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ABSTRACT.  Relativistic quantum field theories (RQFTs) are invariant under the action of the Poincaré
group, the symmetry group of Minkowski spacetime.  Non-relativistic quantum field theories (NQFTs) are
invariant under the action of the symmetry group of a classical spacetime; i.e., a spacetime that
minimally admits absolute spatial and temporal metrics.  This essay is concerned with cashing out two
implications of this basic difference.  First, under a Received View, RQFTs do not admit particle
interpretations.  I will argue that the concept of particle that informs this view is motivated by non-
relativistic intuitions associated with the structure of classical spacetimes, and hence should be
abandoned.  Second, the relations between RQFTs and NQFTs also suggest that routes to quantum
gravity are more varied than is typically acknowledged.  The second half of this essay is concerned with
mapping out some of this conceptual space.

1. Introduction
2. NQFTs and Particles
3. Newtonian Quantum Gravity
4. Intertheoretic Relations
5. Conclusion

1. Introduction
The comparison of Minkowski spacetime with classical (i.e., non-relativistic) spacetimes
has been fruitful in contemporary philosophy of spacetime in debates over the
ontological nature of space and time (see, e.g., Earman 1989, Chapter 2).  In this essay,
I extend this type of analysis to debates in the philosophy of quantum field theory.  In
particular, the distinction between Minkowski spacetime and classical spacetimes allows
one to make a corresponding distinction between relativistic quantum field theories
(RQFTs) and non-relativistic quantum field theories (NQFTs).  This latter distinction
is subsequently helpful, or so I shall argue, in clarifying the debate over whether or not
RQFTs admit particle interpretations, and in investigating the conceptual space of
possible extentions of RQFTs to include gravity.

Section 2 distinguishes between RQFTs and NQFTs in terms of the distinction between
Minkowski spacetime and classical spacetimes.  This distinction is then applied to an
on-going debate over the ontology of QFTs.  According to a Received View in this
debate, RQFTs do not admit particle interpretations (Arageorgis, et al. 2003; Fraser
2008; Halvorson and Clifton 2002).  This view takes the existence of local number
operators and a unique total number operator in the formulation of a QFT as necessary
conditions for a particle interpretation of the theory.  Given that formulations of
RQFTs do not admit such objects, the Received View concludes that RQFTs cannot be
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given particle interpretations.  I will argue that the existence of local and unique total
number operators in a QFT requires the absolute temporal structure of a classical
spacetime.  Thus the Received View's concept of particle appears to be motivated by a
non-relativistic concept of absolute time.  The moral I draw is that the Received View's
concept of particle is inappropriate for RQFTs.

No RQFT currently exists that consistently incorporates gravity.  Section 3 reviews an
example of an NQFT that does:  Christian's (1997) Newtonian Quantum Gravity
(NQG).  NQG is an NQFT in (a version of) Newton-Cartan spacetime, the latter being
an example of a curved classical spacetime.  Part of the spacetime structure of NQG is
dynamic and quantized, and its symmetry group is an extension of the non-relativistic
Maxwell group.  The latter entails that NQG is not plagued by the family of conceptual
problems associated with unitarily inequivalent representations of the canonical (anti-)
commutation relations, as are QFTs in curved Lorentzian spacetimes (Ruetsche 2002).
In particular both local number operators and a unique total number operator are
present in NQG, again due to the absolute temporal structure of classical spacetimes.

Using NQG as motivation, Section 4 undertakes the task of relating NQFTs, both in the
presence and the absence of gravity, to RQFTs and to other theories, both of particles
and fields, classical and quantum, in the presence and the absence of gravity.  What
emerges is a tentative map of the relations between some of the fundamental theories in
physics, including the as-yet-to-be formulated, fully relativistic quantum theory of
gravity (QG).

2. NQFTs and Particles
By an RQFT I will mean a quantum field theory invariant under the actions of the
Poincaré group, the symmetry group of Minkowski spacetime.  By an NQFT, I will
mean a quantum field theory invariant under the actions of the symmetry group of a
classical spacetime.  Section 2.1 reviews the distinction between classical spacetimes and
Minkowski spacetime.  Section 2.2 indicates the significance this distinction has for the
debate over particle interpretations of QFTs.

2.1.  Classical Spacetimes vs. Minkowski Spacetime
Minkowski spacetime can be represented by a pair (M, ηab), where M is a smooth 4-dim
differentiable manifold and ηab is a (−1, 1, 1, 1) symmetric tensor field on M, the
Minkowski metric, satisfying the compatibility condition ∇aηab = 0, for the derivative
operator ∇a associated with the connection on M.  This condition determines a unique
curvature tensor Ra

bcd, which vanishes, encoding spatiotemporal flatness.  The isometry
group of Minkowski spacetime, the Poincaré group, is generated by vector fields that Lie
annihilate the Minkowski metric.  Symbolically, we require £xη

ab = 0, where £x is the Lie
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derivative associated with xa.  Intuitively, this means that the transformations between
reference frames defined by the integral curves of the vector field xa preserve the
structure of the Minkowski metric.  This structure famously entails that there is no
unique way to separate time from space in Minkowski spacetime:  any two observers
moving inertially with respect to each other will disagree on the time interval between
any two events, and on the spatial interval between any two events.  In coordinate
form, elements of the Poincaré group may be represented by transformations

xµ → xµ' = Λµνx
ν + dµ (Poincaré) (1)

where Λµν ∈ SL(2, C) is a pure Lorentz boost and dµ ∈ R4 is a spacetime translation.

