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Applications and Implications

It is often said that multiple correlation can be used to identify 
good predictors.  This is not the case. Multiple correlation does 
not identify predictors of a criterion.  It identifies variables that 
add to prediction.  There is a difference. Note that:

The Pearson product moment correlation between a 
variable and the criterion can be considered a measure 
of prediction.  The correlation coefficient is the 
regression coefficient in standard score form.

The regression coefficient in multiple regression is a 
measure of the extent to which a variable adds to the 
prediction of a criterion, given the other variables in the 
equation.  It is not a correlation coefficient.
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Multiple Correlation was introduced by Yule (1897) as an 
extension of bivariate regression to assess linear relations 
involving a number of independent variables.  The intent 
was to improve prediction over the bivariate case.

Since then, there have been many applications, including:
1. Establishment of a prediction equation
2. Selection of a subset of “predictors”
3. Analysis of variance
4. Curve fitting
5. Assessing mediation 
6. Assessing moderation
7. Path analysis
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Multiple regression is an equation linking a criterion 
variable (X) to a set of other variables.  For example, 
one might wish to predict grades in a subject (the 
criterion) with a number of other variables such as 
GRE-Verbal, GRE-Quantitative, and Height.  

The general form of the regression equation in raw 
score form is:

kkVbVbVbbX ++++= ...22110
'

In standard score form, the equation is:

kkX ZZZZ βββ +++= ...2211
'
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Multiple Correlation is the Pearson product moment 
correlation of the obtained and predicted values of X.
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(i.e., the multiple correlation is equal to the square root of the sum 
of the product of the standardized regression coefficient for each 
predictor times its correlation with the criterion.)

And with a bit of algebra:
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X

kk
k S

Sb
=β

(i.e., the standardized regression coefficient is equal to the 
unstandardized regression coefficient times the standard 
deviation of the predictor divided by the standard deviation of 
the criterion.) 6

Basic Equations:  

Raw score form

Standard score form

kk XbXbXbbX ++++= ...33220
'
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The square of the multiple correlation is equal to the variance of 
the predicted Z scores such that:
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i.e., the square of the multiple correlation is equal to the sum of 
the squared standardized regression coefficients plus two times 
the product of the correlation between each pair of predictors 
times their regression coefficients. 
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Matrix equations.  Matrix notation is often used with multiple regression 
and correlation.  The following examples consider the use of 3 predictors.
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i.e., the product of the inverse of the matrix of correlations of the predictors 
with the vector of correlations of the criterion with the predictors.  That is:

IRR jjjj =−1

Thus, in matrix terms: 1
1

1
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The squared multiple correlation is written as:

which can be expressed as the product of two vectors as:

where βj is defined as:
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The Case of Two Predictors

The regression equation describes a plot in three dimensional 
space as indicated on the next slide.  The plot shows the 
model in raw score form based on the regression equation as 
follows:

3322
'
1 XbXbCX ++=

3

1

2

1 3
3

2
2

X

X

X

X

S
S

band
S

S
b

ββ
==

32 321 XX SbSbXC −−=

where

and
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b2

b3

c

0
X2

X3

0

X1

Intercept

Slope of X1 on X2

Slope of X1 on X3

A two predictor illustration of the model

In the diagram, X2 and X3 are shown to be orthogonal (i.e., 
independent of each other), but generally the predictors are 
correlated.  Thus, to ensure independence, we calculate the 
regression coefficients on residualized variables.  This 
involves the constructs of partial and semipartial correlation.
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1. Partial Correlation – Plots in Standard Score Form
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2. Semipartial (part) Correlation
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The regression equations in standard score form
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Thus: Beta coefficients can be shown to equal the semipartial
correlation of the criterion with a predictor divided by the 
standard error of estimate of that predictor in standard score 
form as predicted by the other predictor.

13312223.1 rrR ββ +=Note that: 12

Relation of Multiple Correlation to Relations Among Predictors
Other things being equal, it can be shown that the the multiple correlation decreases
as the correlation between predictors increases.  Consider the case where

6.12 =r 5.13 =r
It can be shown that:

2
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Thus: 48.30.23 ±=r 993.393. 23 ≤≤−∴ r

Thus, we can consider the values of β2, β3, and R1.23 when r23 varies from -.30 to .90.
Applying the formulae would produce the following answers
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23r 2β 3β 23.1R )(1 32 ZZZr +
Correlation of Z1 
with Z2 + Z3   
(see Topic 15)
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The Case of Many Predictors

Multiple correlation and multiple regression can be 
conducted with any number of predictors though it is wise to 
keep the number manageable.  It is generally recognized that 
the dependent variable should be continuous (and normal) but 
predictors can be both continuous and categorical (while 
distributional characteristics will influence the results).  The
following discussion will focus primarily on three predictors 
though the generalizations apply to any number of predictors. 

Multiple regression can be performed by entering all of 
the predictors of interest in one step or by using a hierarchical 
method in which the researcher enters the predictors in some 
predetermined manner either one at a time or in groups.  
There are also a number of indirect methods where the 
computer enters the predictors in a manner determined by the 
data.  Some of these are discussed below. 14

Relation of R² to semipartial correlations
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The test of significance of the multiple R is:
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The test of significance of the increase in the Multiple R  when
adding variables to an existing regression equation is:
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Where:

=  R² with p2 predictors R1
2 =  R² with p1 predictors

p p2 1>

N total number of subjects=

With df:  v1 = p,  v2 = N-p-1

With  df:  v1 = p2 – p1
v2 = N – p2 – 1.
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1@ −−== pNdf
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It will be recalled that this is the square root of the F for R²
change when the predictor is added to the equation.

