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The logic underlying Factor Analysis is that measures are influenced by a 
number of underlying constructs, and that the dimensions in factor analysis 
(principal components) help to uncover them.  This is done by decomposing the 
correlations (or covariances, etc.) among them.

For example, scores on a statistics test might tap a number of dimensions, such 
as knowledge of the course material, quantitative ability, verbal ability, test 
anxiety, other possible elements, and error.  It might be diagrammed as follows:

10 20 30 40 50 60 70 9080 100%

Knowledge of Statistics
Quant

Verb
Anx

Error

General Rationale and Purpose
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The purpose of factor analysis is to understand the relationships among  
variables.  This is achieved by identifying a number of dimensions and 
seeing how the variables relate to them.  These dimensions are simply 
weighted aggregates of the variables.  They are also referred to as 
factors, components, or latent variables.

When conducting a factor analysis, one seeks to determine the number of 
dimensions necessary to explain the bulk of the relationships among the 
variables, and then to interpret them by investigating the correlations of the 
variables with the dimensions.

One of the earliest applications of factor analysis identified dimensions 
underlying scores on measures of mental ability (Thurstone, 1938).  
Another application (McCrae & Costa, 1987) identified the Big 5 
dimensions of personality as comprising:

Openness
Conscientiousness
Extraversion
Agreeableness
Neuroticism
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Steps in conducting a factor analysis

There are three stages in conducting a factor analysis:

1. Calculate a matrix of associations.  Most times, this is a 
correlation matrix but it could be a covariance matrix, a 
cross product matrix, etc.

2. Calculate an initial factor matrix.  There are many types 
of solutions, principal components, principal axis, 
unweighted least squares, maximum likelihood, alpha 
analysis, etc…

3. Produce a rotated solution.  Sometimes, this isn’t done,  
but if it is, there are a number of alternatives, varimax, 
quartimax, equamax, oblimin, promax, etc…
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Concepts and Terms
Fundamental Theorem. The correlation matrix can be reproduced from the 
factor matrices as follows: 

matrixfactororthogonalanforTAAR =
matrixfactororthogonal-nonaforTAAR φ=

Pattern Matrix.  A matrix of the weights used to define the factors.

Structure Matrix.  A matrix of the correlations of each variable with the factors.

where A is the structure matrix, AT is its transpose, and Φ is the 
matrix of correlations among the factors.

Eigenvalue 1 criterion.  Retain all factors with eigenvalues > 1.

Scree test (Cattell, 1966). A plot of the eigenvalues to determine the 
number of factors to retain.

Eigenvalue.  The variance of a principal component

6

An Example Using SPSS Factor:
One of the initial demonstrations of the logic underlying factor analysis was 
Thurstone’s Box problem. Our version factor analyzes correlations of the 
length, width, and height of each box, the areas of the 3 sides, the diagonals 
of the 3 sides, the perimeters of the 3 sides, and the volume.  The data are 
on the webpage (Box Problem Data), and the Syntax file is as follows:

FACTOR
/VARIABLES LENGTH WIDTH HEIGHT BOTA BACKA SIDEA BOTP   

BACKP SIDEP BOTD BACKD SIDED VOLUME
/MISSING LISTWISE
/ANALYSIS LENGTH WIDTH HEIGHT BOTA  BACKA SIDEA BOTP 
BACKP SIDEP BOTD BACKD SIDED VOLUME
/PRINT INITIAL CORRELATION EXTRACTION ROTATION
/PLOT EIGEN
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PC
/CRITERIA ITERATE(25)
/ROTATION VARIMAX
/METHOD=CORRELATION .
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Height

Length

Width

Side 

Back

Measures

Length
Width
Height
Area of Bottom
Area of Back
Area of Side 

Perimeter of Bottom
Perimeter of Back
Perimeter of Side
Diagonal of Bottom
Diagonal of Back
Diagonal of Side

Volume

Bottom

Definition of Variables
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Descriptive Statistics

15.0300 2.98389 200
10.1100 2.19133 200
6.1200 1.48885 200

151.0500 41.89083 200
61.6500 19.19766 200
92.1950 28.14065 200
50.2650 6.95894 200
32.5100 5.10492 200
42.3750 6.47798 200
18.3050 2.60691 200
11.9050 1.98638 200
16.3400 2.73713 200

