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A B S T R A C T

Efforts to understand learning disorders in children by focusing on specific domains and within restricted ability
ranges have failed to identify consistent and stable learning profiles. Given evidence for dimensional distribution
of oral language, reading, and mathematical skills among those identified with and without learning disorders,
examining learning across a range of abilities and domains should provide a better estimate of learning profiles.
The present study examined the 1-year stability of cross-domain learning profiles and associated cognitive
characteristics of 327 children. Results revealed highly stable profiles with 95% of participants remaining in the
same learning profiles across data years. Generally similar performance across domains was observed for three
profiles (below average, average, above average) comprising 63% of the sample, with relatively specific dif-
ferences in oral language or reading characterizing the remaining profiles. Cognitive measures and teacher
ratings accurately predicted learning profile in about 55% of participants either at the time of testing or in the
following year. The most effective models for categorizing learning profiles all included teacher ratings of
reading. Cognitive measures of verbal working memory, verbal intelligence, phonological awareness, symbolic
comparison, and visuospatial working memory were also important contributors to classification. The findings
indicate that examining learning across domains, abilities, and time has the potential to inform our con-
ceptualization of learning disorders and associated cognitive strengths and weaknesses.

1. Introduction

In the area of learning disabilities, there has long been interest in
identifying and understanding common impairment profiles for which
specific interventions might be designed. Nevertheless, efforts to iden-
tify stable profiles of common impairment have met with limited suc-
cess (e.g., Conti-Ramsden & Botting, 1999; Mazzocco & Myers, 2003;
Peterson, Pennington, Olson, & Wadsworth, 2015). Several methodo-
logical reasons could account for the lack of consistent findings in-
cluding the focus on children in the low range of performance on
measures of interest (e.g., Hendriksen et al., 2007), the focus on one
sphere of learning (e.g., Morris et al., 1998), and the reliance on cross-
sectional study (e.g., Bartelet, Ansari, Vaessen, & Blomert, 2014;
Sprenger-Charolles, Cole, Lacert, & Serniclaes, 2000; Tomblin & Zhang,
1999). Similar confusion emerges from studies aimed at understanding
the cognitive underpinnings of learning disabilities, which could be
related to the investigation of children with varying profiles and the
inclusion of a limited number of cognitive measures. An assumption

motivating the current study is that progress in both of these areas
could be improved if a broad range of cognitive predictors were ex-
amined for stable learning profiles. In our previous work, Archibald,
Oram Cardy, Joanisse, and Ansari (2013) took an epidemiological ap-
proach to examining language, reading, and math profiles in over 1000
unselected 6-to-9-year-old children, and identified 6 learning profiles.
The purpose of the present study was to examine the stability of these
learning profiles and their cognitive underpinnings in a subset of the
original sample for whom we had 1-year follow up data.

It is well recognized that some children experience unexpected
difficulties learning their native language or learning to read, write, or
do mathematics at school. The considerable interest aimed at under-
standing the patterns in these individual differences has largely been
aimed at the individual domains of language, reading, or mathematics.
Children with an unexpected delay in the onset or development of
language have been described as having a developmental language
disorder (DLD; also known as specific language impairment; Bishop,
Snowling, Thompson, Greenhalgh, & the CATALISE-2 consortium,
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2017), and those with an unexpected difficulty in learning to read or do
math have been considered to have dyslexia or dyscalculia, respec-
tively. With a view to understanding profiles and determining possible
interventions, considerable research has focused on discovering the
unique cognitive mechanisms associated with each of these disorders
(language: Conti-Ramsden & Botting, 1999; Conti-Ramsden, Crutchley,
& Botting, 1997; reading: Boder, 1973; Stanovich, 1980; Liberman &
Shankweiler, 1985; math: Bartelet et al., 2014; von Aster, 2000).

Two lines of evidence suggest that a focus on specific domains and
disorders to understand learning patterns is problematic. First, within
each of the domains, children with DLD, dyslexia, and dyscalculia have
been considered to be a heterogeneous group (Bishop, 2006; Soriano-
Ferrer & Piedra Martinez, 2017; Träff, Olsson, Östergren, & Skagerlund,
2015). This heterogeneity has not been explained by the identification
of stable and reliable subtypes within groups (language: Conti-Ramsden
& Botting, 1999; Tomblin, Zhang, Buckwater, & O'Brien, 2003; reading:
Peterson et al., 2015; math: Mazzocco & Myers, 2003). As well, this
single domain approach fails to recognize the high comorbidity ob-
served across conditions (see Archibald et al., 2013). Importantly, these
overlaps are observed not only in language, reading, and math perfor-
mance, but also in the cognitive deficits associated with DLD, dyslexia,
and dyscalculia (see Archibald et al., 2013). Taken together, this evi-
dence suggests that examining learning across domains has the poten-
tial to inform our understanding of learning profiles and their under-
lying cognitive associates. Indeed, such work could contribute to the
development of new models of learning patterns previously masked by
a single-domain approach.

A second problem with the study of individuals with specific dis-
orders is the focus on a narrow range of performance distribution.
Learning profiles may be poorly estimated by limiting analyses to those
scoring in the low range of ability. Importantly, this attention to those
with learning disabilities appears unwarranted in light of evidence
suggesting no clear distinction between those with and without disorder
(language: Dollaghan, 2004, 2011; reading: Kuppen & Goswami, 2016;
math: Piazza et al., 2010; Landerl, 2013). This continuity in develop-
mental trajectories provides strong rationale for investigating learning
patterns across the full range of performance (see also, Elliott &
Grigorenko, 2014). A comprehensive, data-driven model reflecting
learning across domains and performance range has the potential to
provide insight into questions related to learning profiles and their
stability, and clarity regarding the cognitive mechanisms underlying
learning patterns.

We took just such a data-driven approach in our previous study
examining patterns of performance across the domains of language,
reading, and math without a priori constraints on possible profiles
(Archibald et al., 2013). We recruited an unselected, epidemiological
sample of 1120 children aged 6;0 to 9;11 years to assess whether
learning profiles fell into distinct subtypes. Based on a cluster analysis
of performance on measures of language, reading, and math, six unique
clusters were identified. The first two profiles reflected good or poor
performance across all measures; three showed specific learning pro-
files involving either relatively weak language, weak reading, or weak
math; and the sixth showed weaknesses in both math and reading. In
the present study, we re-examine these profiles and their stability over a
1-year period in a subset of the original group for whom we had follow
up data.