In comparison, a classical spacetime is a spacetime that minimally admits absolute
spatial and temporal metrics.  More precisely, a classical spacetime may be represented
by a tuple (M, hab, ta, ∇a), where M is a differentiable manifold, hab is a (0, 1, 1, 1)
symmetric tensor field on M identified as a spatial metric, ta is a covariant vector field
on M which induces a (1, 0, 0, 0) temporal metric tab = tatb, and ∇a is a derivative
operator associated with a (non-unique) connection on M and compatible with the
metrics in the sense ∇ch

ab = ∇atb = 0.  The spatial and temporal metrics are also
required to be orthogonal in the sense habtb = 0.  These conditions allow M to be
decomposed into instantaneous three-dimensional spacelike hypersurfaces parameterized
by a global time function.  The most general classical spacetime symmetry group is
generated by vector fields xa that Lie annihilate hab and ta.  Symbolically, we require
£xh

ab = £xta = 0, and again, this means that the transformations between reference
frames defined by the integral curves of the vector fields xa preserve the structure of the
absolute spatial and temporal metrics.  This entails that in any classical spacetime,
there is always a unique way to separate time from space:  any two observers moving
inertially with respect to each other will always agree on the time interval between any
two events, and on the spatial interval between any two simultaneous events.  In this
sense, space and time are absolute in a classical spacetime.

On the other hand, the compatibility conditions in a classical spacetime do not
determine a unique curvature tensor.  Additional constraints on the curvature may be
imposed, and such constraints define different types of classical spacetimes.  Two
examples include Neo-Newtonian spacetime, characterized by Ra

bcd = 0, encoding
spatiotemporal flatness; and Maxwellian spacetime, characterized by Rab

cd = 0, encoding
a rotation standard (Bain 2004, pp. 348-352).  The symmetries of Neo-Newtonian
spacetime form the 10-parameter Galilei group (Gal) generated by vector fields xa that
Lie annihilate the spatial and temporal metrics, and the connection.  Symbolically, £xh

ab

= £xta = £xΓ
a
bc = 0 (where Γa

bc is the connection defined by ∇a), and in coordinate form,
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x → x' = Rx + vt + a (Gal) (2)
t → t' = t + b

where R is a constant orthogonal rotation matrix, v, a ∈ R3 are velocity boost and

spatial translation vectors, and b ∈ R is a time translation.  The symmetries of
Maxwellian spacetime are given by the infinite dimensional Maxwell group (Max)
generated by vector fields xa that Lie annihilate the spatial and temporal metrics and
the rotational part of the connection.  Symbolically, £xh

ab = £xta = £xΓ
ab

c = 0 (where Γab
c

= hbdΓa
bc).  In coordinate form,

x → x' = Rx + c(t) (Max) (3)
t → t' = t + b

where R is a constant orthogonal rotation matrix, c(t) ∈ R3 is a time-dependent spatial

boost vector, and b ∈ R is a time translation.  A quick and dirty distinction between
Neo-Newtonian and Maxwellian spacetime can be given in terms of the way the absolute
spatial slices are "rigged":  In Neo-Newtonian spacetime, the rigging consists of "straight"
trajectories, whereas in Maxwellian spacetime, it consists of "straight" and "curved"
trajectories.  More precisely, a Neo-Newtonian connection can distinguish between a
straight and a curved trajectory, whereas a Maxwellian connection cannot.  Both
connections can, however, distinguish between straight and curved trajectories on the
one hand, and "corkscrew" trajectories on the other; i.e., in both spacetimes, there is an
absolute standard of rotation.

Now, just as there can be different types of classical spacetimes, there can be different
types of NQFTs.  A GQFT (Galilei-invariant Quantum Field Theory), for instance, is
an NQFT invariant under Gal (Lévy-Leblond 1967), while an MQFT (Maxwell-
invariant Quantum Field Theory) is an NQFT invariant under Max.  A slight variant of
the latter is Christian's (1997) Newtonian quantum gravity reviewed in Section 3 below.

2.2.  Particle Interpretations
According to a Received View (Arageorgis, et al. 2003; Fraser 2008; Halvorson and
Clifton 2002), in order to admit a particle interpretation, a QFT must satisfy the
following two conditions.

(a) The QFT must admit a Fock space formulation in which local number operators
appear that can be interpreted as acting on a state of the system associated with a
bounded region of spacetime and returning the number of particles in that region.
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(b) The QFT must admit a unique Fock space formulation in which a total number
operator appears that can be interpreted as acting on a state of the system and
returning the total number of particles in that state.

Condition (a) is supposed to encode the essential particle characteristic of localizability:
For a system of particles distributed over various regions of space, an adequate theory
must be able to identify the number of particles located in each region.1  Condition (b)
is supposed to encode the essential particle characteristic of countability:  For a system
of particles distributed over various regions of space, an adequate theory must be able
to identify a unique value for the total number of particles, counted over all regions.
(Schematically, one would hope that a unique total number operator could be defined as
the sum over all regions of spacetime of local number operators.)

One can now demonstrate that Conditions (a) and (b) fail in RQFTs.  The Received
View concludes that RQFTs do not admit particle interpretations.  However, it can also
be shown that Conditions (a) and (b) hold in NQFTs precisely because of the existence
of an absolute temporal metric in classical spacetimes.  The moral I draw is that
Conditions (a) and (b) are motivated by a non-relativistic notion of time, and hence are
inappropriate in the relativistic context.  What should be offered in their place as
conditions of adequacy for particle interpretations in the relativistic context is best left
to another essay.  The remainder of this section attempts to substantiate the moral.

