

+
 (19) 

 

The unconditional probabilities of the four possible outcomes are of course related to the 

conditional probabilities used in DRS. In terms of conditional probabilities, expected utility 

may be written as  

 

 

( )( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, ,

, , ,

, , , ,

, , , ,

1 Pr

1 Pr Pr

1 Pr Pr Pr

Pr Pr Pr

l t i t

l t l t i t

l t l t l t i t

l t l t l t i t

C u NC

S C C u CNS

E S S C C u CSNE

E S S C C u CSE

− +

− +

− +
 (20) 

 

Assume that the utility difference between the potential outcomes is constant across 

individuals, i.e.  

 

 

( ) ( )
( ) ( )
( ) ( )

S i i

C i i

E i i

u CSNE u CNS

u CNS u NC

u CSE u CSNE

β

β

β

= −

= −

= −

 (21) 

 

Then, replacement of the relevant terms in (18) yields 
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( ) ( ) ( )

( ) ( ) ( )
, , , , ,

, , , .
l t l t l t l t C l t t S

l t l t t E l t

X Z P C P S C P C

P E S P S C P C

ρ α γ β β β

β κ

= + + + + +

+
 (22) 

 

Comparison of (22) with (18) reveals that the DRS specification does not derive naturally 

from individual choices.  Their analysis considers how different conditional probabilities 

affect behavior, without accounting for how these probabilities interact from the perspective 

of expected utility analysis.  Put differently, the effect of the conditional probability of 

execution given a death sentence on behavior cannot be understood separately from the 

effects of the conditional probability of being caught and being sentenced to death if 

caught.  

 An additional benefit of deriving the estimating equation from individual choices is 

that it allows the researcher to accurately analyze the effects of potential policies.  Consider 

a policy which aims to reduce the murder rate by increasing the probability of arrest.  By 

looking at eq. (22) it is easy to see that this will affect the murder rate through three 

different channels: the probability of being arrested; the joint probability of being arrested 

and sentenced to death; and the joint probability of being arrested, sentenced to death, and 

executed.  These channels show up because a prerequisite for reaching the stages at which 

being sentenced to death and being executed are possible is to be arrested in the first place.  

In the misspecified model used by DRS the latter two channels are ruled out.  When 

analyzing the effectiveness of a potential policy, having a model which is derived from the 

individual behavior problem allows for both an accurate evaluation of the policy and a clear 

understanding of the causal mechanisms through which the policy operates. 

 

ii. linear probability model 

 

The DRS model assumes an underlying linear probability model for individual 

choices, which we have argued is unappealing.  This potential misspecification is of 

particular importance given the use of the net lives saved measure.  The reason for this is 

that the net lives saved measure depends sensitively on how one formulates the probability 

structure for the individual model errors.  Executions are low probability events and 

involve outcomes associated with draws from the tail of the distribution of the random 
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payoffs.  While in practice the linear probability model and the logit or probit models are 

often very similar, this is only true when events in the tails are unimportant. Put differently, 

the linear probability model implies that the effect of a change in a given variable on an 

outcome probability is a constant that is independent of how probable the event is.  

Suppose that the effect of changing a variable (say the probability of being executed) by 1% 

is estimated to cause an increase in the probability of a murder by -0.05. Then, if the 

probability of committing a crime is 0.05 initially, the linear probability model would 

predict the crime probability is reduced to zero. A logit probability model would never 

make such a prediction. 

 

iii. instrumental variables 

 

 Our second argument concerned the transition from an individual-level 

specification to an aggregate specification.  Aggregation, as we argued, can induce 

correlations between all of the aggregated regressors and model errors because of 

unobserved location characteristics.  This implies that all regressors should be 

instrumented in aggregate crime regressions.  DRS only instrument the conditional crime 

probabilities in (18), doing so on the basis that these probabilities are collective choice 

variables by the localities.  However, in the presence of unobserved location characteristics, 

it is necessary to instrument the regressors contained in Zl ,t  as well.  Since instrumenting a 

subset of the variables in a regression that correlate with the regression errors does not 

ensure consistency of the associated subset of parameters, the estimates in DRS would 

appear to be inconsistent given the logic of their exercise.  

