| Research Design - - Topic 12 |
| :--- | :--- |
| MRC Analysis and Two Factor Designs: |
| Completely Randomized and Repeated Measures |
| 1. Genera R.C. Gardner, Ph.D. |
| 2. Completely Randomized Two Factor Designs |
| Model I |
| Effect Coding |
| Regression Equation and Means |
| Model IIDummy Coding
 Regression Equation and Means
 Model III
 3. Single Factor Repeated Measures Designs |

The General Linear Model Using MRC Analysis

- The Model (with 2 levels of A and 3 levels of B)

$$
X_{i}^{\prime}=b_{0}+b_{1} A_{1}+b_{2} B_{1}+b_{3} B_{2}+b_{4} A_{1} B_{1}+b_{5} A_{1} B_{2}
$$

The general linear model is a least squares approach to the analysis of variance. For a factorial design with equal sample sizes the results obtained are identical to those obtained with the Experimental Design model. When sample sizes are not equal, different ways of expressing the general linear model will produce different models and different answers. Overall and Spiegel (1969) identified these as Model I (Unique Sums of Squares), Model II (General Experimental) and Model III (Hierarchical). They can be run on SPSS GLM Univariate by selecting SPSSTYPE3, SPSSTYPE2, and SPSSTYPE 1, respectively. ${ }_{2}$

- Table of means

	B1	B2	B3	Unweighted A-means	Weighted A-means
A1	33.0	33.6	33.75	33.45	33.40
A2	35.8	30.25	40.33	35.46	36.13
Unweighted B-means	34.40	31.93	37.04	34.46	
Weighted B-means	34.27	32.11	37.70		34.77

- Questions to ask of the Data

Main Effects of A
Do the A-means vary more than you would expect on the basis of chance?
Main Effects of B
Do the B-means vary more than you would expect on the basis of chance? Interaction Effects of A and B
Do the $A B$ means vary from what you would expect given the values of the A-means and the B-means?

Effect Coding of a 2×3 ($\left.\mathrm{A}^{*} \mathrm{~B}\right)$ Factorial Design (Showing first observation for each cell)							
A level	B level	A	B1	B2	AB1	AB2	X
1	1	1	1	0	1	0	31
1	2	1	0	1	0	1	32
1	3	1	-1	-1	-1	-1	38
2	1	-1	1	0	-1	0	36
2	2	-1	0	1	0	-1	36
2	3	-1	-1	-1	1	1	36
							6

\(\left.\left.$$
\begin{array}{c}\text { Venn Diagrams and Models in Analysis of Variance } \\
\text { Model I Unique SS } \\
\text { SSA }=1 \\
\text { SSB }=3 \\
\text { SSAB }=7\end{array}
$$\right] \begin{array}{l}Model II Classical Experimental

SSA=1+4

SSB=3+6\end{array}\right\}\)| SSAB $=7$ |
| :--- |
| Model III Hierarchical |
| SSA $=1+2+4+5$ |
| SSB $=3+6$ |

Semipartial R^{2} estimates for the three models

- Model I ${ }^{1}$
- Model II

$$
\begin{aligned}
& \hat{R}_{A}^{2}=R_{A, B, A B}^{2}-R_{B, A B}^{2} \\
& \hat{R}_{B}^{2}=R_{A, B, A B}^{2}-R_{A, A B}^{2} \\
& \hat{R}_{A B}^{2}=R_{A, B, A B}^{2}-R_{A, B}^{2}
\end{aligned}
$$

$\hat{R}_{A}^{2}=R_{A, B}^{2}-R_{B}^{2}$
$\hat{R}_{B}=R_{A, B}^{2}-R_{A}^{2}$
$\hat{R}_{A B}^{2}=R_{A, B, A B}^{2}-R_{A, B}^{2}$

- Model III

$$
\begin{aligned}
& \hat{R}_{A}^{2}=R_{A}^{2} \\
& \hat{R}_{B}^{2}=R_{A, B}^{2}-R_{A}^{2} \\
& \hat{R}_{A B}^{2}=R_{A, B, A B}^{2}-R_{A, B}^{2}
\end{aligned}
$$

$$
\hat{R}_{A B}^{2}=R_{A, B, A B}^{2}-R_{A, B}^{2}=.49004-.30289=.18715
$$

1 Only Effect Coding can be used with Model I. Dummy Coding will produce wrong values for \mathbf{R}^{2} and $\mathbf{R}^{2}{ }_{B}$