Particles in RQFTs?
It is a fairly simple matter to demonstrate that RQFTs fail to satisfy Conditions (a) and
(b).  In general, Condition (b) is made problematic by the existence of unitarily
inequivalent Fock space representations of the canonical (anti-) commutation relations
(CCRs) of an RQFT.2  To the extent that unitary equivalence is necessary for physical
equivalence, this suggests that any given RQFT admits (uncountably) many different
ways to parse particle talk, one for every unitary equivalence class of Fock space
representations and their attendant total number operator.  One is faced with a problem
of which representation to privilege (Reutsche 2002, pg. 359).  This Problem of Privilege
may appear to be solved in Minkowski spacetime by appeal to the time-like isometry
subgroup of the Poincaré group.  Intuitively, the time-like symmetries of Minkowski
spacetime provide one with a way to "split" the frequencies of solutions to relativistic
field equations, and thereby construct a one-particle state space on which a Fock space

                                      
1 This follows the intuitions of Halvorson and Clifton (2002, pp. 17-18).  This aspect of the Received View
should thus be made distinct from concepts of localized particles that require the existence of position
operators and/or localized states.
2 This is due to the failure of the Stone-von Neumann theorem for theories with infinite degrees of
freedom.
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representation can then be built.  One can then show that this method of constructing a
Fock space representation is unique up to unitary equivalence.

This is made rigorous by a result due to Kay (1979).  Let (S, σ, Dt) be a classical phase
space, where S is the space of (well-behaved) solutions to a field equation, σ is a
symplectic form on S, and Dt : S → S is a one-parameter group of linear maps that
preserves σ and represents the evolution of the classical system in time.  A one-particle
structure over (S, σ, Dt) is a pair (H, Ut), where H is a Hilbert space and Ut is a weakly
continuous one-parameter group of unitary operators on H with positive energy3, such
that there is a 1-1 real linear map K : S → H with the following properties:  (i) The
(complex) range of K is dense in H; (ii) 2Im〈Kf, Kg〉 = σ(f, g) for all f, g ∈ S, where 〈,〉
is the inner product on H; and (iii) DtK = KUt.  Kay (1979) proves that a one-particle
structure associated with the classical Klein-Gordon field is unique up to unitary
equivalence (similar results hold for the Dirac field).  Thus, as Halvorson (2001, pg. 114)
states, "... the choice of time evolution in the classical phase space suffices to determine
uniquely the (first) quantization of the classical system."

However, if there is more than one choice of classical time evolution, there will be more
than one choice of one-particle structure, and hence more than one unitary equivalence
class of Fock space representations.  Indeed, this occurs for classical fields defined over a
portion of Minkowski spacetime referred to as the right Rindler wedge.  The time-like
isometry subgroup of the Poincaré group restricted to this portion admits two distinct
time-like Killing vector fields, one associated with inertial reference frames and the other
with accelerated frames.  This gives rise to two unitarily inequivalent Fock space
representations, the standard Minkowski representation, and the Rindler representation.
This has suggested to some authors that inertial and accelerating observers will disagree
over the particle content of an RQFT in Minkowski spacetime (see, e.g., Wald 1994,
Chapter 5).  To such authors, then, the Problem of Privilege is not solved simply by
appealing to Minkowski spacetime structure.4

Now suppose the Problem of Privilege could be solved to the satisfaction of all for non-
interacting RQFTs in Minkowski spacetime.  Haag's Theorem indicates that this would
provide cold comfort for particle physicists engaged in experiments with what they take
to be interacting particles.  Under a reasonable assumption, Haag's Theorem entails that

                                      
3 Such a Ut can be written Ut = eitH for H a positive operator.
4 Arageorgis et al. (2003, pp. 180-181) argue that the Rindler representation is unphysical and hence,
implicitly, that there is no Problem of Privilege for physical Fock space representations, appropriately
construed, in Minkowski spacetime.  They effectively argue that the time-like Killing vector field
associated with accelerated frames in the right Rindler wedge should not count as a global way to "split
the frequencies", in so far as it is not extendible to Minkowski spacetime as a whole.
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representations of the CCRs for both a non-interacting and an interacting RQFT cannot
be constructed so that they are unitarily equivalent at a given time.5  Provided, again,
that unitary equivalence is a necessary condition for physical equivalence, this suggests
that an interacting RQFT cannot be interpreted as consisting of a system of initially
non-interacting particles that interact over a finite period of time, and then separate
back into non-interacting states; a typical scenario for scattering experiments.  More
precisely, Haag's Theorem suggests that a Fock space representation of the CCRs of a
non-interacting RQFT cannot be used to represent particle states in an interacting
RQFT.  One might then wonder if particle states might be represented more directly in
an interacting RQFT by constructing an explicit Fock space representation of its CCRs,
as opposed to piggy-backing on non-interacting representations.  However, it is unclear
if such a Fock space representation of the CCRs for an interacting RQFT is
constructible (Fraser 2008).6

Thus is Condition (b) foiled in RQFTs, both non-interacting and interacting.  Condition
(a) is foiled in RQFTs by the consequences of the Reeh-Schlieder theorem.  Briefly, the
Reeh-Schlieder theorem entails that the vacuum state is separating for any local algebra
of operators defined by an RQFT (Streater and Wightman 2000, pg. 138).  This means
that, given any bounded region of Minkowski spacetime, and any operator associated
with that region (in the sense of being an element of the corresponding local operator
algebra), if the operator annihilates the vacuum state, then it is identically zero.  Now
the annihilation operators that appear in Fock space formulations of QFTs are defined
to annihilate the vacuum state and act non-trivially on other states.  Thus separability
of the vacuum state of an RQFT entails that there can be no annihilation operator
associated with a bounded region of Minkowski spacetime; hence there can be no
number operator associated with a bounded region of Minkowski spacetime.  Thus
"local" number operators in the sense of Condition (a) do not exist in RQFTs.

