Research Design - - Topic 12 MRC Analysis and Two Factor Designs: Completely Randomized and Repeated Measures © 2010 R.C. Gardner, Ph.D. 1. General overview

2. Completely Randomized Two Factor Designs Model I Effect Coding Regression Equation and Means Model II

Dummy Coding

Regression Equation and Means

Model III

3. Single Factor Repeated Measures Designs

The General Linear Model Using MRC Analysis

• The Model (with 2 levels of A and 3 levels of B)

 $X_{i}^{'} = b_{0} + b_{1}A_{1} + b_{2}B_{1} + b_{3}B_{2} + b_{4}A_{1}B_{1} + b_{5}A_{1}B_{2}$

The general linear model is a least squares approach to the analysis of variance. For a factorial design with equal sample sizes the results obtained are identical to those obtained with the Experimental Design model. When sample sizes are not equal, different ways of expressing the general linear model will produce different models and different answers. Overall and Spiegel (1969) identified these as Model I (Unique Sums of Squares), Model II (General Experimental) and Model III (Hierarchical). They can be run on SPSS GLM Univariate by selecting SPSSTYPE3, SPSSTYPE2, and SPSSTYPE 1, respectively. 2

Two Factor Designs

• General Description. Two factor analysis of variance permits you to study the simultaneous effects of two factors. Consider the data for a 2X3 design, in which there are an unequal number of observations in each cell, and each level of the A factor appears in combination with each level of the B factor.

	B1	B2	B3
	31	32	38
	33	36	29
A1	37	30	36
	29	33	32
	37	37	
	31		
	36	36	36
	37	27	37
A2	39	28	36
	33	30	46
	34		45
			42

3

• -	Table of m	neans				
		B1	B2	B3	Unweighted A-means	Weighted A-means
	A1	33.0	33.6	33.75	33.45	33.40
	A2	35.8	30.25	40.33	35.46	36.13
	Unweighted B-means	34.40	31.93	37.04	34.46	
	Weighted B-means	34.27	32.11	37.70		34.77

• Questions to ask of the Data

Main Effects of A

Do the A-means vary more than you would expect on the basis of chance? Main Effects of B $\ensuremath{\mathsf{B}}$

Do the B-means vary more than you would expect on the basis of chance? Interaction Effects of A and B

Do the AB means vary from what you would expect given the values of the A-means and the B-means? $^{\rm 4}$

SPSS GLM Univariate Output								
	Tests of Between-Subjects Effects							
Dependent Variab	le: x							
0	Type III Sum				0'-	Partial Eta	Noncent.	Observed
Source Corrected Model	of Squares	dr 5	Mean Square 60.507	F 4.612	Sig.	Squared	Parameter 22.062	Power
Intercept	34652 977	1	34652 977	2641 624	000	991	2641 624	1 000
a	29.514	1	29.514	2.250	.000	.086	2.250	.302
b	121.059	2	60.529	4.614	020	278	9,228	725
a*b	115.540	2	57,770	4,404	.023	.268	8.808	.703
Error	314,833	24	13.118					
Total	36879.000	30						
Corrected Total	617.367	29						
a. Computed us	sing alpha = .05							
b. R Squared =	.490 (Adjusted	R Squared =	.384)					
			,					
								-

Effect Coding of a 2X3 (A*B) Factorial Design (Showing first observation for each cell)

A level	B level	А	B1	B2	AB1	AB2	Х
1	1	1	1	0	1	0	31
1	2	1	0	1	0	1	32
1	3	1	-1	-1	-1	-1	38
2	1	-1	1	0	-1	0	36
2	2	-1	0	1	0	-1	36
2	3	-1	-1	-1	1	1	36
							6
							Ū

Venn Diagrams and Models in Analysis of Variance					
Model I Unique SS					
$A \longrightarrow 1$ $A \longrightarrow 1$ $A \longrightarrow 1$ $A \longrightarrow 1$ $A \longrightarrow 1$ B B B B B B B B					
Model II Classical Experimental					
SSA = 1 + 4					
SSB = 3 + 6					
AB SSAB = 7					
Model III Hierarchical					
SSA = 1 + 2 + 4 + 5					
SSB = 3 + 6					
SSAB = 7 7					