We also planned to examine the potential links between observed
subtypes and specific cognitive processes. Identifying cognitive pro-
cesses underlying learning disabilities is of considerable interest due to
the promise such findings might hold for both early identification and
appropriate intervention. Although a number of candidate cognitive
processes have been studied in relation to language, reading, and math
impairments, the area lacks a comprehensive, cross-domain approach
resulting in a confusing array of findings suggestive of both specific and
nonspecific links. Take, for example, the area of phonological proces-
sing: Although phonological awareness deficits have been specifically

linked to dyslexia (Kuppen & Goswami, 2016), phonological processing
has also been associated with arithmetic fact retrieval in math (De
Smedt & Boets, 2010; De Smedt, Taylor, Archibald, & Ansari, 2010),
and deficits have been considered characteristic of DLD (Bishop &
Snowling, 2004). Similarly, specific deficits in rapid naming and mag-
nitude comparison have been implicated in dyslexia and dyscalculia,
respectively, but children with DLD have also been found to have im-
pairments in rapid naming (Coady, 2013) and digit magnitude com-
parison (Donlan, Cowan, Newton, & Lloyd, 2007). As well, all groups
have been found to have working memory impairments (DLD:
Archibald & Gathercole, 2006; dyslexia: Gottardo, Stanovich, & Siegel,
1996; dyscalculia: Swanson & Sachse-Lee, 2001), although more spe-
cific links have been suggested with language when the to-be-recalled
stimuli are verbal (Archibald & Gathercole, 2007), and with math when
the stimuli are visuospatial in nature (Menon, 2016). It may be, too,
that cognitive reasoning as measured by verbal and nonverbal in-
telligence could show differential linkages with learning patterns.

Clearly, examining associations between cognitive processes and
learning profiles identified empirically across the domains of language,
reading, and math has potential for clarifying these relationships. It
could be particularly informative to explore the stability of associations
between learning abilities and potential cognitive mechanisms over
time. Cognitive predictors have been examined for individual learning
disorders (e.g., DLD: van Daal, Verhoeven, & van Balkom, 2009; dys-
lexia: Carroll, Solity, & Shapiro, 2016), but no studies have investigated
such predictors across learning domains and longitudinally. The present
study was particularly well placed to provide an initial exploration of
associations between cognitive processes and stable learning profiles
over a 1-year period.

It should be noted that measures of cognitive processes have been
found to explain only a modest (< 50%) amount of variance in chil-
dren's learning profiles for language (van Daal et al., 2009), reading
(Ruffing, Sophie Wach, Spinath, Brünken, & Karbach, 2015), and math
(Seethaler, Fuchs, Star, & Bryant, 2011). Interestingly, more global
teacher ratings of academic and cognitive skills have consistently been
found to be related to outcomes in language (Bedore, Peña, Joyner, &
Macken, 2011; Gilmore & Vance, 2007), reading (Gallant, 2013; Titley,
D'Amato, & Koehler-Hak, 2014), and math (Gallant, 2013; Teisl,
Mazzocco, & Myers, 2001). Therefore, we also examined the extent to
which teacher ratings provide additive value beyond direct measures of
cognitive processes in explaining learning profiles. Teacher ratings of
children's language, reading, and math learning were acquired, as well
as judgments of memory, attention, and social interaction. The extent to
which these ratings uniquely contributed to the discrimination of
identified learning profiles beyond what is predicted by measures of
relevant cognitive processes was evaluated.

In the present study, elementary school children completed mea-
sures of learning in the areas of language, reading, and math, as well as
cognitive measures of phonological awareness, rapid naming, magni-
tude comparison, verbal and visuospatial working memory, and verbal
and nonverbal intelligence. Assessments were acquired at an initial
time point and at 1-year follow up. As well, teachers made independent
ratings of children's language, reading, math, memory, attention, and
social interaction. One aim of the study was to examine the patterns of
performance in children's measured language, reading, and math
learning in comparison to our previous cluster analysis (Archibald
et al., 2013) of which the current group was a subset. We were parti-
cularly interested in the stability of the identified learning profiles
across the 1-year time period spanned by the current study, both in
terms of the profiles themselves and the membership of individual
children. A second aim was to describe the extent to which our cogni-
tive measures and/or teacher ratings could predict learning profiles
both within the respective year of membership, and in the subsequent
year. High discrimination of learning profiles based on cognitive abil-
ities would provide support for our data-driven approach. As well,
findings that teacher ratings were a unique predictor of learning
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profiles would indicate the separable contribution of these measures.

2. Methods

The Nonmedical Research Ethics Board at The University of Western
Ontario approved all procedures in this study.

2.1. Participants

The children in this study were participating in a longitudinal study
over an 18-month period with data collected during each of two con-
secutive school years. During the first school year, the present partici-
pants were part of a screening sample, an epidemiological cohort of
1120 children who completed a screening protocol consisting of lan-
guage, reading, and math tasks and described in detail in our initial
report of this work (Archibald et al., 2013). In addition to this screening
measure, the participants in this study completed (1) a battery of
standardized tests during the final two months of the same school year
(Year 1) as the screening measure (and within 4.4 months on average;
SD = 1.1), and (2) the same battery of standardized tests in the sub-
sequent year (Year 2). As described in detail in Archibald et al. (2013)
the current sample is a selected sample because participants were se-
lected to complete this additional testing based on screening perfor-
mance such that those scoring in the average or below average range
were about equally represented. A total of 327 children
(Mage = 7 years; 10 months; SDage = 1;1; Age range 6;0–9;11; 145
females) completed the Year 1 measures included in the learning profile
analysis in the present study. Of these, 276 (Mage = 9 years; 3 months;
SDage = 1;1; Age range 7;3–11;5; 124 females) completed testing at
Year 2. Levels of maternal education (provided by 308 parents on a 6-
point scale) for the Year 1 (M = 3.97, SD = 1.7) and Year 2 (M = 4.05,
SD = 1.7) participants did not differ. As well, those participants lost to
follow up (20 females; 28 males) came from various schools in the
sample (with no discernable pattern), and did not differ from the full
participant group on age at study entry (M = 8;0, SD = 1.1) or ma-
ternal education (M = 3.56, SD = 1.8).

2.2. Procedures

Study participants completed 7 individual study sessions (4 in Year
1 and 3 in Year 2) in a quiet room in their school and each involving
tasks administered by a trained research assistant (see Table 1). During
Year 1, children completed a 10-min screening protocol including math
and reading tasks (and a sentence recall task not employed in the
current study), and within approximately 4 months, three additional
visits occurring one week apart (in May and June of the academic year)
and involving standardized tests of language, reading, math, and cog-
nitive processes (verbal and visuospatial short-term and working
memory, phonological awareness, nonverbal intelligence, verbal

intelligence, and rapid naming). In Year 2, all study measures were
completed during three additional visits occurring one week apart in
May and June of the academic year with the exception of the rapid
naming tasks, and the addition of magnitude comparison tasks. In ad-
dition, some teachers (Year 1: n = 296; Year 2: n = 267) completed
rating scales of children's learning and cognitive skills.