DRS might respond to this objection by noting that they use location-specific fixed 

effects.  However, these will not be sufficient to solve the problem, since the location-

specific unobservables ( ), ,l t i tξ ω  can (and very likely do) vary over time.  There is no 

reason to believe that non-capital penalties vary any less than capital penalties.  This 

involves the question of the range of penalties. 
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6. Application to capital punishment: reestimation 

 

In this section we address each of these theoretical objections to assess their 

empirical salience.  We report regression results based on the preferred specification 

employed by Dezhbakhsh, Rubin and Shepherd (2003).5  DRS assume that the aggregate 

murder rate can be explained by a linear and separable function of various controls.  DRS 

estimate the regression using two-stage least squares to control for potential endogeneity 

with respect to the deterrence measures (the terms with the β  coefficients in the equation 

below). The exact specification is 

 

 

  

Murdersc,s,t

Populationc,s,t / 100000
=

β1

HomicideArrestsc,s,t

Murdersc,s,t

+ β2

DeathSentencess,t

Arrestss,t−2

+ β3

Executionss,t

DeathSentencess,t−6

+

γ 1

Assaultsc,s,t

Populationc,s,t

+ γ 2

Robberiesc,s,t

Populationc,s,t

+ γ 3CountyDemographicsc,s,t +

γ 4CountyEconomyc,s,t + γ 5

NRAmemberss,t

Populations,t

+

CountyEffectsc + TimeEffectst
t
∑

c
∑ +ηc,s,t

 (23) 

 

We employ the same data set used by DRS: an annual county-level panel from 1977-1996 

containing data on the number of homicides, various deterrence measures and controls. A 

complete description of the data can be found in DRS.  

DRS estimate this regression using two-stage least squares to control for potential 

endogeneity with respect to the deterrence measures (the terms with the β  coefficients). 

The instruments they use, which are all at the state-level, are police expenditures, judicial 

expenditures, prison admissions, and Republican vote shares in each of the past six 

presidential elections.  

                                                 
5This corresponds to Model 4 of Table 4 from DRS. 
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DW criticize DRS for failing to cluster errors for counties within the same state.  

This criticism seems fair since one would generally expect dependence in the county-

specific regression residuals that is not captured by state-level fixed effects.  However, other 

forms of spatial dependence may be present. For example, crime rates may be more 

correlated across state borders than within states.  In our analysis confidence intervals are 

reported using both the DW (clustered) and DRS (unclustered) calculations, where the 

clustering is done at the state level. Despite our view that the DW calculation is 

appropriate, we report both since, unlike our criticisms, clustering does not involve point 

estimates per se.  

In evaluating deterrence effects, DRS emphasize the number of net lives saved per 

execution.  For any model for the murder rate ( )M e , where e  is the number of 

executions, net lives saved is calculated as 

 

 
( )  * 1

M e
Net Lives Saved Population

e
∂

= −
∂

 (24) 

 

where 
( )M e
e

∂
∂

 is the derivative of the murder rate with respect to the number of 

executions implied by each model.  

The number of net lives saved in eq. (24) varies by locality. There are many ways of 

summarizing this metric.  The approach used by DRS evaluates each term (
( )M e
e

∂
∂

 and 

population) in (24) at the average value among states with the death penalty in 1996.  An 

alternative is to calculate the number of net lives saved for each state in each year 

separately. Not only does this seem to more appropriately correspond to the counterfactual 

of an additional execution in a given state, but it also allows us to analyze not just the mean 

of these effects, but also the median, or any other part of the distribution in which we are 
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interested. 6 While in the text we refer to the mean number of net lives saved across states, 

in the tables we also present the DRS measure and the median of our alternative measure. 

 

i. replication 

 

In Table 1 we report results based on DRS’s preferred specification. In column 1 

we replicate the results of DRS using their methodology. Focusing on the point estimates of 

net lives saved, executing one more criminal will save 29.0 lives on average across states 

versus 18.5 lives in the “average” 1996 death penalty state (the DRS estimate).  These 

numbers are associated with negative parameter estimates for the three deterrence 

variables, which DRS treat as implications of the choice model of crime (although we have 

argued this is not so).  These are the results used by DRS as evidence for the deterrence 

effect of the death penalty.   

For both net lives saved and the model parameters, we report both asymptotic and 

bootstrapped confidence intervals, using 5,000 replications for the bootstrap.7  We do this 

for two reasons, both because bootstrapped confidence intervals are useful for addressing 

possible deviations of the regression residuals from normality and in order to preserve 

comparability with some of our subsequent results.  As the table indicates, the bootstrap 

confidence intervals are substantially wider than the asymptotic ones, so much so that the 

statistical significance of the number of net lives saved and deterrence parameters are both 

lost.  With the clustered confidence intervals, statistical significance fails even when the 

asymptotic calculation is used; which was the finding made by DW. 

