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1. General Overview of MRC and GLM

3. Running SPSS Regression (Linear) using Effect coding

5.  Assumptions

2. Example of a single factor design from Kirk (and Topic 3)
Effect Coding
Dummy Coding

4. Running SPSS Regression (Linear) using Dummy coding
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Applications and Implications

It is often said that multiple correlation can be used to identify 
good predictors.  This is not the case. Multiple correlation does 
not identify predictors of a criterion.  It identifies variables that 
add to prediction.  There is a difference. Note that:

The Pearson product moment correlation between a 
variable and the criterion can be considered a measure 
of prediction.  The correlation coefficient is the 
regression coefficient in standard score form.

The regression coefficient in multiple regression is a 
measure of the extent to which a variable adds to the 
prediction of a criterion, given the other variables in the 
equation.  It is not a correlation coefficient.
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General Linear Model Approach Using MRC

The Model: Analysis of variance can be seen as an instance 
of the general linear model. 

Thus, Cohen & Cohen (1983, p. 4) state “Technically, 
AV/ACV and conventional multiple regression analysis are 
special cases of the “general linear model” in mathematical 
statistics. It thus follows that any data analyzable by AV/ACV 
may be analyzed by MRC, while the reverse is not the case”.

In a more recent edition of the book, Cohen, Cohen, 
West & Aiken (2003, p. 4) state” The description of MRC in this 
book includes extensions of conventional MRC analysis to the 
point where it is essentially equivalent to the general linear 
model.  It thus follows that any data analyzable by 
ANOVA/ANCOVA may be analyzed by MRC, whereas the 
reverse is not the case”. 
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MRC Analysis

Cohen (1968) noted that, if group membership is defined in 
terms of a series of arbitrary variables (A), analysis of 
variance can be viewed as a  special case of multiple 
regression. Thus, one can write a regression equation as:

ioi AbAbbX ε++++= ...2211

where the number of arbitrary variables is one less than the 
number of treatment levels. The predicted value for each 
individual is the mean of the treatment condition for that 
individual and the A variables are codes defining the treatment 
levels.
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Types of Coding: There are many types of coding.  Each yield 
the same multiple correlation but the regression coefficients differ.  
We will consider two types, Dummy Coding and Effect Coding.
Following are two examples involving 4 treatment levels of a 
factor.
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A4A3A2A1

Means 3.00 3.50 4.25 6.25 4.25

Variances             2.286 .857 1.071             4.500 2.179

Example from Kirk (1995, p.230) used in Topic 3
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Data Editor with first 4 Subjects for each treatment 
showing both Dummy and Effect coding
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GET
FILE='F:\PSYCH540\kirkdata171.sav'.

DATASET NAME DataSet1 WINDOW=FRONT.
REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT x
/METHOD=ENTER e1 e2 e3  .

Descriptive Statistics

4.2500 1.88372 32
.0000 .71842 32
.0000 .71842 32
.0000 .71842 32

x
e1
e2
e3

Mean Std. Deviation N

Analysis Using Effect Coding
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Correlations

1.000 -.620 -.524 -.381
-.620 1.000 .500 .500
-.524 .500 1.000 .500
-.381 .500 .500 1.000

. .000 .001 .016
.000 . .002 .002
.001 .002 . .002
.016 .002 .002 .

32 32 32 32
32 32 32 32
32 32 32 32
32 32 32 32

x
e1
e2
e3
x
e1
e2
e3
x
e1
e2
e3

Pearson Correlation

Sig. (1-tailed)

N

x e1 e2 e3

Model Summary

.667a .445 .386 1.47600
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), e3, e2, e1a. 
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ANOVAb

49.000 3 16.333 7.497 .001a

61.000 28 2.179
110.000 31

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), e3, e2, e1a. 

Dependent Variable: xb. 

Tests of Between-Subjects Effects

Dependent Variable: x

49.000a 3 16.333 7.497 .001
578.000 1 578.000 265.311 .000

49.000 3 16.333 7.497 .001
61.000 28 2.179

688.000 32
110.000 31

Source
Corrected Model
Intercept
b
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .445 (Adjusted R Squared = .386)a. 

Note.  The analysis of variance summary table from the 
multiple regression analysis agrees with that from the analysis 
of variance from Topic 3 as shown below.
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Coefficientsa

4.25000 .26092 16.28838 .00000
-1.25000 .45193 -.47673 -2.76591 .00994
-.75000 .45193 -.28604 -1.65955 .10817
.00000 .45193 .00000 .00000 1.00000

(Constant)
e1
e2
e3

Model
1.000

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: xa. 

The meaning of the regression coefficients
with Effect Coding

25.4==Gbo

25.125.400.311 −=−=−= GXb

75.25.450.322 −=−=−= GXb

.025.425.433 =−=−= GXb 12

Analysis Using Dummy Coding

If dummy coding were used instead:

1. The descriptive statistics would differ from those in slide 8. 

2. Correlations would differ from those in slide 9.

3. The Model Summary and the ANOVA tables  would be the
same as in slides 9 and 10.

4. The Regression coefficients would differ from those in
slide 11.
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The meaning of the regression coefficients
with Dummy Coding

Coefficientsa

6.250 .522 11.977 .000
-3.250 .738 -.759 -4.404 .000
-2.750 .738 -.642 -3.726 .001
-2.000 .738 -.467 -2.710 .011

(Constant)
d1
d2
d3

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: xa. 

25.64 == Xbo

25.325.600.3411 −=−=−= XXb

75.225.650.3422 −=−=−= XXb

00.225.625.4433 −=−=−= XXb 14

Relation Between the Experimental Design and GLM Models

The two models are:

iiaiaai AbbXX εεαµ +++=++= ...110

...110 ++=+ AbbaαµTherefore

Dummy Coding                     Effect Coding

For a = 1

For a = 2

For a = 3

For a = 4

101 bb +=+αµ

303 bb +=+αµ

202 bb +=+αµ

04 b=+αµ

101 bb +=+αµ

202 bb +=+αµ

303 bb +=+αµ

32104 bbbb −−−=+αµ

15

Understanding Regression Coefficients: Dummy Coding

101 bb +=+αµ

202 bb +=+αµ

303 bb +=+αµ

04 b=+αµ

41011 µµαµ −=−+= bb

4440 µµµµαµ =−+=+=bTherefore

Therefore

42022 µµαµ −=−+= bbTherefore

Therefore
43033 µµαµ −=−+= bb

Given

Given

Given

Given
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Understanding Regression Coefficients: Effect Coding

110101 µαµ =+∴+=+ bbbb

220202 µαµ =+∴+=+ bbbb

330303 µαµ =+∴+=+ bbbb

µµ −= 11b

Summing yields

µµ −= 22b

Therefore

µµ −= 33b

Given the four equations

4321032104 µαµ =−−−∴−−−=+ bbbbbbbb

µµµµµ 44 43210 =+++=b

µ=0b
And
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Major Observations

1. Either type of coding yields a multiple correlation of .667, 
and the test of significance produces an F(3,28) = 7.497. 

3. The meaning of the regression coefficients differs for
every type of coding. 

2. The results are identical to those obtained using an
analysis of variance program. 
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Independence of residuals. The residuals (errors of 
prediction) are uncorrelated.

Homoscedasticity of residuals. The variances of the 
residuals are constant in the treatment populations.

Normality of residuals. The residuals are normally 
distributed in the treatment populations.

Null Hypothesis: The treatment population means are
equal.

H0: µ1 = µ2 = µ3 = µ4 = µ

Assumptions Underlying the General Linear Model
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