Particles in NQFTs?
In NQFTs, both free and interacting, Conditions (a) and (b) are satisfied, and one can
argue that this is due to the presence of an absolute temporal metric in classical
spacetimes.  Consider Condition (b) first.  What would guarantee uniqueness of a Fock
space representation of the CCRs for a QFT is the presence of a unique global time
function on the associated spacetime.  This would provide a unique (up to unitary
equivalence) means to construct a one-particle structure over the classical phase space.
                                      
5 See, e.g., Earman and Fraser (2006, pg. 313).  The reasonable assumption is that the representations
admit unique Euclidean-invariant vacuum states.  This assumption can be dropped by inserting a cut-off
into the interacting RQFT and renormalizing the fields, but such tactics open up the host of conceptual
problems afflicting renormalized field theories.
6 Some authors have taken the moral of Haag's Theorem to be that (irreducible) representations of the
CCRs are inappropriate for interacting RQFTs (Streater and Wightman 2000, pg. 101).
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And such a unique global time function is only guaranteed in those spacetimes that
admit an absolute temporal metric.  To see this, note that the compatibility condition,
∇atb = 0, on the temporal metric of a classical spacetime entails ta is closed, and thus
locally exact.  If M is topologically well-behaved (if, for instance, it is simply connected),
then ta is globally exact, and there exists a unique globally defined time function t :  M
→ R satisfying ta = ∇at.  On the other hand, suppose there exists a unique global time

function t :  M → R.  Then a temporal metric tab compatible with a connection ∇a can
be defined by tab = (∇at)(∇bt).

Thus there is no Problem of Privilege for non-interacting NQFTs.  One can further
demonstrate that Haag's theorem does not make trouble for interacting NQFTs, either.
Haag's theorem entails the following necessary condition for the existence of an
interacting quantum field unitarily equivalent to a free field:  Either the interaction
polarizes the vacuum7 or Poincaré-invariance does not hold (Bain preprint).  For non-
relativistic quantum fields, the presence of an absolute temporal metric guarantees both
the failure of Poincaré invariance and the failure of vacuum polarization.  To see the
latter, consider an interacting Hamiltonian H = Hfree + Hint.  Any representation of the
symmetry group of a classical spacetime in which the time-translation generator is
encoded in H will be unitarily equivalent (in the sense of satisfying the same
commutation relations) to a representation in which the time-translation generator is
encoded in Hfree, provided that Hint is invariant under the group action.  Thus if Hfree

annihilates the vacuum state, so will H.  This does not hold true for the Lorentz group.8

An absolute temporal metric is also sufficient for Condition (a).  While a version of the
Reeh-Schlieder theorem can be proven in the NQFT context (Requart 1982), it does not
entail that the NQFT vacuum state is separating.  Briefly, separability of the vacuum
state for a local algebra R(O) of operators associated with a region O of Minkowski
spacetime is derived under the assumptions of vacuum cyclicity for R(O) (guaranteed
by the Reeh-Schlieder theorem), relativistic local commutativity, and the existence of a
non-trivial causal complement of O.9  To extend this result to NQFTs, one must first

                                      
7 Vacuum polarization occurs when an interacting Hamiltonian fails to annihilate the vacuum state of the
free field.
8 Lévy-Leblond (1967, pp. 160-161) makes this comparison explicit for the particular case of the Galilei
group.  Due to the presence of an absolute temporal metric in Neo-Newtonian spacetime (and classical
spacetimes in general), the commutation relations that define the Galilei Lie algebra (and the Lie algebra
of any classical spacetime symmetry group in general) are such that the generator of time-translations is
independent of the other generators.  In the commutation relations that define the Lorentz Lie algebra,
the time-translation generator is mixed up with the other generators.
9 Streater and Wightman (2000, pg. 139).  Vacuum cyclicity for R(O) requires that for any operator A ∈
R(O), AΩ is dense in H, where Ω is the vacuum state.  Relativistic local commutativity requires that
local fields φ, ψ commute, [φ(f), ψ(g)] = 0, when the supports of the test functions f, g are spacelike
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replace relativistic local commutativity with its non-relativistic analogue.10  This entails
keeping track of the distinction between local algebras defined on spatial regions of
spacetime, and those defined on spatiotemporal regions.  Requardt's (1982) non-
relativistic Reeh-Schlieder theorem only holds for the latter; but, due to the presence of
an absolute temporal metric, spatiotemporal regions of classical spacetimes have trivial
causal complements, and hence is separability denied.11  On the other hand, the presence
of a temporal metric also guarantees that the domain of dependence for an open spatial
region S of a classical spacetimes is just S, and this ensures that the differential
operators that appear in the parabolic PDEs of NQFTs are not anti-local for such
spatial regions.12  This has the consequence that the vacuum is not cylic for algebras
associated with spatial regions, and thus is separability denied in this case, too.

3. Newtonian Quantum Gravity
While no RQFT currently exists that consistently incorporates gravity, Christian (1997)
has constructed an NQFT that does.  Not only is it an explicit example of an
interacting NQFT that satisfies Conditions (a) and (b) of the Received View's concept
of particle, it also is an instance of an NQFT in a curved classical spacetime.  As such,
it can be compared with QFTs in curved Lorentzian (i.e., relativistic) spacetimes.13