An important criticism by DW concerns the fragility of the DRS results to the 

definition of one of the instruments: the Republican vote share in the most recent 

presidential election. They show that when these six variables (one for each election) are 

collapsed into one variable, which restricts the effects to be the same for each election, 

                                                 
6We report these different measures of net lives saved as a way of showing the potential 
heterogeneity of the effect across localities. For each measure the range of potential net 
lives saved that can be inferred is given by the confidence intervals we report. 
7The bootstrapped confidence intervals are calculated using a clustered non-parametric 
bootstrap procedure, in which state-time pairs are sampled and all observations (counties) 
for each sampled state-time pair are included to create the bootstrap sample. 
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finding that the number of net lives saved changes from positive to negative. We replicate 

their results in column 3 of Table 1. The point estimates in this case imply that executing a 

criminal induces 25.7 additional murders.8 While DW dismiss this as an unreasonable 

possibility, we note that there is no a priori reason why an increased possibility of execution 

should not raise the murder rate; the reason is that a higher likelihood of execution for a 

given murder reduces the marginal deterrence effect for subsequent murders.  The DW 

finding on net lives saved is mirrored by their finding that increases in the conditional 

probability of a death sentence given a conviction and/or the conditional probability of an 

execution given a death sentence each produce an increase in the murder rate.  As before, 

the bootstrapped confidence intervals are wider than the asymptotic ones resulting in an 

insignificant parameter and net lives saved.  The results are also statistically insignificant 

with clustering for both the asymptotic and the bootstrapped cases. 

 It is unclear why a researcher should prefer the restricted specification of DW to 

the DRS specification unless one believes that by separating the vote shares one generates a 

weak instruments problem. A Stock-Yogo test rejects the null hypothesis of weak 

instruments, so we see no reason to prefer the restricted DW specification (collapsing the 

six voting instruments).  

 

ii. microfoundations  

 

We next analyze what happens when we employ the theoretically appropriate joint 

probabilities instead of the conditional probabilities used in the DRS and the DW 

specifications. As discussed in Section 5, the use of the conditional probabilities of being 

arrested, sentenced to death, and executed as covariates in the regression is not consistent 

with an expected utility model. Instead one should use the joint probabilities. That is, we 

replace the first three terms in the RHS of (23) with 

 

                                                 
8Note that, because net lives saved already includes the death of the criminal, when we 
report the number of murders induced by the execution (when net lives saved is negative), 
we do not count the executed criminal. For example, in column 3 or table 1, net lives saved 
equals -26.7 so an execution induces 25.7 additional murders.     
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The results are presented in column 2 (for the DRS specification) and column 4 

(for the DW specification). The use of joint probabilities changes the net lives saved 

estimate for DRS to 31.5 per execution.   The changes for DW are quite dramatic as their 

instrumental variable choice no longer reverses the sign of the point estimate of executing a 

criminal; under their specification each execution saves 20.9 lives.  These results 

demonstrate that, once a correctly specified individual choice model is used to generate the 

aggregate model, the dispute over instrumental variables between DRS and DW does not 

really matter in terms of whether the estimated deterrence effect is positive or negative. As 

with the previous results, bootstrapping and/or clustering leads to statistically insignificant 

parameters and net lives saved. 

 

iii. logit versus linear probability model  

 

As argued in Section 3, a linear specification for aggregate crime regressions places 

strong assumptions on the underlying individual-specific errors; assumptions that are 

generally regarded as unappealing.  In addition, while the linear probability model can give 

very similar results to alternative nonlinear models, this is the case only when the 

probabilities in the data (i.e. the murder rates) are not very close to 0 or 1. When this is not 

the case — in our case the largest murder rate we observe is 0.008 — the differences in tail 

behavior between models lead to different results. While many alternative probability 

models exist, it is straightforward to analyze the model when the errors are logistically 

distributed.  This leads to an aggregate model which is linear in the right-hand-side 
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variables and nonlinear in the left-hand-side variable.9   In Table 2 we present the results 

obtained from running the analysis assuming the errors follow a logit distribution. We use 

the joint outcome probabilities implied by the individual choice problem as opposed to the 

conditional probabilities, so these results employ the theoretically correct set of deterrence 

variables.  We report marginal effects in addition to parameter estimates as the former are 

most comparable to the parameter estimates for the linear model. 