Squared multiple correlations based on the Effect Coded variables needed to compute the relevant squared multiple semipartial correlations for the three models

 $\begin{array}{l} R^2_{A,B,AB} = .49004 \\ R^2_{A,B} = .30289 \\ R^2_{A,AB} = .29395 \\ R^2_{B,AB} = .44223 \\ R^2_{A} = .09076 \\ R^2_{B} = .24652 \end{array}$ Note. These two are not needed for Model 1

Note. Effect coding can be used for all three models, whereas Dummy coding can be used only for Models II and III.

Computing squared multiple semipartial
correlations for Model 1
$$\hat{R}_{A}^{2} = R_{A,B,AB}^{2} - R_{B,AB}^{2} = .49004 - .44223 = .04781$$
$$\hat{R}_{B}^{2} = R_{A,B,AB}^{2} - R_{A,AB}^{2} = .49004 - .29395 = .19609$$
$$\hat{R}_{AB}^{2} = R_{A,B,AB}^{2} - R_{A,B}^{2} = .49004 - .30289 = .18715$$

F-ratios for Model I $F_{A} = \frac{\hat{R}_{A/(a-1)}^{2}}{(1-\hat{R}_{A,B,AB})/(N-p-1)} = \frac{.04781/1}{.50996/24} = 2.250$ $F_{B} = \frac{\hat{R}_{B}^{2}/(b-1)}{(1-\hat{R}_{A,B,AB})/(N-p-1)} = \frac{.19609/2}{.50996/24} = 4.614$ $F_{AB} = \frac{\hat{R}_{AB}^{2}/(a-1)(b-1)}{(1-\hat{R}_{A,B,AB})/(N-p-1)} = \frac{.18715/2}{.50996/24} = 4.404$ Note. The general form of the F-ratio is:

$$F = \frac{\hat{R}_{effect} / v_1}{(1 - R_{total}^2) / (N - p - 1)}$$

Where: v_1 = number of vectors for the effect, N-p-1 = degrees of freedom for error, and p is the number of vectors necessary to calculate R^2_{total} . 11

Calculating the Analysis of Variance Summary Table

If it were desired to construct the Summary Table for the Analysis of Variance, the Sums of Squares could be calculated by multiplying the R² values by the Total Sums of Squares as follows:

 $SS_{A} = \hat{R}_{A}^{2} SS_{Total} = .04781 * 617.367 = 29.516$ $SS_{B} = \hat{R}_{B}^{2} SS_{Total} = .19609 * 617.367 = 121.059$ $SS_{AB} = \hat{R}_{AB}^{2} SS_{Total} = .18715 * 617.367 = 115.540$ $SS_{S/AB} = (1 - R_{total}^{2}) SS_{Total} = .50996 * 617.367 = 314.833$

Dividing by the appropriate degrees of freedom yields the Mean Squares. $$\ensuremath{^{12}}$

Design (Showing first observation for each cell)							
A level	B level	А	B1	B2	AB1	AB2	Х
1	1	1	1	0	1	0	31
1	2	1	0	1	0	1	32
1	3	1	0	0	0	0	38
2	1	0	1	0	0	0	36
2	2	0	0	1	0	0	36
2	3	0	0	0	0	0	36
2	3	0	0	0	0	0	30

Squared multiple correlations based on the Dummy coded variables needed to compute the squared multiple semipartial correlations for Models II and III

$R^{2}_{A,B,AB}$	= .49004					
$R^{2}_{A,B}$	= .30289					
$R^{2}_{A,AB}$	= .09343					
$R^{2}_{B,AB}$	= .32155					
R² _A	= .09076					
R ² _B	= .24652					
Note that $R^{2}_{A,AB}$ and $R^{2}_{B,AB}$ differ from the						
values Oblamed	with Ellect Coully					