Computing squared multiple semipartial correlations for Model I

$$
\begin{aligned}
& \hat{R}_{A}^{2}=R_{A, B, A B}^{2}-R_{B, A B}^{2}=.49004-.44223=.04781 \\
& \hat{R}_{B}^{2}=R_{A, B, A B}^{2}-R_{A, A B}^{2}=.49004-.29395=.19609
\end{aligned}
$$

Note. The general form of the F-ratio is:

$$
F=\frac{\hat{R}_{\text {effece }}^{2} / V_{1}}{\left(1-R_{\text {loate }}^{2}\right) /(N-p-1)}
$$

Where: $\mathrm{v}_{1}=$ number of vectors for the effect, N-p-1 = degrees of freedom for error, and p is the number of vectors necessary to calculate $R_{\text {total }}^{2} \quad 11$

Calculating the Analysis of Variance Summary Table
If it were desired to construct the Summary Table for the Analysis of Variance, the Sums of Squares could be calculated by multiplying the R^{2} values by the Total Sums of Squares as follows:

$$
\begin{aligned}
& S S_{A}=\hat{R_{A}^{2}} S S_{\text {Total }}=.04781 * 617.367=29.516 \\
& S S_{B}=\hat{R_{B}^{2}} S S_{\text {Total }}=.19609 * 617.367=121.059 \\
& S S_{A B}=\hat{R_{A B}^{2}} S S_{\text {Total }}=.18715 * 617.367=115.540 \\
& S S_{S / A B}=\left(1-R_{\text {total }}^{2}\right) S S_{\text {Total }}=.50996 * 617.367=314.833
\end{aligned}
$$

Dividing by the appropriate degrees of freedom yields the Mean Squares.

Regression Coefficients and Regression Equation

Regression Equation

$$
X_{a b i}^{\prime}=b_{0}+b_{1} A+b_{2} B_{1}+b_{3} B_{2}+b_{4} A B_{1}+b_{5} A B_{2}
$$

$X_{a b i}^{\prime}=34.456+(-1.006) A+(-.056) B_{1}+(-2.531) B_{2}+(-.394) A B_{1}+2.681 A B_{2}$
This equation will produce the cell means and marginal unweighted means presented in Slide 4.

Dummy Coding of a 2X3 (A*B) Factorial Design
(Showing first observation for each cell)

A level	B level	A	B1	B2	AB1	AB2	X
1	1	1	1	0	1	0	31
1	2	1	0	1	0	1	32
1	3	1	0	0	0	0	38
2	1	0	1	0	0	0	36
2	2	0	0	1	0	0	36
2	3	0	0	0	0	0	36

14

Squared multiple correlations based on the Dummy coded variables needed to compute the squared multiple semipartial correlations for Models II and III

$$
\begin{array}{ll}
\mathrm{R}^{2}{ }_{\mathrm{A}, \mathrm{~B}, \mathrm{AB}} & =.49004 \\
\mathrm{R}_{\mathrm{A}, \mathrm{~B}}^{2} & =.30289 \\
\mathrm{R}_{\mathrm{A}, \mathrm{AB}} & =.09343 \\
\mathrm{R}^{2}{ }_{\mathrm{B}, \mathrm{AB}} & =.32155 \\
\mathrm{R}_{\mathrm{A}} & =.09076 \\
\mathrm{R}_{\mathrm{B}}{ }_{\mathrm{B}} & =.24652
\end{array}
$$

Note that $\mathrm{R}^{2}{ }_{\mathrm{A}, \mathrm{AB}}$ and $\mathrm{R}_{\mathrm{B}, \mathrm{AB}}$ differ from the values obtained with Effect coding

Squared semipartial multiple correlations and Regression coefficients for Model II at Step 1

Step 1. Compute:

$$
\begin{aligned}
& \hat{R}_{A}^{2}=R_{A, B}^{2}-R_{B}^{2}=.30289-.24652=.05637 \\
& \hat{R}_{B}^{2}=R_{A, B}^{2}-R_{A}^{2}=.30289-.09076=.21213
\end{aligned}
$$

Regression Coefficients and Regression Equation

		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	Model	B	Std. Error			
	(Constant)	38.570	1.420		27.167	. 000
	a	-2.176	1.501	$-.240$	-1.450	159
	b1	-3.111	1.791	-. 330	-1.737	. 094
	b2	-5.250	1.884	-. 530	-2.787	. 010

$X_{a b i}^{\prime}=38.570+(-2.176) A+(-3.111) B_{1}+5.250 B_{2}{ }^{16}$

The regression equation produces the following cell means. Dummy coding does not permit calculation of marginal means, but they can be estimated as means of the cell means.