Tables 2a and 2b show that the specification of the error term has very large effects 

on the estimated number of net lives saved. For the DRS specification, in Table 2a, moving 

from a linear to a logistic error distribution assumption reverses their claims: each 

execution is associated with an average increase of 1.8 murders.  For the DW specification, 

in Table 2b, each execution is associated with 7.2 additional murders.  For both DW and 

DRS, while the marginal effect of an increase in the arrest probability decreases the murder 

rate, both capital sentences and executions are associated with more murders.  Together, 

these results suggest that the DRS estimates of substantial deterrent effects to capital 

punishment are an artifice of their use of the linear probability model. 10  Interestingly, the 

logit estimates of net lives saved are much less sensitive to the way the calculation is made 

than for the linear probability model. The asymptotic and bootstrapped confidence 

intervals for both the clustered and standard cases imply statistical insignificance of almost 

all of the parameter and all of the net lives saved estimates. 

 

iv. instruments 

 

Section 3 also argued that the presence of unobserved location-specific effects 

implies that all variables should be instrumented when aggregate data are used.  In columns 

                                                 

9In particular, the LHS of (23) becomes log
100000

Y
Y

⎛ ⎞
⎜ ⎟−⎝ ⎠

 where 

, ,

, , /100000
c s t

c s t

Murders
Y

Population
= . 

10In fact, with the exception of one specification (collapsed partisan variables, instrumenting 
for all regressors), the point estimates no longer imply a deterrent effect once we switch to 
logit errors in all cases considered in the paper. 
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3 and 4 of Tables 2a and 2b we present results for the logit analysis when this is done. As 

there are not enough instruments in the original instrument set to do this, we use lagged 

values of the instruments we have available.11 This is likely to generate collinearity and/or 

weak instruments but we present the results for completeness. When this is done, we find 

the surprising result that the DRS specification produces 8.5 lives lost per execution, 

whereas DW find 9.2 net lives saved.  Full instrumenting thus restores the discrepancy in 

estimates in the original DRS and DW papers.  That said, the confidence intervals are 

sufficiently wide that one cannot conclude that either of the estimates (or the associated 

model parameters) is statistically significant or that the estimated differences between the 

specifications are statistically significant. 

 

v. preference heterogeneity 

 

In all of the results reported so far, we have assumed that the parameters of the 

utility function are common across individuals.  In Table 3a we relax this assumption by 

allowing the coefficients on each of the three deterrence variables from DRS to be 

individual-specific. We focus on a model specification that combines joint deterrence 

probabilities, logit errors and the use of all the partisanship variables.  The net utility 

function for this specification is  

 

                                                 
11Specifically, we add 1, 2, 3, and 4 period lags of police expenditures, judicial expenditures, 
and prison admissions.    
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 (26) 

 

where i  denotes an individual, c  denotes a county, s  denotes a state, and t  denotes a 

year.12  This combination of assumptions is, in our judgment, the most theoretically 

appealing of those we have considered.  As discussed above, when one ventures outside the 

linear probability model, the calculation of policy effects will depend on the distribution of 

parameters. 

Following (11), one has to integrate the individual choice probabilities implied by 

(26) in order to produce aggregate crime rates with interpretable microfoundations.  In 

order to operationalize the integration we make the standard assumption that the random 

coefficients are uncorrelated with the regressors and that they are normally distributed13; 

this is the approach followed by Berry, Levinsohn, and Pakes (1995). Under the 

assumption of logit errors, this gives us the following expression for the aggregate county-

level murder rate, , ,c s tρ . 

 

 
( )
( )

, , ,
, , ,1 ,2 ,3

, , ,
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1 exp

i c s t
c s t

i c s t

dF dF dFβ β β

δ
ρ

δ

⎧ ⎫⎪ ⎪= ⎨ ⎬
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∫∫∫  (27) 

                                                 
12Here and elsewhere, when c does not appear in a subscript, this means that the variable is 
measured at the state rather than county level. 
13Relaxing normality of the random coefficients allowing for a multinomial distribution 
instead (that is the nonparametric maximum likelihood estimator of Heckman and Singer 
(1984)) produces similar results. 
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and ( ),i kdF β , 1,2,3k = , is a normal density with a mean and variance that will be 

estimated. We estimate this model using the algorithm developed by Berry, Levinsohn, 

and Pakes (1995). The parameters of the distribution of the preference parameters are 

estimated using a GMM procedure. The individual-specific heterogeneity is integrated out 

numerically.  By matching the observed murder rates to those predicted by the model, we 

concentrate out the location-time specific unobservables, ηc,s,t  since this implicitly defines 

them as a function of the parameters of the distribution of the preference heterogeneity. 

The moments are then constructed by interacting the location-time specific unobservables 

with the control variables and the instruments.   