This comparison will suggest, in Section 4, ways of extending RQFTs to incorporate
gravity.  This section first reviews the distinction between two particular theories of
Newtonian gravity in flat and curved classical spacetimes, and then considers how
Christian quantizes a particular version of the latter.
                                                                                                                          
separated.  The causal complement of a region O of Minkowski spacetime consists of all points spacelike
separated from points in O.
10 Namely, [φ(f), ψ(g)] = 0, when the supports of the test functions f, g have zero temporal and non-zero
spatial separation (Lévy-Leblond 1967, pg. 164).
11 The causal complement of a spatiotemporal region of a classical spacetime may be identified with the
set of all points with zero temporal separation and non-zero spatial separation from points in the region.
This assumes a prohibition on infinite causal propagations, but allows that finite causal propagations have
no upper bound.
12 The domain of dependence D(O) of a region O of spacetime consists of points p for which any
inextendible causal worldline through p intersects O.  A differential operator is said to be anti-local for a
given region of spacetime just when a function and its transform under the operator can vanish in that
region only if the function is identically zero.  In classical spacetimes, for any open spatial region S, D(S)
has no temporal extent.  Thus if a solution φ to a well-posed PDE vanishes on S, it vanishes on D(S), but
this does not guarantee that it vanishes on an open set in time.  This blocks an inference to anti-locality
by means of the Edge of the Wedge Theorem.  One can further demonstrate that anti-locality of a
differential operator entails cyclicity of the associated vacuum state.  Segal and Goodman (1965)
demonstrated this for the case of the Klein-Gordon operator, and subsequent authors have extended their
results to cover operators associated with other relativistic field equations.
13 A Lorentzian spacetime is a pair (M, gµν), where M is a differentiable manifold and gµν is a metric
defined on M with signature (−1, 1, 1, 1).
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The standard way the theory of classical Newtonian gravity is formulated is as a field
theory set against the backdrop of flat Neo-Newtonian spacetime.  Models in this
formulation may be given by a 6-tuple (M, hab, ta, ∇a, φ, ρ), where (M, hab, ta, ∇a)
represents classical Neo-Newtonian spacetime, and φ and ρ are scalar fields on M that
represent a Newtonian potential field and a mass density, respectively.  These latter
objects are required to satisfy the Poisson equation, and an equation of motion:

hab∇a∇bφ = 4πGρ (Poisson equation) (4)

ξa∇aξ
b = −hab∇aφ (equation of motion) (5)

where G is the Newtonian gravitational constant, and ξa is a tangent vector field for a
timelike particle trajectory worldline that encodes its four-velocity.

One can also formulate Newtonian gravity by incorporating the gravitational potential
field into the spacetime connection, and such theories are referred to as theories of
Newton-Cartan gravity (NCG).  Models of NCG eliminate the Newtonian gravitational
potential, and may be given by (M, hab, ta, ∇a, ρ).  Here the objects (M, hab, ta, ∇a) still
represent a classical spacetime; in particular, the spatial and temporal metrics still
satisfy orthogonality and compatibility constraints, and additional constraints may still
be imposed on the curvature tensor defined by the derivative operator ∇a.  But the
Poisson equation (4) is now replaced with a generalized Poisson equation,  and the
equation of motion (5) is replaced with the geodesic equation:

Rab = 4πGρtatb (generalized Poisson equation) (6)

ξa∇aξ
b = 0 (equation of motion) (7)

where Rab is the Ricci tensor defined, ultimately, by the derivative operator ∇a.  These
changes enforce the principle of equivalence in NCG.  Intuitively, the Newton-Cartan
connection defined by (6) and (7) cannot distinguish "straight" inertial trajectories from
"curved" gravitationally accelerated trajectories.  In this sense, gravity is geometricized
in NCG.  Now there are different ways this geometrization procedure can be carried out,
depending on additional constraints one might impose on the curvature tensor.
Christian (1997) considers the following two constraints:

R[a
[b

c]
d] = 0 (8)

Rab
cd = 0 (9)
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Let "strong NCG" refer to the theory of NCG that, in addition to the compatibility and
orthogonality constraints of classical spacetimes, satisfies (6), (7), (8), (9), and call the
classical spacetime associated with it strong Newton-Cartan spacetime.  In strong
Newton-Cartan spacetime, as in all classical spacetimes, there is a global time function
that may be associated with absolute time, and there are globally defined spatial slices
that may be interpreted as absolute space at an instant.  And as with other examples of
curved classical spacetimes, what is "curved" is the way these spatial slices are rigged
together by the connection.  Recall in Maxwellian spacetime, the rigging is determined
by condition (9) above and consists of either "straight" or "curved" trajectories (a
Maxwellian connection cannot tell these apart), but not "cork-screw" trajectories (there
still is a standard of rotation).  In strong Newton-Cartan spacetime, "curved" rigging is
restricted to gravitationally accelerated trajectories, subject to the additional condition
(8).  More precisely, whereas the symmetries of Maxwellian spacetime are characterized
by the Maxwell group (3), those of strong Newton-Cartan spacetime are characterized
by an extension of the Maxwell group, and thus are slightly more constrained.14

Christian (1997) demonstrates that Conditions (8) and (9) are sufficient to recast strong
NCG as a constrained Hamiltonian system, and thus to quantize it.  The reduced phase
space (Christian 1997, pg. 4867) consists of variables encoding the matter degrees of
freedom, and variables that encode the dynamical degrees of freedom of the strong NCG
connection, which are identified as gravitational degrees of freedom.  The matter
variables are solutions to the Schrödinger equation in strong Newton-Cartan
spacetime.15  The connection variables take the form of extended Maxwell frames; i.e.,
rigid, non-rotating, gravitationally accelerating frames.  This phase space has a
nondegenerate symplectic structure, and a unique one-parameter family of time
evolution maps (due to the absolute temporal metric of strong Newton-Cartan
spacetime).  Hence it admits a unique one-particle structure, and thus a unique Fock
space representation of the CCRs.  The result is Christian's Newtonian Quantum
Theory of Gravity (NQG, hereafter), an interacting (extended) Maxwell-invariant QFT
set in strong Newton Cartan spacetime.