2.3. Language and academic measures

To examine learning profiles across the domains of language,
reading, and mathematics, the following measures were completed in
each domain. Published scaled or standard scores were used for all tests
except as indicated.

2.3.1. Oral language
Three subtests were completed from the Clinical Evaluation of

Language Fundamentals, 4th edition (CELF-IV; Semel, Wiig, & Secord,
2003). In the Concepts and Following Directions subtest, the child pointed
to aspects of a picture following a spoken instruction. For Recalling
Sentences, the child repeated sentences immediately after hearing them
and for Formulated Sentences, created a sentence using a given word.

2.3.2. Reading
The Test of Word Reading Efficiency (Torgensen, Wagner, & Rashotte,

1999) was administered and involves the number of words or nonwords
read, respectively, in 45 s on the Sight Word Efficiency (SWE) subtest and
the Phonemic Decoding Efficiency (PDE) subtest. The Reading Fluency
subtest of the Woodcock Johnson Test of Achievement III (WJ III;
Woodcock, Mather, & McGrew, 2006) was also administered and in-
volves reading a sentence and answering yes/no questions.

2.3.3. Math
The Math Fluency and Calculations subtests of the WJ III were

completed. Math Fluency involves the rapid application of basic addi-
tion, subtraction, and multiplication questions as quickly and accu-
rately as possible for three minutes. In the Calculations subtest, the
child was asked to complete mathematical operations.

2.4. Cognitive measures

In order to examine the relationship between cognitive mechanisms
and learning profiles, a broad range of cognitive measures were com-
pleted as follows.

2.4.1. Working memory
Eight subtests from the Automated Working Memory Assessment

(AWMA; Alloway, 2007) were administered. Measures tapping phono-
logical short-term memory involved immediate repetition of numbers
or nonword forms (Digit Recall, Nonword Recall), and those tapping vi-
suospatial short-term memory required recall of locations (Dot Matrix,
Block Design). Verbal working memory measures involved recall of
counts or final words after counting or processing a sentence, respec-
tively (Counting Recall, Listening Recall), while those involving visuos-
patial working memory required the recall of location or orientation
after identifying a different shape or mentally rotating an image, re-
spectively (Odd One Out, Spatial Recall). Based on published subtest
standard scores, composite scores were created for verbal working
memory (Digit Recall; Nonword Recall; Counting Recall; Listening Re-
call) and visuospatial working memory (Dot Matrix; Block Design; Odd
One Out; Spatial Recall) by averaging corresponding standard scores. It
should be noted that the averaging of same-domain short-term and
working memory scores in this way is supported by studies examining
factor structure of such tasks (Archibald, 2013; Shah & Miyake, 1996).

2.4.2. Intelligence
The four subtests of the Wechsler Abbreviated Scale of Intelligence

Table 1
Measures completed during each academic year of the study.

Year 1 Year 2

February May/June May/June

Word reading Oral language Oral language
Nonword

reading
Reading fluency Reading fluency

Math fluency Math fluency Math fluency
Calculations Calculations
Verbal & visuospatial short-
term & working memory

Verbal & visuospatial short-
term & working memory

Nonverbal & verbal
intelligence

Nonverbal & verbal
intelligence

Phonological awareness Phonological awareness
Rapid naming Magnitude comparison
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(WASI; Wechsler, 1999) were administered. The nonverbal intelligence
subtests included Block Design, in which the child arranged blocks to
match a model, and Matrix Reasoning, which involved choosing a pic-
ture to complete a pattern. The verbal intelligence subtests included
Vocabulary, in which the child provided definitions, and Similarities,
which involved identifying related pictures or describing similarities
between words.

2.4.3. Phonological awareness
Each child was asked to isolate and delete a phoneme from a word

in the Elision subtest of the Comprehensive Test of Phonological Processing
(CTOPP; Wagner, Torgensen, & Rashotte, 1999). For example, say
‘stop’, say it again without saying ‘t’.

2.4.4. Rapid naming
Each child completed a rapid object naming task (dog, hand, book,

chair) involving naming rows of pictures presented on a paper card
with a 5-row X 10-column grid of the elements. Participants were in-
structed to accurately name aloud each picture across rows as quickly
as possible beginning in the upper left picture and ending at the lower
right picture. The time required (in seconds) to name all the items in the
grid was recorded. In order to create age-adjusted scores for this task, z-
scores were calculated based on age year bands for the sample at Year 1
(6;0–6;11: n = 45; 7;0–7;11: n = 100; 8;0–8;11: n = 97; 9;0–10;4:
n = 85).

2.4.5. Magnitude comparison
Each child completed a symbolic (56 digit pairs) magnitude com-

parison task involving the crossing out of the larger of two digits
working as quickly and accurately as possible for one minute (see
Nosworthy, Bugden, Archibald, Evans, & Ansari, 2013). In order to
create age-adjusted scores for this task, z-scores were calculated based
on age year bands for the sample at Year 2 (7;0–7;11: n = 36; 8;0–8;11:
n = 90; 0;0–9;11: n = 78; 10;0–11;4: n = 75).

2.4.6. Teacher ratings
Each participant's classroom teacher was asked to use a 3-point scale

(1 = not concerned; 2 = somewhat concerned; 3 = definitely con-
cerned) to rate the child's cognitive skills and learning. Specifically, the
teacher was asked ‘How concerned are you about this child's…’, and the
descriptors included ‘attention’, ‘reading’, ‘math abilities’, ‘ability to
express him/herself orally’, ‘social interaction’, and ‘memory skills’.

2.5. Data analysis

For all of the standardized tests/subtests included in the battery
(tests of language, reading, math, working memory, phonological
awareness, intelligence), published internal consistencies (test-retest
reliability, alternate form reliability, Rasch analysis) ranged from 0.71
to 0.90. Reliability for the rapid naming and number comparison tasks
have been reported in our related work to be 0.73 and 0.72, respec-
tively (Archibald et al., 2013). These acceptable reliabilities were
considered adequate for inclusion in the modeling analyses completed.

In order to explore patterns of unique learning profiles, we included
our language and academic measures (8 measures) in a Latent Profile
Analysis (LPA), a Gaussian mixture modeling approach used to identify
latent categories from multivariate continuous data (completed in
Mplus 7.4; Muthén & Muthén, 1998–2017). Although similar to clus-
tering techniques as used in our previous study (Archibald et al., 2013),
the mixture modeling framework of LPA better accounts for the prob-
abilistic nature of group membership and provides a better estimate of
transitions across time. It should also be noted that the maximum
likelihood estimator employed in the Mplus LPA approach handles non-
normality of data, and data transformations are not recommended
(Muthén & Muthén, 1998–2017).