Table 3a contains results from the random coefficients version of the specification 

with logit errors, microfounded (i.e. joint) deterrence probabilities, and the DRS set of the 

partisan variables.14,15 Once one allows for the possibility of individual specific responses to 

                                                 
14If one assumes that the random utility shocks are distributed uniformly instead of 
according to the logit distribution, it can be shown that the random coefficients integrate 
out and do not appear in the aggregate equation used for estimation. Therefore a model of 
random coefficients with uniformly distributed errors will collapse to a model without 
random coefficients.  
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the deterrence variables, the point estimate for the number of net lives changes from an 

additional execution inducing 1.8 murders to inducing 11.4 murders, although the results 

are still statistically insignificant (compare Table 3a to column 2 from Table 2a).  

Table 3b illustrates the magnitude of the estimated preference heterogeneity in the 

data.  In order to see how this heterogeneity relates to outcomes, in Table 3b we calculate 

the number of net lives saved under the assumption that everyone is at a given percentile of 

the distribution of the random coefficients (for each of the three deterrence probabilities: 

arrest rate; joint arrest and sentencing rate; and joint arrest, sentencing and execution rate).  

For example, in the first column we assume that everyone’s preference for each of the 

three deterrence variables is at the 10th percentile of the estimated distribution. This is done 

for five different points along the estimated distribution.  

As expected, for a proportion of the probability mass of preferences, people are in 

fact deterred from committing crimes by the deterrence variables. However, the effect 

varies so widely across the population that, if all the population were located at the same 

point, the response to an additional execution can vary from saving 6 net lives to inducing 

108 more murders. 

This heterogeneity of preferences has important policy implications.  Consider a 

policy in which a state increases the probability of being executed conditional on being 

sentenced to death.  Individuals at the far left of the preference distribution for this 

deterrence variable are the ones that are most deterred by an increase in this probability.  

However, they are also the ones who, ceteris paribus, are less likely to commit a crime in 

the first place, given their disutility associated with the probability of being executed.  

Similarly, individuals at the far right of the distribution, the ones who are most likely to 

commit a murder, are less affected by the increase. Consequently, such a policy may have 

very different effects in the presence of heterogeneity of preferences as opposed to the 

homogeneous case. 

                                                                                                                                                 
15We do not estimate a random coefficients model for the specification which collapses the 
partisan variables into one variable. We need at least six instruments for identification since 
there are three endogenous variables for which we need to instrument and three additional 
parameters to estimate (the standard deviations of the random coefficients). Collapsing the 
partisan variables leaves us with only four instruments.  
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Together, these results indicate that the assumptions implicit in the DRS 

specification do matter for their claims.  The variability we have found in their estimates as 

substantive and statistical assumptions are altered suggests that their evidence for 

deterrence is in fact quite fragile. 

 

 

7. Conclusions 

 

 In this paper, we have attempted to illustrate the assumptions needed to justify 

aggregate crime regressions along the causal lines that are conventional in the empirical 

crime literature.  We have tried to make clear that aggregate crime regressions involve a 

range of statistical and behavioral assumptions whose validity is easily seen to be 

problematic.  We have illustrated these abstract claims in the context of an important study 

of the deterrence effects of capital punishment, which illustrated that these assumptions 

matter in terms of deterrence effect claims.  

Do our arguments imply that aggregate crime regressions have no role to play in 

positive and normative analyses?  Horowitz (2004) essentially takes this view.  We disagree.   

For example, there exist methods such as model averaging, which can allow for the 

integration of inferences from different sets of assumptions; Durlauf, Navarro, and Rivers 

(2008) discuss how these methods may be applied to crime studies, Cohen-Cole, Durlauf, 

Fagan and Nagin (2008) show how model averaging can adjudicate some of the disparate 

findings in the capital punishment and deterrence literature. More generally, as emphasized 

in Heckman (2000,2005), the interpretation of empirical work always requires 

assumptions, particular exercises are more or less informative based upon the strength of 

those assumptions.  Aggregate crime regressions are thus no different in kind from other 

empirical exercises; as in any empirical analysis, what is important is to understand how 

assumptions matter and for a researcher to assess how this sensitivity ought to affect 

substantive conclusions such as a policy evaluation.  See Durlauf, Navarro, and Rivers 

(2008) for further discussion and a general defense of the utility of aggregate crime 

regressions. 
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Asymptotic Bootstrap Asymptotic Bootstrap Asymptotic Bootstrap Asymptotic Bootstrap
COEFFICIENTS