Squared semipartial multiple correlations and Regression coefficients for Model II at Step 1

Step 1. Compute:

15

 $\hat{R}_{A}^{2} = R_{A,B}^{2} - R_{B}^{2} = .30289 - .24652 = .05637$ $\hat{R}_{B}^{2} = R_{A,B}^{2} - R_{A}^{2} = .30289 - .09076 = .21213$

Regression Coefficients and Regression Equation

The regression equation produces the following cell means. Dummy coding does not permit calculation of marginal means, but they can be estimated as means of the cell means.

Cell Means for Step I of Model II

	B1	B2	B3	A-means
A1	33.283	31.144	36.394	33.607
A2	35.459	33.320	38.570	35.783
B-means	34.371	32.232	37.482	34.695

Note that these means do not correspond to any of the means in slide 4. They are estimated assuming no interaction. Thus, the "main" effects tested in slide 18 refer to variation in the marginal means assuming no interaction. 17

F-ratios for Main Effects for Model II

Cohen, Cohen, Aiken & West (2003, p. 171) refer to two different error terms that can be used. They define Model 1 error as the residual at step 1 (i.e., $1 - R^2_{A,B}$) and Model 2 error as the residual for the full model. The general form is:

$$F = \frac{\hat{R}_{effect}^{2} / v_{1}}{(residual \ error) / (N - p - 1)}$$

where: v1 = number of vectors for the effect, N-p-1 = degrees of freedom for error, and p is the number of vectors necessary to calculate residual error

Model 1 error	Model 2 error	
$F_A = \frac{.05637/1}{(130289)/26} = 2.103$	$\frac{.05637/1}{(149004)/24} = 2.653$	
$F_{B} = \frac{.21213/2}{(130289)/26} = 3.956$	$\frac{.21213/2}{(149004)/24} = 4.992$	18

Step 2. \hat{R}_{AB}^{2} would be as computed in slide 9 and have the same value as in slide 10. Moreover, the F-ratio would be the same as in slide 11.							
Regre	ssion coe	fficients	for the	e full moc	lel usir	ng Dur	nmy Coding
			Coefficie	ents ^a			
		Unstan Coeff	dardized icients	Standardized Coefficients			
	Model	В	Std. Error	Beta	t	Sig.	
	1 (Constar	t) 40.333	1.479		27.278	.000	
	а	-6.583	2.338	726	-2.816	.010	
	b1	-4.533	2.193	482	-2.067	.050	
	02	-10.083	2.338	-1.019	-4.313	.000	
	ab1	3.783	3.206	.334	1.180	.249	
	auz	9.933	3.372	.816	2.946	.007	1
^{a.} Dependent Variable: x The regression equation is: $X_{abi}^{'} = 40.333 + (-6.583)A + (-4.533)B_1 + (-10.083)B_2 + 3.783AB_1 + 9.933AB_2$							
$X_{abi} = 40.333 + (-6.583)A + (-4.533)B_1 + (-10.083)B_2 + 3.783AB_1 + 9.933AB_2$ This equation produces the cell means from slide 4. As before, marginal means cannot be computed with Dummy coding but they can be calculated as the means of the cell means (i.e., unweighted means)							

Model III.

Step 1. Compute the squared multiple correlation for one of the factors (e.g., A) $\hat{R}_{A}^{2} = R_{A}^{2} = .09076$

The two F-ratios are: Model 1 error

Model 1 error

$$F_A = \frac{.09076/1}{(1-.09076)/28} = 2.795$$
 $\frac{.09076/1}{(1-.49004)/24} =$

If you were to obtain the regression coefficients and solve for the A means at this point, you would obtain the weighted A means from Slide 4.

4.271

Step 2 yields results for B identical to those from Step 1 for Model II.