                                      
14 See, e.g., Bain (2004, pg. 372).
15 Christian (1997, pg. 4855) refers to this as the Schrödinger-Kuchar equation after Kuchar (1980), who
demonstrated that it can be quantized to produce a non-interacting Galilei-invariant NQFT in Strong
Newton-Cartan spacetime.  Christian's NQG is an extention of Kuchar's non-interacting theory to one in
which the quantized Schrödinger field interacts with a quantized strong Newton-Cartan connection field
(thus Christian's NQG is a fully interacting NQFT).  The key to this extention is Christian's construction
of a Lagrangian density that produces not just the Schrödinger-Kuchar equation, but also the field
equations of Strong NCG.  In particular, all Lagrangian densities associated with NCG prior to Christian
(1997) failed to recover the generalized Poisson equation (6).
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NQG is a concrete example of an interacting NQFT that satisfies the Received View's
necessary Conditions (a) and (b) for a particle interpretation.  It is also an interacting
NQFT that successfully incorporates gravity; in particular, the gravitational degrees of
freedom in NQG are both fully dynamical and fully quantized.  This is in start contrast
with attempts to incorporate gravity into RQFTs.  For instance, the fact that the NQG
gravitational degrees of freedom are fully dynamical distinguishes NQG from the
program of QFTs in curved Lorentzian spacetimes.  This program attempts to construct
RQFTS that incorporate gravity by treating it classically as a manifestation of the
curvature of spacetime.  This is done by breaking the dynamical link between spacetime
and matter forged in general relativity.  The curved Lorentzian spacetime in such an
RQFT is absolute in the sense that it has no dynamical degrees of freedom.  In NQG,
on the other hand, strong Newton-Cartan spacetime has quantized dynamical degrees of
freedom; namely, those associated with the quantized strong Newton-Cartan connection.
Intuitively, these quantized degrees of freedom are associated with the dynamical
"rigging" of the absolute spatial slices.  Moreover, as indicated above, NQG does not
face the Problem of Privilege in determining a Fock space representation of the CCRs:
the absolute temporal metric of strong Newton-Cartan spacetime decides the matter
uniquely up to unitary equivalence.  This is in contrast to QFTs in curved (Lorentzian)
spacetimes in which there is not even a guarantee that the spacetime will admit time-
like isometries in the first place.16

Finally, note that the fact that the NQG gravitational degrees of freedom are fully
quantized distinguishes NQG from semi-classical approaches to incorporating gravity
into RQFTs.  These approaches attempt to include dynamical degrees of freedom
associated with the gravitational field into an RQFT by replacing the stress-energy
tensor in the Einstein equations with its expectation value with respect to quantized
matter fields.  In such approaches, one treats gravity classically (the metric is not
quantized), but one quantizes the matter fields.

4. Intertheoretic Relations
NQG has suggested to Christian (1997, 2001) a novel route to formulating a fully
relativistic quantum theory of gravity (QG, hereafter); namely, by relativizing NQG.
This section reviews this strategy and expands on Christian's picture of intertheoretic

                                      
16 As Reutsche (2002, pg. 361) notes, one way practitioners have attempted to address this problem is by
becoming "algebraic imperialists" and elevating the status of the underlying abstract C*-algebra over
concrete Hilbert space realizations of it.  (Doing so provides one access to notions of "physical
equivalence" weaker than unitary equivalence.)  This strategy is adopted by Christian (1997, pg. 4870) as
a way of interpreting NQG, but this seems unnecessary, given that NQG does not face the problem of
privilege in the first place.
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relations associated with it.  In particular, the existence of NQFTs suggests
modifications to Christian's picture, which open up additional routes to QG.  Since a
full investigation of all such additional routes is beyond the scope of the current essay,
this section will content itself with an initial explorative expedition.

To begin, Christian (1997, pg. 4847; 2001, pg. 307) views NQG as a means to fill a void
in the "great dimensional monolith of physics".  This is a diagrammatic representation of
the relations between fundamental theories in physics.  It takes the form of a cube with
axes representing the Newtonian gravitational constant G, Planck's constant h, and the
inverse speed of light 1/c (see Figure 1).

c−1



G

CM GQM•

• •

•

•

• •

•

RQTFSR

GR

NQGNCG

QG

Figure 1.  Christian's (1997) dimensional monolith.

The vertices of Christian's cube are meant to represent the following theories:  classical
mechanics (CM), special relativity (SR), general relativity (GR), Newton-Cartan gravity
(NCG), Newtonian quantum gravity (NQG), Galilei-invariant quantum mechanics
(GQM), relativistic quantum field theory (RQFT), and fully-relativistic quantum
gravity (QG).  Schematically, these theories can be described by their coordinates (G, h,
1/c) in monolith space.  GR, for instance, may be given the coordinates (1, 0, 1),
indicating that G and 1/c are "turned on", whereas h is "turned off".  The cube thus
entails that there are three distinct approaches to constructing QG:  quantizing GR
(epitomized in "background independent" approaches like loop quantum gravity);
"turning on" gravity in an RQFT (epitomized in "background dependent" approaches
like string theory); and the approach, novel to Christian (1997), of "relativizing" NQG.