LPA models were estimated for 2–9 classes for the Year 1 and Year 2

data separately. Model fit was evaluated based on the Bayesian in-
formation criterion (BIC), with lower BIC indicating better fit; a boot-
strap likelihood ratio test (BLRT) examines whether there is significant
improvement in model fit when estimating k classes relative to the k – 1
class. Recent simulation work suggests that the BLRT is the most sen-
sitive index for identifying the correct number of classes in models si-
milar in number of indicators and sample sizes to those estimated here
(Nylund, Asparouhov, & Muthén, 2007). When statistical information
yielded equivocal information for model selection, we inspected class
sizes and whether solutions were consistent across data years. We
planned to compare the results of the LPA to our earlier report
(Archibald et al., 2013) of learning profiles based on our screening
measures from our larger cohort (n = 1120). Notably, data from 5
measures in the current Year 1 sample of 327 participants overlapped
with that of the earlier cohort (Sight Word Reading; Phonemic De-
coding Efficiency; Math Fluency; Reading Fluency; Calculations),
however the 2013 report employed a different sentence recall task
(Redmond, 2005) as an estimate of language, and did not include the
Reading Fluency or Calculations subtests.

We then examined the extent to which our cognitive and rating
measures could predict the learning profile to which a participant was
assigned using stepwise discriminant function analysis both within and
across the Year 1 and Year 2 data using SPSS 24 (IBM Corp, 2016). Prior
probabilities were based on group size in all cases. We first planned to
complete analyses with the cognitive measures and teacher ratings/
maternal education separately, and then with significant predictors in
the same model.

3. Results

Overall sample means for the language, reading, and math measures
are shown in Table 2. The means ranged from 87 to 103, which is in
keeping with the composition of the sample as described in the methods
section (i.e., oversampling of participants scoring in the low range on
the original screening measure). The overall mean was within 4 stan-
dard score points of 100 for all measures except Concepts and Following
Directions, Math Fluency, and Calculations. Given these differences, we
planned to analyze patterns in the results relative to the overall sample
mean for each measure. Skew was less than |1| for all measures, and
kurtosis was less than |1.2| for all measures except Calculations at year
1 and 2.

Comparing the current sample to the screening sample reported in
Archibald et al. (2013), the two samples did not differ in terms of age or
sex distribution, although the current sample scored, on average, about
5 standard score points lower on the overlapping measures: Sight word
efficiency, 99.3 ± 12.7 and 105.1 ± 14.0, Phonemic decoding effi-
ciency, 99.1 ± 11.3 and 105.1 ± 13.5, Math Fluency, 87.4 ± 13.9
and 92.7 ± 14.7 and a sentence recall measure not reported here,
94.9 ± 17.1 and 100.1 ± 15.0, respectively, for means plus/minus
standard deviations of the current and screening samples (t > 7.0,
p < .001, all cases). As well, there was a small but significant differ-
ence (t > 3, p < .005) in maternal education levels (current sample:
M = 3.97, SD = 1.7; screening sample: M = 4.34, SD = 1.6). These
data indicate that the study findings may not generalize to children who
achieve very high standardized scores on language, reading, or math
measures. It should also be noted that those who did (n = 276) or did
not (n = 48) contribute data at Year 2 did not differ on any of the
language, reading, or math measures (t < 1.6, p > .05, all cases).

3.1. Latent profile analysis of language, reading, and math learning profiles

In exploring the unique learning profiles represented in our data,
the LPA completed on the language (Concepts and Following
Directions; Recalling Sentences; Formulated Sentences), reading (Sight
Word Reading; Phonemic Decoding Efficiency; Reading Fluency), and
math measures (Math Fluency; Calculations) revealed similar model fit
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indices across the 6, 7, and 8 class models for the Year 1 data (BIC
Range: 20,224.26-20,225.92 compared to 20,242.81 and 20,230.17 for
5 and 9 class solutions, respectively). In the Year 2 data, the 6-class
model had the lowest BIC (17,301.64 compared to 17,321.54 and
17,313.18 for 5 and 7 class solutions, respectively). The BLRT indicated
that adding additional classes significantly improved model fit. Thus,
this index provided little guidance about model selection. Entropy was
good in all models (values > 0.80). In order to select the most con-
sistent results across these longitudinal time points, and with our pre-
vious report of a 6-cluster solution to describe our screening sample
(Archibald et al., 2013), we considered the 6-class solution to be the
most appropriate model for both our Year 1 and Year 2 LPAs.

Table 2 shows estimates of the class means and standard errors for
all language and academic measures included in the LPA, as well as
class demographics related to size, sex, and age for each class and data
year. Given the differences in the overall sample standardized score
means across measures (as outlined above), relative strengths and
weakness in these learning profiles across measures must be interpreted
relative to the overall sample mean for each measure (refer to bolding
in Table 2 for means that do or do not differ from the overall sample
mean). In order to facilitate this process, Fig. 1 presents difference
scores for each measure calculated by subtracting the class mean from
the overall sample mean for the Year 1 and Year 2 data, together with a
corresponding figure based on our YEAR data. Probably the most
striking pattern across these profiles is a gradation based on severity
with profiles 1 and 2 reflecting well below and below average scores,
respectively, and profiles 5 and 6 reflecting above and well above
average scores, respectively. The two other average profiles show a
relative weakness in reading efficiency (profile 3) or math (profile 4).

3.1.1. Transitions across years
Next, we completed a latent transition analysis, which determines

the probability of profile membership at Year 2 given profile mem-
bership at Year 1. In the transition model, there is separate modeling of
the time points, but information from both time points is used to inform
class membership. As a result, all 327 participants are assigned to a
profile at each time point. Table 3 shows the probability values, and the
actual class sizes for profile transitions from Year 1 to Year 2. Prob-
abilities of remaining in the same class were > 0.86, in all cases. > 95%
of all participants were classified into the same profile across years. Of
the 15 movers, 7 were in profile 5 (average), 2 in each of profiles 1
(well below average) and 4 (relative math weakness), and 3 in profile 3
(relative reading efficiency weakness) at Year 1. As well, movers were
older (M = 8.5 years, SD = 1.0) than those who stayed in the same
profile (M = 7.9 years, SD = 1.1) on average (U = 1499.5, p = .019).