Arrest Probability -2.3 -2.3 -1.5 -1.5 -1.3 -1.3 -3.0 -3.0
(-6.8, 2.2) (-15.0, 6.4) (-6.5, 3.5) (-14.2, 6.8) (-8.5, 6.0) (-17.0, 12.8) (-11.3, 5.3) (-22.5, 10.5)
[-3.3, -1.3] [-11.2, 3.1] [-2.5, -0.5] [-11.1, 4.0] [-2.7, 0.2] [-7.6, 5.5] [-4.2, -1.7] [-12.2, 7.7]

Death Sentence Probability -3.6 -3.6 -- -- 212.9 212.9 -- --
(-87.4, 80.2) (-287.3, 322.8) (-205.7, 631.4) (-275.9, 740.1)
[-32.1, 24.9] [-170.2, 176.6] [161.2, 264.5] [-21.9, 520.8]

Execution Probability -2.7 -2.7 -- -- 2.3 2.3 -- --
(-11.0, 5.6) (-12.2, 12.7) (-10.4, 15.0) (-8.9, 20.5)
[-3.9, -1.5] [-7.5, 2.9] [0.7, 4.0] [-3.5, 8.4]

Death Sentence and Arrest Probability -- -- -136.2 -136.2 -- -- 400.4 400.4
(-329.1, 56.6) (-464.0, 347.9) (-274.9, 1,075.7) (-609.3, 975.4)
[-174.7, -97.8] [-400.1, 175.9] [316.6, 484.1] [-54.5, 1,050.4]

Execution, Sentence, Arrest Probability -- -- -124.4 -124.4 -- -- -83.6 -83.6
(-508.0, 259.2) (-617.7, 596.1) (-407.7, 240.5) (-727.9, 950.9)
[-190.1, -58.6] [-382.1, 234.7] [-167.4, 0.1] [-558.2, 295.1]

NET LIVES SAVED

DRS method 18.5 18.5 14.8 14.8 -17.7 -17.7 9.6 9.6
(-41.1, 78.0) (-91.8, 86.4) (-33.9, 63.4) (-76.5, 77.3) (-108.6, 73.2) (-147.9, 62.5) (-31.5, 50.7) (-121.5, 91.3)
[9.8, 27.1] [-21.5, 52.8] [6.4, 23.1] [-30.7, 47.4] [-29.4, -6.0] [-61.0, 23.8] [-1.1, 20.3] [-38.4, 69.8]

DNR method--mean 29.0 29.0 31.5 31.5 -26.7 -26.7 20.9 20.9
(-62.8, 120.7) (-142.0, 132.7) (-68.8, 131.9) (-156.8, 159.8) (-166.9, 113.4) (-228.4, 98.5) (-63.9, 105.7) (-246.8, 189.3)
[15.6, 42.4] [-32.6, 82.1] [14.3, 48.8] [-62.8, 99.8] [-44.8, -8.7] [-93.6, 37.3] [-1.2, 43.0] [-78.5, 146.5]

DNR method--median 16.8 16.8 19.8 19.8 -16.3 -16.3 13.0 13.0
(-37.7, 71.4) (-84.5, 79.1) (-44.5, 84.1) (-100.3, 102.1) (-99.7, 67.1) (-137.2, 57.4) (-41.3, 67.3) (-158.2, 122.4)
[8.9, 24.8] [-19.8, 48.5] [8.8, 30.9] [-40.6, 63.6] [-27.1, -5.6] [-56.1, 21.8] [-1.2, 27.2] [-50.7, 93.5]

Notes:

2.  The results are based on an available 43,535 observations.
3.  In DRS, the net lives saved is calculated by plugging in the average of characteristics for states with the death penalty in 1996.  
4.  In the DNR method, we calculate the net lives saved for each state in each year separately, and then compute the mean and median of this distribution.

Table 1: Linear Probability Models

1.  For each specification, four sets of 95% confidence intervals are reported in parentheses below the parameter estimates.  The left column reports confidence intervals based on the asymptotic 
distribution.  The right column reports bootstrapped confidence intervals based on 5,000 replications.  Clustered confidence intervals (at the state-level) are reported in parentheses.  Unclustered 
confidence intervals are reported in brackets below.