922.7950 334.47256 200

LENGTH
WIDTH
HEIGHT
BOTA
BACKA
SIDEA
BOTP
BACKP
SIDEP
BOTD
BACKD
SIDED
VOLUME

Mean Std. Deviation Analysis N

Summary Statistics of the Basic Data
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Correlation Matrix

The correlation matrix is subjected to an analysis that extracts factors 
accounting for decreasing amounts of variance.  This produces a table 
of the variance extracted by each factor (see next slide). These
variances are referred to as eigenvalues.  Given 13 variables, that table 
presents the variances associated with each of 13 factors extracted.  

Correlation Matrix

1.000 -.116 -.074 .612 -.102 .593 .765 -.149 .880 .860 -.169 .965 .455
-.116 1.000 -.083 .684 .599 -.113 .539 .804 -.147 .377 .895 -.136 .466
-.074 -.083 1.000 -.076 .710 .731 -.100 .500 .390 -.109 .310 .144 .591
.612 .684 -.076 1.000 .426 .363 .964 .546 .530 .890 .595 .585 .733

-.102 .599 .710 .426 1.000 .521 .315 .944 .244 .200 .841 .056 .820
.593 -.113 .731 .363 .521 1.000 .443 .334 .893 .494 .172 .746 .805
.765 .539 -.100 .964 .315 .443 1.000 .406 .660 .972 .445 .733 .699

-.149 .804 .500 .546 .944 .334 .406 1.000 .103 .259 .962 -.037 .753
.880 -.147 .390 .530 .244 .893 .660 .103 1.000 .742 -.008 .959 .699
.860 .377 -.109 .890 .200 .494 .972 .259 .742 1.000 .286 .826 .640

-.169 .895 .310 .595 .841 .172 .445 .962 -.008 .286 1.000 -.102 .654
.965 -.136 .144 .585 .056 .746 .733 -.037 .959 .826 -.102 1.000 .576
.455 .466 .591 .733 .820 .805 .699 .753 .699 .640 .654 .576 1.000

LENGTH
WIDTH
HEIGHT
BOTA
BACKA
SIDEA
BOTP
BACKP
SIDEP
BOTD
BACKD
SIDED
VOLUME

Correlation
LENGTH WIDTH HEIGHT BOTA BACKA SIDEA BOTP BACKP SIDEP BOTD BACKD SIDED VOLUME
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The first section gives the eigenvalues for each of the 13 
dimensions, the second repeats this for the 3 factors retained, and 
the third section gives the sum of squared loadings for the 3 
factors after rotation. Note:
1. The percentage is the eigenvalue divided by 13.
2. The sum of the 13 eigenvalues = 13.
3. The rotation sums of squared loadings attempts to even out the 

values.  
Total Variance Explained

6.847 52.669 52.669 6.847 52.669 52.669 5.439 41.839 41.839
3.718 28.597 81.265 3.718 28.597 81.265 4.463 34.328 76.167
2.246 17.280 98.546 2.246 17.280 98.546 2.909 22.379 98.546
.057 .435 98.980
.040 .310 99.291
.031 .236 99.527
.020 .156 99.683
.014 .110 99.793
.010 .079 99.872
.008 .060 99.931
.004 .032 99.964
.004 .031 99.994
.001 .006 100.000

Component
1
2
3
4
5
6
7
8
9
10
11
12
13

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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Communalities

Communalities

1.000 .993
1.000 .988
1.000 .982
1.000 .977
1.000 .979
1.000 .985
1.000 .996
1.000 .994
1.000 .995
1.000 .980
1.000 .975
1.000 .989
1.000 .978

LENGTH
WIDTH
HEIGHT
BOTA
BACKA
SIDEA
BOTP
BACKP
SIDEP
BOTD
BACKD
SIDED
VOLUME

Initial Extraction

Extraction Method: Principal Component Analysis.

The proportion of variance that variable has in common with all the other 
variables.  They are set at 1.0 in Principal Components; the extraction 
communalities are the proportions captured by the 3 factors retained.  