To better understand Christian's monolith, and ways of extending it, requires
understanding the nature of the limits that define the links in Figure 1.  Under closer
inspection, multiple problems arise.
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(a)  First, the 1/c → 0 limit that "turns off" relativity might initially be thought of as a
contraction of the Poincaré group to obtain the Galilei group (see, e.g., Bacry and Lévy-
Leblond 1968).  However, more than one such limit can be taken for a given relativistic
theory.  Such limits depend in particular on the form of the dynamical equations of the
theory.  For instance, there are two distinct non-relativistic limits of the Maxwell
equations (Holland and Brown 2003).  Moreover, the 1/c → 0 link between GR and
NCG cannot be described by a group contraction.  One the one hand, the Poincaré
group is not the symmetry group associated with GR (under one interpretation, the
latter is Diff(M)).  On the other hand, as Section 3 indicates, there is more than one
version of NCG, depending on how the geometrization procedure is carried out.  One of
these versions can indeed be shown to be the 1/c → 0 limit of GR, but this version does
not have the Galilei group as its symmetry group.17

(b)  The G → 0 limit might be associated simply with setting G to zero in the relevant
dynamical equation (thus "turning off" gravity).  But this would make the link between
GR and SR problematic.  Setting G to zero in the Einstein equations results in a Ricci-
flat (Rab = 0) Lorentzian spacetime, whereas Minkowski spacetime is spatiotemporally
flat (Ra

bcd = 0).  (Note that Ricci-flatness only entails spatiotemporal flatness in
conformally flat (4-dim) spacetimes, in which the Weyl tensor vanishes).  This
problematizes the other G → 0 links as well, in so far as there can be Ricci-flat classical
spacetimes other than Neo-Newtonian spacetime, which, presumably, is the spacetime of
CM and GQM.

(c)  Finally, one might describe the h → 0 limit as the inverse of quantization.  But just
how the quantization procedure should be characterized is far from settled.  For
instance, the quantization procedure that represents the link between SR and RQFT is
not unique:  For a theory of a classical relativistic field with infinite degrees of freedom,
the failure of the Stone-von Neuman theorem entails that there are uncountably many
unitarily inequivalent representations of the CCRs of the corresponding QFT.
Furthermore, inequivalent quantizations are not only associated with systems with
infinite degrees of freedom; they also arise for finite systems with topologically non-
trivial state spaces.18  This problematizes the link between CM and GQM, as well as the
link between NCG and NQG (in the latter case, for topologically trivial gravitational

                                      
17 This version can be referred to as "weak NCG" (Bain 2004, pg. 346).  It differs from strong NCG by
dropping Condition (8).  Bain (2004, pg. 365) identifies the symmetry group of weak NCG with an
extention of the Leibniz group, another classical spacetime symmetry group.
18 An example of such a system is a charged particle moving in a region external to an operating solenoid.
Quantization of this system produces the Aharonov-Bohm effect (see, e.g., Belot 1998, pg. 546).



15

fields, appeal to the unique global time function in classical spacetimes solves the
Problem of Unique Quantization (viz., Privilege), as explained in Section 3).

In addition to these issues with the extant links in Christian's diagram, there also seems
to be a deeper, structural problem.  This problem manifests itself explicitly in the links
between NQG and GQM, and RQFT and GQM:

1. First, Christian's NQG is an NQFT that incorporates gravity.  Thus, one might
expect that turning off gravity would result in an NQFT sans gravity.  One might
then wonder about the referent of "GQM":  Is it meant to include infinite-
dimensional non-relativistic quantum theories (viz, NQFTs) as well as finite-
dimensional non-relativistic quantum theories (viz, non-relativistic quantum particle
dynamics)?  And moreover, it is not immediately clear that it should refer to a
Galieli-invariant theory.

2. A second related concern involves the link between RQFT and GQM.  The 1/c → 0
limit of an RQFT might be characterized by a contraction of the Poincaré group to
yield the Galilei group, with the qualifications mentioned above.  But this maneuver
by itself does not take us from an RQFT to a theory of GQM, if we allow that the
latter includes theories with finite degrees of freedom.

These concerns stem from the fact that NQFTs are missing from Christian's diagram.
NQFTs may be thought of as appropriately qualified 1/c → 0 limits of RQFTs.  Now
suppose we relabel Christian's GQM as NQM (Non-relativistic Quantum Mechanics)
and restrict its referent to finite-dimensional non-relativistic quantum theories of
particle dynamics (i.e., finite theories of quantum particles invariant under the
symmetry group of a classical spacetime).  Then, for N = degrees of freedom, NQMs
may be thought of, schematically, as the "inverse thermodynamic" limit N → 0 of
NQFTs.  This limit is intended to be applicable to quantum theories independently of
classical theories, and vise-versa (i.e., it is intended to be "orthogonal" to the h → 0
limit).  So, for instance, it should also hold between a classical theory with an infinite
number of degrees of freedom (a non-relativistic classical field theory, for instance), and
a classical theory with finite degrees of freedom (a non-relativistic classical theory of
particle dynamics, for instance).  Whether such a limit can be precisely defined is a
matter for another essay.19  What it informally suggests is that Christian's cube should

                                      
19 Landsman (2007) discusses a rigorous way of defining an N → ∞ limit that holds between a quantum
system with N degrees of freedom and a classical system.  The definition makes use of the C*-algebra
formulation of quantum and classical systems.  This formalism also admits a rigorous definition of an h →
0 limit, and Landsman notes that the former limit is a special case of the latter.
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be replaced by a 4-dim hypercube with an additional axis representing degrees of
freedom N.  Suppressing the G-dimension, we then have the following diagram:

c−1



N

NCM NQM•

• •

•

•

• •

•

RQMRCM

RCFT

NQFTNCFT

RQFT

Figure 2.  Relations between theories in the absence of gravity.