Conditional Probabilities Joint Probabilities

DRS (All Partisan Variables)

1 2

Conditional Probabilities Joint Probabilities

DW (Collapsed Partisan Variables)

3 4
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Marginal Effect Marginal Effect
1 3

Asymptotic Bootstrap Asymptotic Bootstrap
COEFFICIENTS

Arrest Probability -0.3 -0.1 -0.1 0.6 0.1 0.1
(-0.5, 0.3) (-0.9, 0.6) (-0.4, 0.7) (-0.8, 0.5)
[-0.2, 0.1] [-0.6, 0.3] [-0.2, 0.4] [-0.7, 0.5]

Death Sentence and Arrest Probability 18.0 3.3 3.3 -11.5 -2.1 -2.1
(-12.9, 19.4) (-24.5, 27.8) (-20.6, 16.4) (-15.1, 17.1)

[-2.1, 8.7] [-16.4, 20.1] [-11.3, 7.1] [-15.6, 22.6]

Execution, Sentence, Arrest Probability 11.5 2.1 2.1 53.4 9.7 9.7
(-31.7, 35.9) (-34.4, 51.6) (-24.2, 43.6) (-54.5, 39.1)
[-7.1, 11.3] [-20.9, 25.2] [-2.6, 22.1] [-38.5, 41.0]

NET LIVES SAVED

DRS method -2.6 -8.3
(-40.8, 25.8) (-31.4, 39.2)
[-20.9, 15.2] [-32.5, 28.3]

DNR method--mean -2.8 -9.5
(-46.1, 28.9) (-35.1, 46.6)
[-23.0, 17.1] [-36.6, 32.4]

DNR method--median -2.7 -8.8
(-42.1, 26.4) (-32.5, 42.8)
[-20.6, 15.1] [-32.7, 28.7]

Notes:

4.  In the DNR method, we calculate the net lives saved for each state in each year separately, and then compute the mean and median of this 
distribution.

DRS (All Partisan Variables)

1.  For each specification, four sets of 95% confidence intervals are reported for the coefficient estimates in parentheses below the parameter estimates.  
The left column reports confidence intervals based on the asymptotic distribution.  The right column reports bootstrapped confidence intervals based on 
5,000 replications.  Clustered confidence intervals (at the state-level) are reported in parentheses.  Unclustered confidence intervals are reported in 
brackets below.  For the net lives saved measures only bootstrapped confidence intervals are reported due to the computation involved in calculating the 
asymptotic standard errors given the large number of fixed effects.
2.  The results in columns 1 and 2 are based on an available 28,256 observations.  The results in the remaining columns are based on 24,842 
observations.  The dependent variable for the logit is not defined when the murder rate is zero, so these observations are dropped for the logit 
specifications.  For columns 3 and 4 we use lagged values of the instruments as our additional instruments, so this causes us to drop observations from 
earlier periods for which we do not have values for all of the instruments.

Instrumenting for all Regressors
Coefficient Coefficient

4

Table 2a: Logistic Probability Models*

* The dependent variable for the logit model is log[P/(100,000-P)], where P is the murder rate per 100,000 people.  The RHS is the same as the linear 
model.  Columns 1 and 3 report the average marginal effects (per 100,000 people) so that they are comparable to the linear coefficients.  That is, 1/n ∑i=1,n  

∂100,000P(xi)/∂xij.

2

3.  In DRS, the net lives saved is calculated by plugging in the average of characteristics for states with the death penalty in 1996.  
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Marginal Effect Marginal Effect
1 3

Asymptotic Bootstrap Asymptotic Bootstrap
COEFFICIENTS

Arrest Probability -0.8 -0.1 -0.1 -2.5 -0.4 -0.4
(-0.8, 0.5) (-1.7, 1.1) (-1.1, 0.2) (-2.2, 1.7)
[-0.3, 0.0] [-1.0, 0.9] [-0.9, 0.0] [-1.9, 1.9]

Death Sentence and Arrest Probability 153.4 27.9 27.9 87.4 15.9 15.9
(-23.5, 79.3) (-53.6, 82.6) (-10.8, 42.6) (-44.8, 48.8)
[16.2, 39.6] [-18.3, 86.5] [3.4, 28.4] [-51.6, 52.3]

Execution, Sentence, Arrest Probability 45.5 8.3 8.3 -64.4 -11.7 -11.7
(-28.4, 45.0) (-52.7, 94.5) (-80.5, 57.1) (-125.9, 121.8)
[-3.5, 20.0] [-39.0, 42.2] [-32.2, 8.8] [-99.9, 102.1]

NET LIVES SAVED

DRS method -7.5 8.0
(-73.6, 39.5) (-95.6, 96.3)
[-34.3, 29.7] [-80.7, 75.8]

DNR method--mean -8.2 9.2
(-83.6, 44.8) (-106.6, 108.4)
[-37.8, 33.2] [-90.3, 85.4]

DNR method--median -7.6 8.4
(-76.7, 41.3) (-98.5, 99.9)
[-33.7, 29.5] [-80.3, 76.2]

Notes:

Table 2b: Logistic Probability Models*

* The dependent variable for the logit model is log[P/(100,000-P)], where P is the murder rate per 100,000 people.  The RHS is the same as the linear 
model.  Columns 1 and 3 report the average marginal effects (per 100,000 people) so that they are comparable to the linear coefficients.  That is, 1/n ∑i=1,n  

∂100,000P(xi)/∂xij.