3.2. Predictors of learning profiles

3.2.1. Cognitive predictors of learning profiles
For all of the cognitive measures (phonological awareness, non-

verbal intelligence, verbal intelligence, verbal working memory, vi-
suospatial working memory, rapid object naming, symbolic compar-
ison), sample means were close to the standardized mean (99–103) and
the standard deviation ranged from 10 to 15 (exception: For rapid ob-
ject naming and symbolic comparison, the means were 0 and SDs, 1). In
the majority of cases, skew was < 1 (exception: rapid object naming),
and kurtosis was < 3 (exceptions: visuospatial working memory, non-
verbal working memory, symbolic comparison, rapid object naming).
We completed 3 stepwise discriminant function analyses predicting LPA
class based on these cognitive measures for data within each year
(Within Year 1; Within Year 2), and for the Year 1 cognitive measures

Table 2
Demographics and mean scores (standard errors) for language and academic measures in each of the profiles and overall.

Measure Profile

1 2 3 4 5 6 Overall

Year 1
n (number of females) 14 (4) 39 (10) 75 (30) 33 (13) 122 (62) 44 (26) 327 (145)
Age (years) 8.6 (0.7) 8.5 (1.0) 7.8 (1.0) 8.1 (1.2) 7.7 (1.0) 7.5 (1.2) 7.9 (1.1)
Language

Following directions 79ab (3.5) 72a (1.8) 94b (1.4) 78a (1.9) 102c (0.9) 108c (1.4) 94.0 (0.9)
Recalling sentences 83a (3.0) 83ab (1.9) 93c (1.3) 89bc (2.1) 103d (1.1) 106d (1.8) 96.5 (0.8)
Formulating sentences 80a (2.8) 90a (2.0) 100b (1.4) 98b (1.6) 109c (1.0) 114c (1.2) 102.9 (0.8)

Reading
Sight word efficiency 60a (1.5) 87b (1.4) 92b (0.8) 105cd (1.3) 105e (0.6) 112de (1.0) 99.3 (0.7)
Phonemic decoding 73a (1.1) 89b (1.2) 93b (0.9) 104c (1.4) 103c (0.6) 112d (1.0) 99.1 (0.6)
Reading fluency 66a (2.7) 84b (0.9) 93c (0.8) 102d (1.2) 104d (0.6) 116e (1.1) 98.7 (0.7)

Math
Math fluency 70a (2.5) 74a (1.4) 85b (1.3) 79ab (1.6) 94c (1.0) 97c (2.2) 87.4 (0.8)
Calculations 60a (4.8) 74ab (2.3) 94c (1.3) 80b (3.1) 100cd (1.0) 107d (2.0) 92.3 (1.0)

Year 2
n (number of females) 10 (4) 36 (8) 63 (24) 29 (14) 95 (48) 43 (26) 276 (124)
Age (months) 10.2 (0.7) 9.9 (1.0) 9.3 (1.1) 9.4 (1.1) 9.0 (1.0) 8.9 (1.2) 9.26 (1.1)
Language

Following directions 81ab (4.6) 74a (1.9) 94b (1.6) 86b (2.4) 103c (1.0) 106c (1.6) 94.8 (0.9)
Recalling sentences 86a (4.3) 85a (2.0) 93a (1.6) 90a (2.1) 106b (1.1) 109b (1.9) 98.4 (0.9)
Formulating sentences 78a (4.1) 83a (2.3) 95b (1.7) 91ab (2.7) 105c (1.1) 110c (1.7) 98.1 (0.9)

Reading
Sight word efficiency 67a (1.7) 85b (1.1) 92c (0.9) 113d (1.1) 105e (0.8) 118d (1.2) 100.9 (0.9)
Phonemic decoding 70a (1.7) 86b (1.4) 91b (1.0) 111c (1.8) 101d (0.8) 116c (1.4) 99.1 (0.9)
Reading fluency 66a (2.5) 85b (1.2) 93c (0.7) 101d (1.1) 103d (0.7) 115e (1.4) 98.5 (0.8)

Math
Math fluency 69a (2.6) 72a (1.4) 86b (1.2) 80ab (1.6) 93c (1.0) 103c (1.6) 87.9 (0.8)
Calculations 55a (6.2) 69ab (2.6) 88c (1.5) 74b (2.7) 94cd (1.0) 101d (1.6) 86.7 (1.0)

Note: (1) All non-bolded means are significantly different from the overall sample mean for respective measure, p ≤ .001 (all remaining cases, p ≥ .004). (2) Means
with matching superscripts in the same row are not significantly different, p < .001 (all remaining cases, p ≥ .006). (3) Profile scores between Year 1 and 2 did not
differ significantly (p > .001, all cases) for all measures except (a) Profile 5, calculations (p < .001) and (b) Profile 6, sight words efficiency (p < .001). (4) Profile
1–6 labels, respectively: well below average, below average, reading efficiency weakness, math weakness, average, above average.
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predicting Year 2 learning profiles (Year 1-to-2). In each case, the
model showed a significant association between class membership and
some of the cognitive measures F > 12.5, p < .001, all cases. Table 4
summarizes the percent variance explained, percent cases correctly
classified, and significant functions for each exploratory model. The
models explained 59–65% of the data, but correctly classified only
about 50% of cases. Measures with moderate to high loadings on sig-
nificant functions included phonological awareness, verbal working

memory, and verbal intelligence. Eigenvalues were large (> 1) for the
first function in each model only. In the Within Year 1 model, phono-
logical awareness group centroids were markedly low for profiles 1
(well below average) and 2 (below average) and high for profile 6 (well
above average), and verbal working memory group centroids were
markedly low for profile 2 (below average). In the Within Year 2 model,
verbal intelligence group centroids were markedly low for profile 2
(below average), and group centroids for verbal working memory were

b) Year 2 data

c) Data from Archibald et al. (2013)

a) Year 1 data
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Fig. 1. Difference scores between class mean and full sample mean for each measure and profile for a) Year 1 data, b) Year 2 data, and c) data from Archibald et al.
(2013).
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markedly low for profiles 1 (well below average) and 2 (below
average). The pattern for the Year 1-to-2 model was almost identical to
that of the Within Year 1 model.