The vertices in Figure 2 represent the following theories:  non-relativistic classical
particle mechanics (NCM), relativistic classical particle mechanics (RCM),  non-
relativistic classical field theory (NCFT), relativistic classical field theory (RCFT), non-
relativistic quantum particle mechanics (NQM), relativistic quantum particle mechanics
(RQM), non-relativistic quantum field theory (NQFT), and relativistic quantum field
theory (RQFT).  The distinctions here are between theories (classical and quantum,
relativistic and non-relativistic) with infinite degrees of freedom, and theories (classical
and quantum, relativistic and non-relativistic) with finite degrees of freedom.20

Theories in hypermonolith space are coodinatized by 4-tuples (G, h, 1/c, N).  There are
now four distinct approaches to constructing relativistic QG:  quantizing the classical
field theory of GR, with coordinates (1, 0, 1, 1); "turning on" gravity in an RQFT with
coordinates (0, 1, 1, 1); "relativizing" a non-relativistic QFT of gravity (such as
Christian's NQG) with coordinates (1, 1, 0, 1); or "taking the thermodynamic limit" of a
relativistic quantum particle theory of gravity with coordinates (1, 1, 1, 0).  Just what
the latter might involve requires further analysis.

                                      
20 For simplicity's sake, the former are identified as field theories and the latter as particle theories.  This
ignores field-theoretic systems on lattices (with finite degrees of freedom), as well as particle systems with
infinitely many particles; and it also glosses over conceptual issues concerning the nature of a particle vis-
à-vis a field; but nothing in the following hangs on this simplifying means of expediency.
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As an example of how this investigation might proceed, consider how the eight G → 0
links in the hypercube could be fleshed out (these all end in the vertices/theories that
appear in Figure 2).  They may divided into links in which gravity is turned off in a
field theory, and links in which gravity is turned off in a particle theory.

1. (Non-relativistic classical field theory of gravity (1, 0, 0, 1)) → NCFT.
An example of a theory with coordinates (1, 0, 0, 1) that produces an NCFT in the G
→ 0 limit is asymptotically flat weak NCG.  This is a version of NCG that drops
condition (9) in section 3 above, and imposes asymptotic spatial flatness to enforce
Galilei-invariance.   Bain (2004, pg. 358) indicates that it is empirically equivalent to a
version of (non-geometricized) Newtonian gravity in Neo-Newtonian spacetime in which
an "island universe" boundary condition is imposed (namely, φ → 0 at spatial infinity).
Hence turning off gravity in asymptotically flat weak NCG is equivalent to turning off
gravity in (non-geometricized) Newtonian gravity in Neo-Newtonian spacetime under
the island universe assumption, and this evidently yields a Galilei-invariant classical
field theory in Neo-Newtonian spacetime.

2. (RCFT of gravity (1, 0, 1, 1)) → RCFT.
GR is a theory with coordinates (1, 0, 1, 1).  Turning off gravity in GR results in a field
theory in a Ricci-flat Lorentzian spacetime (providing non-gravitational fields are
present).  This does not by itself guarantee the theory is Poincaré-invariant.  To assure
coherence here, one might additionally impose the requirement of conformal flatness
(although whether this can be motivated on physical or other grounds remains to be
seen).  Alternatively, one might simply expand one's concept of a relativistic theory to
include theories invariant under the symmetries of Lorentzian spacetimes in general.

3. (NQFT of gravity (1, 1, 0, 1)) → NQFT.
NQG is an NQFT of gravity in strong Newton-Cartan spacetime.  Evidently, turning off
gravity yields an NQFT in a Ricci-flat classical spacetime satisfying conditions (8) and
(9).

4. (RQFT of gravity (1, 1, 1, 1)) → RQFT.
The expectation here is that the full-blown relativistic theory of quantum gravity will
reproduce a relativistic quantum field theory in the limit of no gravity (just as it should
produce GR in the classical limit).

The remaining four links involve turning off gravity in a particle theory:

5. (Non-relativistic classical particle theory of gravity (1, 0, 0, 0)) → NCM.
6. (Non-relativistic quantum particle theory of gravity (1, 1, 0, 0)) → RCM.
7. (Relativistic classical particle theory of gravity (1, 0, 1, 0)) → NQM.
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8. (Relativistic quantum particle theory of gravity (1, 1, 1, 0)) → RQM.

Whether examples of all the theories on the left hand side in links 5-8 can be identified
is best left to another essay, with particular interest directed at an example of Link 8.
Such an example, together with an appropriately formulated thermodynamic limit that
links field theories with particle theories, would open up a fourth route to the elusive
fully relativistic theory of quantum gravity.

5. Conclusion
This essay has used the distinction between Minkowski spacetime and classical
spacetimes as a tool to probe two contemporary issues in philosophy of quantum field
theory; namely, the debate over particle interpretations of RQFTs, and the status of
approaches to a fully relativistic quantum theory of gravity.  First, the distinction
between Minkowski spacetime and classical spacetimes suggested a distinction between
RQFTs and NQFTs which in turn suggested that the concept of particle that a
Received View adopts in arguing against particle interpretations of RQFTs is motivated
by a non-relativistic notion of absolute time.  Second, the existence of NQFTs, and in
particular, consistent NQFTs of gravity, also suggested that routes to fully relativistic
quantum gravity are more varied than the current literature suggests.

Finally, a general moral can be drawn.  The existence of NQFTs suggests that the
distinction between relativistic and non-relativistic theories should not be couched in
terms of Poincaré-invariance vs. Galilei-invariance.  On the one hand, as is already
evident in GR, a relativistic theory need not be Poincaré-invariant.  On the other hand,
as is evident in NQFTs, a non-relativistic theory need not be Galilei-invariant.  The
discussion in Section 4 of this essay suggests that a more appropriate distinction should
be based on theories that are invariant under the symmetries of a Lorentzian spacetime
vs. theories that are invariant under the symmetries of a classical spacetime.
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