Instrumenting for all Regressors
Coefficient Coefficient

42

3.  In DRS, the net lives saved is calculated by plugging in the average of characteristics for states with the death penalty in 1996.  
4.  In the DNR method, we calculate the net lives saved for each state in each year separately, and then compute the mean and median of this 
distribution.

DW (Collapsed Partisan Variables)

1.  For each specification, four sets of 95% confidence intervals are reported for the coefficient estimates in parentheses below the parameter estimates.  
The left column reports confidence intervals based on the asymptotic distribution.  The right column reports bootstrapped confidence intervals based on 
5,000 replications.  Clustered confidence intervals (at the state-level) are reported in parentheses.  Unclustered confidence intervals are reported in 
brackets below.  For the net lives saved measures only bootstrapped confidence intervals are reported due to the computation involved in calculating the 
asymptotic standard errors given the large number of fixed effects.
2.  The results in columns 1 and 2 are based on an available 28,256 observations.  The results in the remaining columns are based on 24,842 
observations.  The dependent variable for the logit is not defined when the murder rate is zero, so these observations are dropped for the logit 
specifications.  For columns 3 and 4 we use lagged values of the instruments as our additional instruments, so this causes us to drop observations from 
earlier periods for which we do not have values for all of the instruments.
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COEFFICIENTS Asymptotic Bootstrap Asymptotic Bootstrap

Arrest Probability -1.7 -1.7 1.2 1.2
(-28.9, 25.5) (-4.4, 0.3) (-10.4, 12.8) (0.0, 2.5)
[-13.4, 10.0] [-3.9, 0.0] [-4.6, 7.0] [0.0, 1.8]

Death Sentence and Arrest Probability 1.1 1.1 3.3 3.3
(-227.4, 229.5) (-52.7, 33.3) (-273.6, 280.3) (0.0, 33.1)

[-88.8, 91.0] [-30.8, 27.3] [-162.6, 169.2] [0.0, 27.0]

Execution, Sentence, Arrest Probability 8.9 8.9 19.5 19.5
(-202.5, 220.3) (-103.1, 60.5) (-152.3, 191.3) (0.0, 99.8)
[-84.4, 102.3] [-49.8, 58.4] [-53.7, 92.6] [0.0, 47.2]

NET LIVES SAVED

DNR method--mean

DNR method--median

Notes:

[-53.4, 37.5]

3.  The results are based on an available 28,256 observations.

Table 3a: Random Coefficients Specification
All Partisan Variables

Joint Probabilities

2.  Four sets of 95% confidence intervals are reported for the coefficient estimates in parentheses below the parameter estimates.  The left column reports 
confidence intervals based on the asymptotic distribution.  The right column reports bootstrapped confidence intervals based on 5,000 replications.  
Clustered confidence intervals (at the state-level) are reported in parentheses.  Unclustered confidence intervals are reported in brackets below.  For the 
net lives saved measures only bootstrapped confidence intervals are reported due to the computation involved in calculating the asymptotic standard 
errors given the large number of fixed effects.

1.  This specification assumes that the random utility shocks are distributed according to the logit distribution, and that there are normally distributed 
random coefficients on each of the joint deterrence variables.

Mean Standard Deviation

-12.4
(-78.6, 121.7)
[-76.6, 54.7]

-8.8
(-54.9, 82.7)
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NET LIVES SAVED

DNR method--mean 5.5 -0.2 -8.5 -26.4 -108.9

Notes:
1.  The net lives saved are calculated based on the estimates from the random coefficient specification from Table 3a.
2.  In each column, the number of net lives saved is calculated under the assumption that every individual's taste for the joint deterrence probabilities is at the 
given percentile of the estimated distribution.  For example, the number in the third column is the number of net lives saved by one additional execution if 
everyone had the median estimated taste for the arrest, joint arrest and sentencing, and joint arrest, sentencing, and execution probabilities.

Table 3b: Random Coefficients Specification
Percentile

10th 90th30th 50th 70th
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