3.2.2. Contribution of teacher ratings or maternal education
For teacher ratings (out of 3) of attention, reading, math, expres-

sion, social interaction, and memory skills, ratings of 1 (not concerned)
were the most common response. Ratings were similar across areas with
means ranging from 1.48 to 1.83 (standard deviations, 0.7–0.8). Skew
was < 1.1 and kurtosis was < 3 in all cases. Maternal education varied
little in this sample with more than two thirds of responders reporting
post-high school education (M = 3.97, SD = 1.7, skew = −0.3, kur-
tosis = 1.9). In order to explore whether teacher ratings or maternal
education added unique discriminant value, we first completed two
preliminary discriminant function analyses in order to limit the number
of predictors entered in subsequent analyses. For each year, only the six
teacher ratings for the respective year and maternal education were
entered as predictors. For the Year 1 data, only teacher ratings of
reading and math were retained in the model, and for the Year 2 data,
only teacher ratings of reading and memory were retained. In sub-
sequent analyses, only the respective significant teacher rating pre-
dictors were included in the relevant Year 1 or 2 models. Given that
maternal education was not retained in these preliminary models,
maternal education was not included in subsequent analyses.

The final set of three discriminant function analyses predicting the
LPA profiles included the cognitive measures as before (phonological
awareness, nonverbal intelligence, verbal intelligence, verbal working
memory, visuospatial working memory, rapid object naming, and
symbolic comparison) but also included the relevant teacher ratings for
each year (Year 1: reading, math; Year 2: reading, memory; see above).

All models were significant, F > 12.5, p < .001 (all cases), and are
summarized in Table 5. The percent of variance explained was some-
what higher compared to the models with the cognitive predictors only
(72–75% vs. 59–65%), although the percent of cases classified correctly
was only minimally improved (54–56% vs 50%). Teacher ratings of
reading loaded on the first function in all three models (i.e., eigenva-
lues > 1.8, all cases), and group centroids for this function were
markedly low in all models for profiles 1 (well below average) and 2
(below average), and relatively high for profiles 5 (average) and 6
(above average). Nevertheless, phonological awareness had high factor
loadings on significant functions in two of the models, and verbal
working memory (with or without verbal intelligence), in all three
models. These models also revealed associations with math-related
measures including symbolic comparison for the Within Year 1 model,
visuospatial working memory for the Year 2 model, and teacher ratings
of math for the Year 1 cognitive/rating measures predicting Year 2
profile membership model. Notably, group centroids were low for
profile 4 (math weakness) on the function including symbolic com-
parison (function 2) in the Within Year 1 model. For the Within Year 2
and Year 1-to-2 models, the visuospatial and teacher ratings of math
group centroids were markedly low and relatively low for profile 1
(well below average), respectively. Interestingly, group centroids for
the two models including phonological awareness in significant func-
tions did not vary widely (Year 1: −0.3 to 0.4; Year 2: −0.8 to 0.5),
with the most notable difference being for profile 4 (math weakness) in
the Year 1-to-2 model.

To further investigate the classification accuracy of these models,
classification statistics for each profile were examined. For all models,
classification accuracy varied considerably across profiles with profiles
2 (below average) and 5 (average) being most consistently classified:

Table 3
Probability (p) of Year 2 profile given Year 1 profile, and corresponding actual class sizes (n).

Year 2 Profile → 1 2 3 4 5 6 Total n (Year 1)

Year 1 Profile ↓ p n p n p n p n p n p n

1. Well below average 0.86 12 0.13 2 – 0 – 0 – 0 – 0 14
2. Below average – 0 1.00 39 – 0 – 0 – 0 – 0 39
3. Relative reading efficiency weakness – 0 0.03 1 0.89 72 – 0 0.08 2 – 0 75
4. Relative math weakness – 0 – 0 0.10 2 0.90 31 – 0 – 0 33
5. Average – 0 – 0 0.03 1 0.05 4 0.89 114 0.04 3 122
6. Above average – 0 – 0 – 0 – 0 0.01 0 0.99 44 44
Total n (Year 2) 12 42 75 35 116 47

Note: A double-dash (–) indicates a highly unlikely Year 1-Year 2 profile combination (p < .005).

Table 4
Discriminant function models for Year 1 and 2 cognitive measures predicting respective learning profile (within year), and for Year 1 cognitive measures predicting 2
learning profile.

Within Year 1 Within Year 2 Year 1 predicting Year 2

Data year for cognitive predictors Year 1 Year 2 Year 1
Data year for profile membership Year 1 Year 2 Year 2
% variance explained 59% 65% 59%
% cases correctly classified 49.8% 49.5% 48.0%
# significant functions (eigenvalues) 2 (1.24; 0.07) 2 (1.64; 0.06) 2 (1.24; 0.07)

Measures relevant to each functiona Phonological awareness Verbal WM Verbal intelligence Verbal WM Phonological awareness Verbal WM

Function centroidsb for each profile
1. Well below average −1.7 −0.6 −0.8 −1.2 −1.9 −0.6
2. Below average −1.2 −1.4 −1.3 −1.2 −1.2 −1.4
3. Reading efficiency weakness −0.4 −0.2 −0.3 −0.3 −0.3 −0.3
4. Math weakness 0.1 −0.3 −0.5 −0.3 0.1 −0.1
5. Average 0.3 0.4 0.5 0.5 0.3 0.4
6. Above average 1.1 0.7 0.8 0.8 1.0 0.7

a Relevant measures were considered those with factors loadings > 0.4 (moderate-to-high) on significant functions; WM = working memory.
b Function centroids are based on discriminant functions scores (M = 0, SD = 1.0).
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Profile 1 (well below average), 10–25%; Profile 2 (below average),
62–74%; Profile 3 (reading efficiency weakness), 48–59%; Profile 4
(math weakness), 26–35%; Profile 5 (average), 77–82%; Profile 6
(above average), 30–42%. Notable classification errors included the
classification of Profile 1 as Profile 2 or 3, Profile 2 as Profile 3, and
Profile 6 as Profile 5. Classification errors for Profiles 3, 4, and 5 tended
to be more broadly distributed.

4. Discussion

In a subset of 327 children from our original large epidemiological
sample of 6- to 9-year-olds (Archibald et al., 2013), we used a data-
driven approach to classify children into one of six learning profiles,
based on performance on language, reading, and math measures. The
profiles were consistent with our previous report based on a cluster
analysis, but in the present study, were based on two data points
spanning a 1-year period and including at least two measures esti-
mating the relevant constructs.