Cell Means for Step I of Model II

	B1	B2	B3	A-means
A1	33.283	31.144	36.394	33.607
A2	35.459	33.320	38.570	35.783
B-means	34.371	32.232	37.482	34.695

Note that these means do not correspond to any of the means in slide 4. They are estimated assuming no interaction. Thus, the "main" effects tested in slide 18 refer to variation in the marginal means assuming no interaction.

F-ratios for Main Effects for Model II

Cohen, Cohen, Aiken \& West (2003, p. 171) refer to two different error terms that can be used. They define Model 1 error as the residual at step 1 (i.e., $1-\mathrm{R}^{2} \mathrm{~A}, \mathrm{~B}$) and Model 2 error as the residual for the full model. The general form is:

$$
F=\frac{{\hat{R_{e f f e c t ~}^{2}}}_{2} / v_{1}}{(\text { residual error }) /(N-p-1)}
$$

where: v1 = number of vectors for the effect, N-p-1 = degrees of freedom for error, and p is the number of vectors necessary to calculate residual error

$$
\begin{array}{cc}
\text { Model 1 error } & \text { Model } 2 \text { error } \\
F_{A}=\frac{.05637 / 1}{(1-.30289) / 26}=2.103 & \frac{.05637 / 1}{(1-.49004) / 24}=2.653 \\
F_{B}=\frac{.21213 / 2}{(1-.30289) / 26}=3.956 & \frac{.21213 / 2}{(1-.49004) / 24}=4.992
\end{array}
$$

$$
18
$$

- Model III.

Step 1. Compute the squared multiple correlation for one of the
factors (e.g., A)

$$
\hat{R}_{A}^{2}=R_{A}^{2}=.09076
$$

The two F-ratios are:

$$
\begin{array}{cc}
\text { Model } 1 \text { error } & \text { Model } 2 \text { error } \\
F_{A}=\frac{.09076 / 1}{(1-.09076) / 28}=2.795 & \frac{.09076 / 1}{(1-.49004) / 24}=4.271
\end{array}
$$

If you were to obtain the regression coefficients and solve for the A means at this point, you would obtain the weighted A means from Slide 4.

Step 2 yields results for B identical to those from Step 1 for Model II.

Step3 yields results for AB identical to those from Step 1 for Model I and step 2 for Model II.

Definition of Regression Coefficients for Effect Coding and Dummy Coding			
Vector	Coefficient	Effect coding	Dummy coding
Constant	b_{0}	\bar{G}	$\bar{X}_{a 2 b 3}$
A	b_{1}	$\bar{X}_{a 1}-\bar{G}$	$\bar{X}^{11 b 3}$ - $\bar{X}_{\text {a } 263}$
B1	b_{2}	$\bar{X}_{b 1}-\bar{G}$	$\bar{X}_{a 2 b 1}-\bar{X}^{22 b 3}{ }^{\text {a }}$
B2	b_{3}	$\bar{X}_{b 2}-\bar{G}$	$\bar{X}_{a 2 b 2}-\bar{X}_{a 2 b 3}$
AB1	b_{4}	$\bar{X}_{\text {alb }}-\bar{X}_{a 1}-\bar{X}_{b 1}+\bar{G}$	$\bar{X}_{\text {alb }}-\bar{X}_{\text {abb }}-\bar{X}_{\text {azbl }}+\bar{X}_{\text {azb }}$
AB2	b_{5}	$\bar{X}_{\text {alb } 2}-\bar{X}_{a 2}-\bar{X}_{b 2}+\bar{G}$	$\bar{X}_{\text {alb2 } 2}-\bar{X}_{\text {alb } 3}-\bar{X}_{a z b 2}+\bar{X}_{a 2 b 3}$
${ }^{21}$			