Step3 yields results for AB identical to those from Step 1 for Model I and step 2 for Model II. 20

Definition of Regression Coefficients for Effect Coding and Dummy Coding						
Vector	Coefficient	Effect coding	Dummy coding			
Constant	b ₀	\overline{G}	\overline{X}_{a2b3}			
A	b ₁	$\overline{X}_{a1} - \overline{G}$	$\overline{X}_{a1b3} - \overline{X}_{a2b3}$			
B1	b ₂	$\overline{X}_{b1} - \overline{G}$	$\overline{X}_{a2b1} - \overline{X}_{a2b3}$			
B2	b ₃	$\overline{X}_{b2} - \overline{G}$	$\overline{X}_{a2b2} - \overline{X}_{a2b3}$			
AB1	b ₄	$\overline{X}_{a1b1} - \overline{X}_{a1} - \overline{X}_{b1} + \overline{G}$	$\overline{\overline{X}}_{a1b1} - \overline{\overline{X}}_{a1b3} - \overline{\overline{X}}_{a2b1} + \overline{\overline{X}}_{a2b3}$			
AB2	b ₅	$\overline{X}_{a1b2} - \overline{X}_{a2} - \overline{X}_{b2} + \overline{G}$	$\overline{X}_{a1b2} - \overline{X}_{a1b3} - \overline{X}_{a2b2} + \overline{X}_{a2b3}$			
			21			

Summary Points

The three models differ in terms of how contrasts are defined.

- Model I contrasts each set from all others in the study.
- Model II contrasts each set from others at the same and lower levels.
- Model III contrasts each set from others at the lower levels, and in a specified order in each set.

The type of coding does have an influence. This is discussed by Cohen, Cohen, Aiken & West (2003, p.362) who refer to them as Type III, Type II, and Type I respectively, and by Gardner (2008), who uses the above labelling. In short:

• Effect coding can be used for all models.

• Dummy coding can be used for models II and III.

22

Single Factor Repeated Measures Designs

• The Model (with 8 subjects and 4 treatments)

$$X_{i} = b_{0} + b_{1}A_{1} + \dots + b_{3}A_{3} + b_{4}S_{1} + \dots + b_{10}S_{7} + b_{11}A_{1}S_{1} + \dots + b_{31}A_{3}S_{7}$$

Using the logic we used for the two factor design, this would require 3 vectors for the 4 treatment conditions, 7 for the 8 subjects, and 21 for the product terms. When using the multiple regression approach, it is not necessary to form the 21 product vectors because if this were done, we would have accounted for all the variation. In this type of analysis, the product terms are treated as residual variation.

23

An Example Using the Data from Kirk, p. 270 \overline{P}_i A_4 A_1 A_2 A_3 3.50 3 4 4 3 3.75 2 4 4 5 3.50 2 3 3 6 3 3 3 5 3.50 2 4 7 1 3.50 3 3 6 6 4.50 4 4 5 10 5.75 6 5 5 8 6.00 $\overline{G} = 4.25$ Means 3.00 4.25 6.25 3.50 $\overline{S^2} = 2.18$ 4.50 Variances 2.29 1.07 0.86 Major Question to ask of the data: Major Question to ask of the data. Do the A-means vary more than can be reasonably attributed to chance?