The identified learning profiles largely reflected a gradation in se-
verity from well below to well above average. Four profiles (Profiles 1,
well below average; 2, below average; 5, average; 6, well above
average) had generally similar performance across the domains of
language, reading, and math, and constituted 67% of the entire sample
(see also, Moll, Kunze, Neuhoff, Bruder, & Schulte-Körne, 2014). Two
other average performing profiles were characterized as having a re-
latively specific weakness in reading efficiency (Profile 3) or math
(Profile 4). The profiles were markedly stable with 95% of participants
remaining in the same learning profiles across data years. Profile dis-
crimination based on a range of cognitive measures accounted for only
59–65% of variance in the data, and correctly classified about 50% of
cases. When teacher ratings that were significant predictors for each
data year (Year 1: reading, math; Year 2: reading, memory) were added
to the model, discriminant functions explained 72–75% of variance in
the data and correctly classified about 55% of cases. For both predictors
of profile membership within the year of testing or in the year fol-
lowing, teacher ratings of reading explained the most variance. Pho-
nological awareness, verbal working memory, and verbal intelligence
were significant cognitive predictors regardless of whether or not tea-
cher ratings were included in the model, however, the association with
some cognitive predictors (symbolic comparison; visuospatial working
memory) was only revealed in the models including teaching ratings.
Teacher ratings of math at Year 1 was a significant predictor of profile
membership at Year 2. None of the remaining measures significantly
predicted profile membership (nonverbal intelligence, rapid object
naming, maternal education, or teacher ratings of attention, expressive
language, and social interaction).

With regards to the first aim of our study, the presented findings
identified a set of highly stable and consistent learning profiles related
to language, reading, and math over a 1-year period. Although coherent
with our previous work, Archibald et al. (2013) included only four
measures of the three learning constructs and employed a cluster ana-
lysis, which aims for clusters of roughly equal size. The current results
included a minimum of two measures per construct and employed a
latent profile analysis, which can provide a better estimate of the re-
lative profile size for the six profiles identified. Although all of the
profiles were distinguished from each of the other profiles by at least
two of the language, reading, or math measures, the most striking
pattern evident was a gradation in severity across profiles. It must be
acknowledged that these profiles are unlikely to represent discrete
groups but rather dimensional differences. This suggestion is strength-
ened by our Latent Profile Analysis, which did not point to a single
solution but rather showed similar indices across models with 6, 7, and
8 classes.

Somewhat surprisingly, there was remarkable consistency with
which participants were classified to the six learning profiles over the
one year of the current study. Some previous studies have shown

reasonable longitudinal concordance for the presence or absence of
impairments at least in the areas of language (Tomblin et al., 2003) or
reading (Peterson et al., 2015) if not math (Mazzocco & Myers, 2003);
however, stability within subtypes has not been found to be better than
fair in the few studies providing such data (Conti-Ramsden & Botting,
1999; Peterson et al., 2015; Silver, Pennett, Black, Fair, & Balise, 1999).
Our finding for a broad range of abilities across the domains of lan-
guage, reading, and math is important because it suggests that ex-
amining learning across domains (rather than the more common focus
on specific disorders) could identify stable profiles of learning strengths
and weaknesses across domains.

It is interesting to consider how the observed profiles map onto the
characteristics described for developmental language disorder (DLD,
also known as specific language impairment), dyslexia, and dyscalculia.
There is a clear correspondence between our relatively specific profiles,
Profile 3 (relative weakness in reading efficiency) and Profile 4 (relative
weakness in math), and dyslexia and dyscalculia, respectively.
Although the sample proportions for Profiles 3 (20%) and 4 (10%) are
higher than prevalence reports of dyslexia (5–17%; Shaywitz &
Shaywitz, 2003) and dyscalculia (3–6%; Shalev, Auerbach, Manor, &
Gross-Tsur, 2000), it must be recalled that Profiles 3 and 4 included
many children who did not score in the disordered range on relevant
measures and would not qualify for a diagnosis of dyslexia or dyscal-
culia (despite relative weaknesses). Importantly, these profiles emerged
much more clearly in the current study compared to our previous study
(Archibald et al., 2013), which again suggests that examining learning
broadly may be important to understanding learning profiles and
learning disorders.

There was no indication of a profile with a relatively specific
weakness in language skills. Although our Archibald et al. (2013)
identified a cluster with low scores on our sentence recall measure, the
corresponding profile in the present study showed a flat performance
across measures (profile 2). Nevertheless, the absence of a relatively
specific profile of language impairment is not entirely surprising. As has
been observed by other researchers and consistent with our own find-
ings, children with specific impairments in oral language only are re-
latively rare and may be the exception rather than the rule (Reilly et al.,
2014). In the case of DLD, it is much more likely that affected children
would have academic difficulties commensurate with their language
impairments, which would be entirely consistent with our profiles 1
and 2 (well below average and below average across domains).

The observation of relatively specific learning weaknesses at least
for reading efficiency (Profile 3) and math (Profile 4), but generally low
learning when language is low is important. It could be argued that
language learning is fundamentally different from learning to read or
do math. Oral language is learned largely implicitly, whereas reading
and math are taught explicitly at school. As well, oral language may be
considered another cognitive process that supports the learning of both
reading (Hitch, Halliday, Schaafstal, & Schraagen, 1988; NICHD Early
Child Care Research Network, 2005) and math (Hitch et al., 1988;
Mercer & Sams, 2006). In the present study, we considered language,
reading, and math as separate domains of learning given our interest in
investigating subtypes related to commonly reported disorders in each
of these areas (DLD; dyslexia; dyscalculia). This approach, however, did
not allow us to investigate directly the extent to which oral language
skills support reading and math. Nevertheless, our findings of relatively
specific weakness profiles for reading and math but generally (well)
below average profiles when language is weak suggests that it may be
possible to distinguish learning profiles either related to oral language
constraints or not.

In order to address our second goal, we explored the utility of a
series of cognitive measures (only) to discriminate among the observed
learning profiles in the present study. In keeping with previous reports
(language: van Daal et al., 2009; reading: Ruffing et al., 2015; math:
Geary, Bailey, & Hoard, 2009), these models explained 59–65% of the
variance in language, reading, and math scores but accurately classified
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no > 50% of cases. One reason cognitive measures may be weak pre-
dictors of performance on learning tests is that current behavioral tasks
only indirectly measure cognitive abilities. Take, for example, concerns
regarding the reliability and validity of the multiple tasks considered to
measure executive functions (Chan, Shum, Toulopoulou, & Chen,
2008). Given that these indirect measures only imperfectly estimate
cognitive constructs, it is likely that the role of cognitive processes is
underestimated in models assessing predictors of learning. Of course,
another explanation is that we failed to, and are indeed unable to,
measure all cognitive processes potentially important to learning.

When teacher ratings were included with cognitive measures in the
present work, considerably more variance was explained in the model
discriminating our six learning profiles (an increase from approximately
60 to 75%), and classification accuracy was modestly increased (from
50 to 55% of cases correctly classified). As with previous findings (e.g.,
Kim, Lambert, & Burts, 2013), these results suggest that teacher ratings
are useful in discriminating children's learning patterns including rat-
ings of both academic (i.e., reading, math) and cognitive (memory)
skills. Importantly, teacher ratings provided ‘added value’ beyond
cognitive measures in discriminating the learning profiles. Further re-
search is needed to understand how to best measure teacher ratings and
factors contributing to ratings of children's learning.