Note. The communalities are 
the sum of squares of the 
factor loadings across the 
factors in both the initial and 
rotated factors.  That is:
From slide 13,
.6622+(-.736)2+(-.118)2 = .993 
and from slide 14
.9772+(-.190)2+.0582 = .993
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A Plot of the Eigenvalues associated with each component.

The Scree test is used to distinguish the true factors from those reflecting error.  
This is identified by the elbow in the plot.  This plot indicates three factors. 
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Component Matrixa

.662 -.736 -.118

.487 .683 -.533

.366 .292 .873

.872 .025 -.465

.649 .672 .326

.751 -.229 .607

.884 -.176 -.429

.636 .766 .052

.784 -.540 .299

.850 -.346 -.370

.584 .781 -.154

.734 -.666 .077

.943 .192 .229

LENGTH
WIDTH
HEIGHT
BOTA
BACKA
SIDEA
BOTP
BACKP
SIDEP
BOTD
BACKD
SIDED
VOLUME

1 2 3
Component

Extraction Method: Principal Component Analysis.
3 components extracted.a. 

Initial Factor matrix

The principal component matrix is a structure matrix, consisting of the 
correlations of each variable with each of the three factors.  It is generally not 
interpreted.  Typically, interpretation is done with the rotated matrix.

Note the sum of the squared factor 
loadings for each factor equals the 
eigenvalue for that factor.  That is:

.6622 + … +.9432 = 6.847
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Rotated Component Matrixa

.977 -.190 .058

.082 .963 -.233
-.105 .154 .973
.757 .628 -.099
.008 .773 .617
.566 .030 .815
.879 .465 -.084
.006 .925 .370
.852 -.101 .509
.943 .295 -.061
.006 .974 .163
.943 -.158 .273
.545 .582 .585

LENGTH
WIDTH
HEIGHT
BOTA
BACKA
SIDEA
BOTP
BACKP
SIDEP
BOTD
BACKD
SIDED
VOLUME

1 2 3
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 6 iterations.a. 

Varimax Rotated Factor Matrix

This is a structure matrix, consisting of the correlations of the variables with 
the rotated factors.  It is typically considered to offer a more parsimonious 
interpretation than a non-rotated matrix. 

Note. The sum of squared factor 
loadings for each factor equals 
the value reported in the last part 
of the table in slide 10.  That is:

.9772 + … + .5452 = 5.439
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Interpreting a Factor Analysis

This analysis of the measurements of the boxes suggested that 3 factors 
accounted for the relationships among the measures, explaining 98.55%  of 
the total variance.  The variance of the first factor was 6.847, accounting for 
52.67% of the variance; that for the second factor was 3.718 (28.60%), and 
that for the third was 2.246 (17.28%).  These factors are defined to account for 
as much of the variance as possible in the matrix.   

Generally, the initial matrix is not interpreted.  Instead, the factors are rotated 
to produce a more parsimonious picture, where each variable has a 
combination of high and low loadings across the factors.   Interpretation 
involves identifying what is common to the variables loading high on a factor 
and what distinguishes them from the variables not having high loadings on 
that factor.  Consider the rotated factor matrix in slide 14, and attempt to 
identify the common feature of each factor.  The next slide might make the 
task a bit easier, because there we show the basic elements of each 
measure.  This helps to emphasize that you must know a lot about the 
measures involved in a factor analysis to be able to make a meaningful 
interpretation of the factors. 16

Rotated Component Matrixa

.977 -.190 .058

.082 .963 -.233
-.105 .154 .973
.757 .628 -.099
.008 .773 .617
.566 .030 .815
.879 .465 -.084
.006 .925 .370
.852 -.101 .509
.943 .295 -.061
.006 .974 .163
.943 -.158 .273
.545 .582 .585

LENGTH
WIDTH
HEIGHT
BOTA
BACKA
SIDEA
BOTP
BACKP
SIDEP
BOTD
BACKD
SIDED
VOLUME

1 2 3
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 6 iterations.a. 