Test of significance of β
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Tests of Significance of the Regression Coefficients

Test of significance of b:

Both tests will yield the same value of t.

df N p= − −1Where:
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The Stein (1960) (correlation model) adjustment is an estimate of the 
expected value of a series of cross validation samples where the
predictors are considered random (i.e., the X’s can take any value).  
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The Wherry (1931) adjustment is based on defining the mean square 
for the residual as the sum of squares divided by the degrees of
freedom rather than N-1.  This adjustment is used in SPSS and is 
considered an unbiased estimate of the population value.

Given R² = .50, N=50, p = 10 R²adjusted = .37

Given R²=.50, N=50, p=10 R²adjusted = .19
1857213127

51213123

48183124

43192923

51203026

50203023

52223023

56213028

52212924

39182721

50203025

55203229

55243330

50203026

39192725

48203223

45192626

56233027

54233324

49212924

YCBA

Data Used in the Next Example
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Windows Setup
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The multiple correlation obtained with all three predictors is: 
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Often, when conducting these analyses, researchers will report 
the multiple correlation, and the regression coefficients.   

In the present example, all three regression coefficients are significant.  
This does not mean they are significant predictors (this information is 
contained in the correlation matrix).  It means only that given the criterion 
and these three variables each one adds significantly to prediction.  Add or 
subtract one or more predictors or change the dependent variable and the 
results can change drastically.  This is because the multiple correlation is 
made up of more than the information given in the regression coefficients.  
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On the interpretation of regression coefficients

Unstandardized regression coefficients are the weights applied 
to the original measures.  As such they are expressed in the 
unit of measurement of the variable, and thus are not directly 
comparable.  They indicate the amount of change in the 
dependent variable for a unit change in the predictor.  Tests of
significance of regression coefficients are performed on these 
coefficients.

Standardized regression coefficients are the weights applied to 
the standardized measures and define the amount of change in 
the standardized dependent variable for a unit change in the 
standardized predictor.  They are unitless, and are weights of 
variables that have a mean of 0, and a standard deviation of 1. 
They are not, however, directly comparable.  Given the 
relationships among the variables, it is possible for one Beta to 
be larger than another, though the second may be significant, 
and the first not.
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Venn Diagrams and the Dimensionality 
of Multiple Correlation

Consider a three predictor problem, A, B, and C.  The following 
Venn diagram shows the sources of variance overlapping the 
criterion. (What about the other stuff?)

A

C

B

1. Uniquely to A
3. Uniquely to B
7. Uniquely to C
2. Uniquely to that common to A and B
4. Uniquely to that common to A and C
6. Uniquely to that common to B and C
5.  Uniquely to that common to A,B, & C.

Contributions to the variance of the 
criterion of each of the following 
components

Y
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This can be demonstrated by computing the multiple correlations 
with each pair of predictors and calculating the component 
accounted for by each segment in Slide 23. 
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Contributions  to the Squared Multiple Correlation

A = .07669 B = .09551

C = .08734

AC = .07513

BC = .19303

ABC = .18888

r²AY = .07669 + .07513 + .18888 + .02069 = .36139  = .60116² = r²AY

Note:

r²BY = .09551 + .02069 + .18888 + .19303 = .49811 = .70577² = r²BY

AB = .02069

r²CY = .08734 + .07513 + .18888 + .19303 = .54438 = 73782² = r²CY

Y
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Segments 1,3, and 7 are squared semipartial multiple 
correlations, thus they are always positive.  Moreover, their 
tests of significance are identical to tests of significance of the 
corresponding regression coefficients.  

Comments on these values 

Segments 2,4,5, and 6 are residuals and thus can be positive or 
negative.  There are no obvious tests of significance, but the 
segments sum to R², thus it is possible to estimate the 
proportion that each contributes to R².  

Segment 1 .07669/.73727, …10.40%  Unique A
Segment 3 .09551/.73727 … 12.95%  Unique B
Segment 7 .08734/.73727, …11.85%  Unique C
Segment 4 .02069/.73727 … 2.81%  Unique AB
Segment 6 .07513/.73727, …10.19%  Unique AC
Segment 2 .19303/.73727, …26.18%  Unique BC
Segment 5 .18888/.73727, …25.62%  Unique ABC

Total 100.00%

35.2%
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Methods of Indirect Entry
Methods of indirect entry use a series of steps followed by the computer to 
determine the least number of predictors that give almost as good a level of 
prediction as the full number of predictors.   These methods are good for the 
purpose intended, but are not of any value for interpretation. 

Step 1. The predictor that correlates highest with the criterion is the first 
predictor.
Step 2. Partial correlations, removing the effects of the first predictor, are 
contrasted, and the predictor with the highest partial correlation is the next 
predictor.

Step 3. The regression equation is determined, and each regression coefficient 
is tested for significance.  If any are not significant, they are removed.

Step 4. Calculate the partial correlations removing effects of all predictors in 
the regression equation after Step 3.  If none are significant, stop; otherwise 
go to step 3.

Stepwise Inclusion
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Forward Inclusion

The computer follows the previous steps except that the regression 
coefficients are not tested for significance after each equation is determined.  
As a result, some coefficients may not be significant in the final equation.  

Backward Elimination

Step 1. All variables are entered into the equation, and R is 
calculated.

Step 2.  Test regression coefficients for significance.  If any are not 
significant remove the predictor that has the highest alpha.

Step 3. Calculate new R and test regression coefficients for 
significance. If any are not significant, remove the one with the highest 
alpha.  Repeat until all regression coefficients are significant.


