Modeling the Development of Locally Acidified Sites within Corroding Nuclear Fuel Surfaces

Zack Qin1, P.G. Keech1, W-J. Cheong2, D. Ofori1, J.C. Wren1, and D.W. Shoesmith1

1The University of Western Ontario, London, Ontario, Canada
2Atomic Energy of Canada Limited, Chalk River, Ontario, Canada

The 58th Annual Meeting of the International Society of Electrochemistry
September 9 – 14, 2007, Banff, Alberta, Canada
Nuclear Energy

- There were 441 nuclear plants in 32 countries supplying about 21.2% of the world's electricity*.
- It is a green energy that does not produce global warming gases.
- Spent fuel must be safely stored and eventually disposed of.

Nuclear Waste Disposal

- Cladding tube
- Spent nuclear fuel
- Bentonite clay
- Surface portion of deep repository
- Fuel pellet of uranium dioxide
- Copper canister with cast iron insert
- Crystalline bedrock
- Underground portion of deep repository

500 m
Local acidity may develop as a consequence of the hydrolysis of uranyl ions within defect sites (pores/flaws).
Local Acidity and Corrosion

At low pH (<5), UO$_2$ dissolution rate increases drastically.

Build-up of acidity inside a defect site would accelerate local fuel dissolution.

Experimental Observation

- Current decrease indicates a film formation leading to partial passivation.
- The eventual rise of current indicates an increase in the dissolution rate at locally acidified sites.

For example:

\[\frac{\partial C_i}{\partial t} = D_i \nabla^2 C_i + R_i \]

For example:

\[R_{UO_2^{2+}} = k_f[UO_2^{2+}][OH^-] - k_b[UO_2OH^+] \]
Boundary and Initial Conditions

Bulk Concentration (Outside)

Initial Concentration (Inside)

Swept-away:

\[
\hat{n} \cdot D_i \nabla C_i = \alpha (C_{bi} - C_i)
\]

Insulative:

\[
\hat{n} \cdot D_i \nabla C_i = 0
\]

pH = 9.5

\[
\begin{align*}
[UO_2^{2+}] & \\
[UO_2OH^+] & \\
[UO_2(OH)_2^-] & \\
[UO_2(OH)_3^-] & \\
[UO_2(OH)_4^{2-}] &
\end{align*}
\]

0 M

\[\text{UO}_2^{2+} \text{ Flux}\]

\[
\hat{n} \cdot D \nabla C = J
\]
UO₂ Dissolution Flux

Dissolution at the base of the pore/flaw

\[\text{UO}_2 \rightarrow \text{UO}_2^{2+} + 2e^- \]

\[
J_{UO_2^{2+}} = \frac{10^{-6}}{nFA_{\text{active}}} \exp(-4.4 + 16 \times E_{\text{applied}})
\]

COMSOL Multiphysics is a modeling package based on FEM.
A multiphysics is the name of the game, PDE’s set the rules.
Localized Attack

- Initial simulations performed assuming uniform dissolution across the whole surface showed no pH depression
- Experiments demonstrated localized attack
- Degree of localized dissolution was incorporated into the UO_2^{2+} flux as *Attenuation Factor* ($\text{FA} = \text{apparent area/active area}$)

Uranyl-silicate deposits indicate the active regions during the dissolution
Effect of Flux Attenuation

- FA is a measure of the degree of localization of dissolution.
- Local acidification observed at $E > 250 \text{mV}$ suggesting $FA \approx 1000$ (equivalent to 0.1% active area on the surface).
- The higher the potential, the lower FA required for a depression in pH.
- A plateau in pH looks like a ‘buffering’ effect.
Effect of Applied Potential

- The input flux increases as the E increases
- pH depression occurs when $E > \sim 0V$ (SCE), and the shallower the pore, the higher the potential required
- Sigmoidal curves appear similar to a weak acid titration. (pH vs volume of acid compared with pH vs potential)
- That pH does not reach a plateau may suggest an inability to achieve an acid-base equilibrium in deep pores
Effect of Pore Depth

- The effective diffusion path increases as the pore depth increases.
- Higher potential required to cause pH depression in shallower pores.
- pH depression is not possible for a potential $<-250\text{mV}$.
- pH sensitive region shifts to smaller depth as E increases.
 This may suggest mixed diffusional-chemical equilibrium control.
Summary: pH Threshold Diagram

- Threshold pH (=5) below which UO₂ dissolution rate increases drastically.
- Regions above each line pH<5 (aggressive region).
- Aggressive region increases as E increases.
- Lower potential requires combination of deeper pores and higher FA to achieve aggressive conditions.
- Higher potential, fewer and deeper sites will be subject to acidified dissolution.
Sensitivity Analysis: D, k and α

D = 10^{-8} cm2/s
$\Delta k_f = 10^4$
$\square k_f = 10^6$
$\bigcirc k_f = 10^8$

D = 10^{-6} cm2/s
$\Delta k_f = 10^4$
$\square k_f = 10^6$
$\bigcirc k_f = 10^8$

D = 10^{-4} cm2/s
$\Delta k_f = 10^4$
$\square k_f = 10^6$
$\bigcirc k_f = 10^8$

$\alpha = 1$
$\bigcirc \alpha = 0.1$
$\times \alpha = 0.01$
$\bigtriangleup \alpha = 0.001$
Further improvement of FCAD Model
Electrochemical and Corrosion Studies at Western

http://publish.uwo.ca/~ecsweb/

Thank You

Acknowledgements
Funded by Canadian NSERC and NWMO
under the Industrial Research Chair agreement