Single Factor Repeated Measures Designs

- The Model (with 8 subjects and 4 treatments)

$$
X_{i}^{\prime}=b_{0}+b_{1} A_{1}+\ldots+b_{3} A_{3}+b_{4} S_{1}+\ldots b_{10} S_{7}+b_{11} A_{1} S_{1}+\ldots+b_{31} A_{3} S_{7}
$$

Using the logic we used for the two factor design, this would require 3 vectors for the 4 treatment conditions, 7 for the 8 subjects, and 21 for the product terms. When using the multiple regression approach, it is not necessary to form the 21 product vectors because if this were done, we would have accounted for all the variation. In this type of analysis, the product terms are treated as residual variation.

An Example Using the Data from Kirk, p. 270

A_{1}	A_{2}	A_{3}	A_{4}	\bar{P}_{i}
3	4	4	3	3.50
2	4	4	5	3.75
2	3	3	6	3.50
3	3	3	5	3.50
1	2	4	7	3.50
3	3	6	6	4.50
4	4	5	10	5.75
6	5	5	8	6.00
3.00	3.50	4.25	6.25	$\bar{G}=4.25$
2.29	0.86	1.07	4.50	$\overline{S^{2}}=2.18$

Major Question to ask of the data:
Do the A-means vary more than can be reasonably attributed to chance? ${ }_{24}$

Analysis of Variance for these data from Topic 7

Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	578.000		1	578.000	128.444
Error	31.500		7	4.500	

- The following slide shows the Effect coding for the first two subjects and the last subject for the sample data from Slide 24.
- Note there are no vectors representing the 8 subjects. Rather there is 1 Subject vector (P) which contains the sum of each subject's score on the dependent variable. Pedhazur (1977) showed that the correlation of this vector with the dependent variable was identical to the multiple correlation of the Subject vectors with the dependent variable. It is viewed as a multiple correlation based on ($n-1$) vectors.
- Note too, that there are no product vectors. They are not needed; they constitute the residual term.
Relevant R^{2} and F values
$\mathrm{R}^{2}{ }_{\mathrm{A}}=.44545 \mathrm{R}^{2} \mathrm{~S}=.28636 \quad \mathrm{R}^{2}{ }_{\mathrm{A}, \mathrm{S}}=.73182$
$F_{A}=\frac{R_{A}^{2} /(a-1)}{\left(1-R_{A, S}^{2}\right) /(N-(a-1)-(n-1)-1}=\frac{.44545 / 3}{(1-.73182) /(32-3-7-1)}=11.627$

Note that this value is the same as that obtained in Slide 25.

Dummy coding would yield the same R^{2} values because there is no product term. Of course, the regression coefficients for the Constant and A vectors would be different and in both types of coding the S vector yields the within conditions regression coefficient.

28

Calculating the Analysis of Variance Summary Table

If it were desired to construct the Summary Table for the Analysis of Variance, the Sums of Squares could be calculated for Between Subjects, A, and Residual by multiplying the R^{2} values by the total Sums of Squares as follows:

$$
\begin{aligned}
& S S_{S}=R_{S}^{2} S S_{\text {Total }}=.28636 * 110.0=31.50 \\
& S S_{A}=R_{A}^{2} S S_{\text {Total }}=.44545 * 110.0=49.00 \\
& S S_{A S}=\left(1-R_{A, S}^{2}\right) S S_{\text {Total }}=.26818 * 110.0=29.50
\end{aligned}
$$

The degrees of freedom would be $(n-1)=7,(a-1)=3$, and $(a-1)(n-1)=21$, respectively.

References

Cohen, J., Cohen, P., West, S.G. \& Aiken, L.S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Third Edition). Mahwah, NJ: Lawrence Erlbaum.

Gardner, R. C. (2008). 2X2 analysis of variance and multiple regression: Coding does make a difference. Unpublished manuscript, University of Western Ontario. Available at http://publish.uwo.ca/~Gardner/DataAnalysisDotCalm/.

Overall, J.E. \& Spiegel, D. K. (1969). Concerning least squares analysis of experimental data. Psychological Bulletin, 72, 311-322.

Pedhazur, E.J. (1977). Coding subjects in repeated measures designs. Psychological Bulletin, 84, 298305.