ASURE_1					
	Type III Sum			-	0.
phericity Assumed	49 000	ui 3	16 333	11.627	3ig.
reenhouse-Geisser	49 000	1 859	26.365	11 627	001
uvnh-Feldt	49 000	2 503	19.578	11 627	000
wer-bound	49.000	1.000	49.000	11.627	.011
phericity Assumed	29.500	21	1.405		
reenhouse-Geisser	29.500	13.010	2.268		
uynh-Feldt	29.500	17.520	1.684		
wer-bound	29.500	7.000	4.214		
	ohericity Assumed reenhouse-Geisser Jynh-Feldt wer-bound ohericity Assumed reenhouse-Geisser Jynh-Feldt wer-bound	ohericity Assumed 49.000 reenhouse-Geisser 49.000 nynh-Feldt 49.000 wer-bound 49.000 ohericity Assumed 29.500 ohericity Assumed 29.500 ymh-Feldt 29.500 wer-bound 29.500	benicity Assumed der Squares der verenhouse-Geisser 49.000 1.869 wer-bound 49.000 2.503 wer-bound 49.000 1.000 oblericity Assumed 29.500 12.01 wer-bound 29.500 13.010 ymh-Feldt 29.500 17.520 wer-bound 29.500 7.000	Arencity Assumed Of Squares or Mean Square seenhouse-Geisser 48.000 3 16.333 myhn-Fieldt 49.000 1.859 26.365 wer-bound 49.000 1.000 49.000 shericity Assumed 29.000 1.000 49.000 shericity Assumed 29.500 21 1.405 enhouse-Geisser 29.500 13.010 2.268 ymh-Fieldt 22.600 17.520 1.884 wer-bound 29.500 7.000 4.214	Americal Assumed Of Soluties (a) Mean (a) (b) Mean (b) (c) Columb (c) Figure (c) Figure (c)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	
Intercept	578.000	1	578.000	128.444	.000	
Error	31.500	7	4.500			
						25

• The following slide shows the Effect coding for the first two subjects and the last subject for the sample data from Slide 24.

• Note there are no vectors representing the 8 subjects. Rather there is 1 Subject vector (P) which contains the sum of each subject's score on the dependent variable. Pedhazur (1977) showed that the correlation of this vector with the dependent variable was identical to the multiple correlation of the Subject vectors with the dependent variable. It is viewed as a multiple correlation based on (n-1) vectors.

• Note too, that there are no product vectors. They are not needed; they constitute the residual term. 26

A1	A2	A3	Р	Х
1	0	0	14	3
0	1	0	14	4
0	0	1	14	4
-1	-1	-1	14	3
1	0	0	15	2
0	1	0	15	4
0	0	1	15	4
-1	-1	-1	15	5
1	0	0	24	6
0	1	0	24	5
0	0	1	24	5
-1	-1	-1	24	8

Relevant R ² and F values
$R_{A}^{2} = .44545 R_{S}^{2} = .28636 R_{A,S}^{2} = .73182$
$F_{A} = \frac{R_{A}^{2}/(a-1)}{(1-R_{A,S}^{2})/(N-(a-1)-(n-1)-1)} = \frac{.44545/3}{(173182)/(32-3-7-1)} = 11.627$
Note that this value is the same as that obtained in Slide 25.

Dummy coding would yield the same R² values because there is no product term. Of course, the regression coefficients for the Constant and A vectors would be different and in both types of coding the S vector yields the within conditions regression coefficient. 28 Calculating the Analysis of Variance Summary Table

If it were desired to construct the Summary Table for the Analysis of Variance, the Sums of Squares could be calculated for Between Subjects, A, and Residual by multiplying the R² values by the total Sums of Squares as follows:

 $SS_s = R_s^2 SS_{Total} = .28636*110.0 = 31.50$

 $SS_A = R_A^2 SS_{Total} = .44545 * 110.0 = 49.00$

$$SS_{AS} = (1 - R_{A,S}^2) SS_{Total} = .26818 * 110.0 = 29.50$$

The degrees of freedom would be (n-1) = 7, (a-1) = 3, and (a-1)(n-1) = 21, respectively.

29

References

- Cohen, J., Cohen, P., West, S.G. & Aiken, L.S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Third Edition). Mahwah, NJ: Lawrence Erlbaum.
- Gardner, R. C. (2008). 2X2 analysis of variance and multiple regression: Coding does make a difference. Unpublished manuscript, University of Western Ontario. Available at http://publish.uwo.ca/~Gardner/DataAnalysisDotCalm/.
- Overall, J.E. & Spiegel, D. K. (1969). Concerning least squares analysis of experimental data. *Psychological Bulletin, 72,* 311-322.

30

Pedhazur, E.J. (1977). Coding subjects in repeated measures designs. *Psychological Bulletin, 84,* 298-305.