An important aspect of the longitudinal design of our study was the
ability to examine cognitive predictors of learning profiles over time. At
Year 1, a mixed factor discriminated learning profiles comprised of
verbal working memory, verbal intelligence, and symbolic comparison
(and also, visuospatial working memory, to some extent), whereas the
corresponding factor in the follow up data was dependent on verbal
working memory skills only. The finding of a mixed factor at the early
time point only might reflect the importance of multiple cognitive
processes in supporting early learning, in particular. As well, the sig-
nificance of verbal working memory in all of these models suggests that
the facility to retain and manipulate verbal stimuli is an ability that
discriminates learning profiles.

Year 1 phonological awareness was important in discriminating
learning profiles. Of course, phonological awareness in young children
has long been recognized as a significant predictor of later reading
outcomes (Hogan, Catts, & Little, 2005). The predictive power of pho-
nological awareness, however, has been found to diminish in older
learners (Hogan et al., 2005), a finding entirely consistent with the
present observation of negligible contributions of phonological aware-
ness to discriminating learning profiles in our follow-up data specifi-
cally. Interestingly, phonological awareness and teacher ratings of
reading loaded on separate functions in respective analyses. This
finding suggests that teachers were sensitive to factors beyond phono-
logical/decoding skills in making judgements about reading. Surpris-
ingly, rapid automatic naming was not retained in the discriminatory
functions reported in the present analyses. This result is difficult to
reconcile with previous reports demonstrating at least partially in-
dependent influences of phonological awareness and rapid automatic
naming on reading (Wolf & Bowers, 1999). It must be acknowledged,
however, that we measured rapid automatic naming at only one time
point in the present study (Year 1) and with only one measure.

Magnitude comparison for symbolic stimuli contributed to the dis-
crimination of learning profiles, at least at the initial testing point, a
finding consistent with previous reports of a unique association be-
tween symbolic comparison and math skills (Nosworthy et al., 2013).
Symbolic comparison and visuospatial working memory showed an
interesting relationship in the present study: These processes loaded on
the same discriminatory factor at both data time points but only sym-
bolic comparison was a significant component at Year 1 and only vi-
suospatial working memory at Year 2. Interestingly, visuospatial
working memory has been found to be associated with math outcomes
in addition to symbolic comparison (Mazzocco & Myers, 2003). The
present findings suggest that these two measures, symbolic comparison
and visuospatial working memory, may share some explanatory power

in discriminating learning profiles with symbolic comparison more
sensitive to patterns in younger learners and visuospatial working
memory more sensitive to older learners. It may be, too, that the vi-
suospatial working memory measures in the present study captured
more variance in our older learners.

It is of interest that none of our discriminatory function analyses
included nonverbal intelligence or maternal education as making a
significant contribution to the model. The finding for nonverbal in-
telligence belies years of debate centering on the discrepancy model
limiting diagnoses of learning disabilities to those with a gap between
potential as measured by intelligence (IQ) and achievement as reflected
in reading or math test scores (Restori, Katz, & Lee, 2009). There is now
considerable consensus on eliminating this discrepancy model (Bishop
et al., 2017), as would follow from the present results. In fact, the Di-
agnostic and Statistical Manual of Mental Disorders (DSM-5; American
Psychological Association, 2013) does not include an IQ-achievement
discrepancy in the diagnosis of learning disability. The finding that
maternal education did not significantly predict learning profile in our
study was surprising, but may be related to the reduced variability in
our sample (65% reported post high school levels of education).

The current results do demonstrate that multiple cognitive measures
related to language (verbal working memory), reading (phonological
awareness, teacher rating of reading), and math (symbolic comparison,
visuospatial working memory) may be necessary to understand me-
chanisms influencing learning profiles characteristic of 6–9-year-old
children with a range of abilities in oral language, reading, and math.
This suggestion is consistent with findings from a study examining
neural systems in learning disabilities (Nicolson & Fawcett, 2007).
These researchers argued for an approach that moved from a broad to
narrow focus in order to allow identification of both affected circuits
and affected components within circuits. Secondary symptoms were
considered to have important diagnostic significance for meeting the
challenge of differentiating and diagnosing specific developmental
disorders with overlapping symptoms.

The clinical implications of the current study relate to the im-
portance of considering a child's learning across domains. Considering
learning in language, reading, and math may provide a better under-
standing of a child's learning characteristics than examining any one
domain on its own. The findings provide relatively little support for the
measurement of cognitive processes to aid in identification of learning
profile, with the exception of phonological awareness and especially in
the early grades. The relative strength of teacher ratings of reading
observed in the present study is interesting. These were quick judg-
ments made on a 3-point scale, and they explained more variance then
any of the cognitive measures. It seemed that the teacher ratings were
explaining variance in addition to that of the strongest cognitive mea-
sures (i.e., phonological awareness; verbal working memory). Perhaps
teacher global ratings more accurately bundle all skills important to a
learning domain than any single skill measure can achieve. These
suggestions are consistent with findings that parent-report and perfor-
mance-based measures of executive functions assess different constructs
(Ten Eycke & Dewey, 2016). Further the findings call for further eva-
luation of the potential of teacher ratings in identifying children's
learning profiles.

5. Conclusions

In a sample of 327 children ages 6 to 9 years representing a range of
abilities in oral language, reading, and math followed over a 1-year
period, we observed six learning profiles consistent with our previous
report on a larger sample including the present subset of participants
(Archibald et al., 2013). The profiles largely represented a severity
gradation of generally flat learning profiles, however, two relatively
specific profiles involving weaknesses in either reading efficiency or
math characterized about one third of the sample. Profile membership
was remarkably consistent over the one year of this study. Cognitive
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measures and teacher ratings were sufficient to accurately classify just
over half of the participants either at the time of testing, or in predicting
profile in the following year. Teacher ratings of reading were particu-
larly important in discriminating learning profiles. Cognitive measures
related to oral language (verbal working memory, verbal intelligence),
reading (phonological awareness), and math (symbolic comparison,
visuospatial working memory) were also important contributors to
discriminating groups. Indicators of developmental differences across
the one year studied in the present work include the importance of
multiple cognitive measures, phonological awareness and symbolic
comparison in the time 1 discriminatory function, and verbal and vi-
suospatial working memory in the time 2 discriminatory function. The
present results demonstrate the utility of examining learning patterns
across domains, abilities, and time to investigate stable and consistent
learning profiles. The findings have important implications for con-
ceptualizing learning profiles across domains and the associated cog-
nitive processes.
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