Varimax Rotated Factor Matrix

L
W
H
L*W

L*H
W*H

2(L+W)
2(H+W)
2(L+H)

SQRT(L2 + W2)
SQRT(H2 + W2)
SQRT(H2 + L2)

L*W*H
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Factor I accounts for 41.84% of the variance.1 It is defined by high 
loadings (>.30) from Length (L), BOTA (L*W), SIDEA (L*H), BOTP 
(2(L+W)), SIDEP (2(L+H)), BOTD (sqrt(L2 + W2)), SIDED (sqrt(L2 + H2)), 
and Volume (L*W*H).  Length is involved in all 8 of these measures so it 
seems reasonable to define this as a Length factor.

Factor II accounts for 34.33% of the variance. It is defined by high loadings 
(>.30) from Width (W), BOTA (L*W), BACKA (W*H), BOTP (2(L+W)), 
BACKP (2(H+W)), BACKD (sqrt(H2 + W2)), and Volume (L*W*H), and 
BOTD (sqrt(L2 + W2)),has a loading of .295.  Thus, it seems reasonable to 
define this as a Width factor.

Factor III accounts for 22.38% of the variance. It is defined by high loadings 
(>.30) from Height (H), BACKA (W*H), SIDEA (L*H), BACKP (2(H+W)), 
SIDEP (2(L+H)) and Volume (L*W*H).  Although BACKD (sqrt(H2 + W2)) and 
SIDED (sqrt(L2 + H2)) do not contribute substantially to this factor, it seems 
reasonable nonetheless to define this as a Height factor.

Factor Interpretation

1 See the table in slide 10 in the section under Rotation Sums of Squared Loadings. 18

Principal Components Analysis:  Basic Mathematics 
A Small Example

19

A factor is a weighted aggregate of all the variables in the study.  When 
factor analyzing a correlation matrix, the general form of the aggregate for 
each factor is:

iiiii mmI ZwZwZwZwZ ++++= ...332211

Given an mxm correlation matrix, there will be m such factors.  For each one, 
the weights, w, and the variance of each factor will differ.  The variance of 
each factor is called the eigenvalue.

There are a number of approaches for calculating the eigenvalues.  One is to 
make use of the determinantal equation, set it equal to 0, and solve for the 
eigenvalues.  This is written as:

0=− IR λ

R = the correlation matrix, I = an identity matrix, and λ = the eigenvalue
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(a) Determinantal Equation 0=− IR λ

Given R (i.e. an m x m matrix of correlations), this would produce m λ’s
arranged in decreasing order.  If all m λ’s were obtained, 

m
m

=∑λ
The λ is called the eigenvalue or the characteristic root, or latent root.  It is a 
measure of the variance of a component.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

000.1903.0172.0322.0
903.0000.1091.0147.0
172.0091.0000.1889.0
323.0147.0889.0000.1

0

0.10.00.00.0
0.00.10.00.0
0.00.00.10.0
0.00.00.00.1

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− λ

0

1903.0172.0323.0
903.01091.0147.0
172.0091.01889.0
323.0147.0889.01

=

−
−

−
−

λ
λ

λ
λ Results in an equation of the type

Yielding 4 values of λ.

0234 =+++ λλλλ cba

R                              -λ I               =  0
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The four eigenvalues for this matrix are:

2.269, 1.539, .146, and .047.

Note that they sum to 4, the number of variables.

We can use this information to produce the eigenvector for 
each factor.  The eigenvector is the set of weights for the 
variables associated with that factor (i.e., a pattern matrix). This is 
done by solving a set of simultaneous equations such as:

0]][[ =− WIR pλ

0

1903.0172.0323.0
903.01091.0147.0
172.0091.01889.0
323.0147.0889.01

4

3

2

1

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

W
W
W
W

λ
λ

λ
λ
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0323.147.889.)1( 4321 =+++− wwwwλ
0172.091.)1(889. 4321 =++−+ wwww λ
0903.)1(091.147. 4321 =+−++ wwww λ

0)1(903.172.323. 4321 =−+++ wwww λ

With 4 equations and 4 unknowns, we can obtain an infinite set 
of solutions.  We obtain a unique one by requiring that the sum of 
squares of the weights equal 1.  In matrix form, this is the side 
condition that:

1=WW T 12 =∑wwhich is equivalent to

For the first factor, this produces the weights
w1 = .521, w2 = .471, w3 = .473, w4 = .533
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For the second factor, this produces the weights
w1 = .467, w2 = .536, w3 = -.539, w4 = -.451

SPSS Factor defines the values in the Component Matrix as: 

ppjpj wa λ,, =

iiiii
ZZZZZI 4321 533.473.471.521. +++=Thus:

and the variance of this aggregate is the eigenvalue:

269.21
2 == λ

IZS

539.12
2 == λ

IIZS

It does not output a pattern matrix, though in this case it will be 
noted that there is a 1 to 1 correspondence between the two.  The 
component matrix is a structure matrix but it differs from the 
pattern matrix solely in the magnitude of the values so that the
sums of squares are λ and 1 respectively.      

That is:

and

ppjppj wa λλ == ∑∑ 2
,

2
,where
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Component Matrixa

.784 .580

.709 .665

.712 -.669

.803 -.560

x1
x2
x3
x4

1 2
Component

Extraction Method: Principal Component Analysis.
2 components extracted.a. 

Rotated Component Matrixa

.151 .963

.037 .971

.977 .025

.965 .166

x1
x2
x3
x4

1 2
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 

The loadings on the principal 
components axes and the 
varimax rotated axes.  These 
are structure matrices because 
they are the correlations of the 
variables with the factors.

The factor plot for these 
loadings is shown on the 
next slide.  It will be noted 
that the points don’t move 
in space.  Only the 
reference axes are 
rotated.
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. 1

. 2

. 3

. 4

I

II

I ‘

II ‘Factor plot showing the 
variables plotted against the 
solid axes for the principal 
component loadings and 
against the broken axes for 
the varimax loadings.

The varimax solution is 
described as orthogonal 
because the axes are 
kept at right angles with 
each other.  A non-
orthogonal solution 
would have the rotated 
axes at less than right 
angles.

.78

.96

Varimax
axes

Principal 
component 
axes
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The plot below illustrates the difference between pattern and structure 
coefficients with non-orthogonal rotation.

Pattern coefficient

. V2

I

II

I ‘

II ‘

. V1

. V3

Structure coefficient

A pattern coefficient is the 
value of the projection 
that is parallel to the other 
axis, while the structure 
coefficient is the 
projection that is at right 
angles to the axis.
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SPSS Analysis of the Box Problem 
Using Principal Components and an Oblique Rotation

With an oblique rotation, the rotated solution consists of a Pattern Matrix, a 
Structure Matrix, and a Matrix of Correlations among the Factors.

Pattern Matrixa

1.003 -.280 -.017
.040 .966 -.331

-.155 .167 .974
.740 .567 -.229

-.060 .782 .548
.541 -.019 .762
.873 .391 -.210

-.060 .936 .286
.852 -.178 .440
.946 .213 -.178

-.054 .985 .073
.958 -.244 .199
.499 .541 .482

LENGTH
WIDTH
HEIGHT
BOTA
BACKA
SIDEA
BOTP
BACKP
SIDEP
BOTD
BACKD
SIDED
VOLUME

1 2 3
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Oblimin with Kaiser Normalization.

Rotation converged in 10 iterations.a. 

Structure Matrix

.957 -.127 .097

.142 .939 -.228

.008 .241 .968

.795 .658 -.067

.139 .828 .618

.646 .142 .837

.904 .505 -.047

.126 .956 .372

.887 -.002 .543

.954 .342 -.022

.108 .984 .165

.949 -.076 .310

.651 .667 .607

LENGTH
WIDTH
HEIGHT
BOTA
BACKA
SIDEA
BOTP
BACKP
SIDEP
BOTD
BACKD
SIDED
VOLUME

1 2 3
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Oblimin with Kaiser Normalization.
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Interpreting an Oblique Solution

Interpretation is based on the pattern matrix, because this describes the unique 
contributions of the factor to each variable.  In the present example, the factors 
are relatively uncorrelated (see below), so the interpretations are comparable. 
The structure matrix represents the correlation of each variable with the factor, 
but in the case of oblique factors this correlation is confounded with the 
correlations among the factors. 

Component Correlation Matrix

1.000 .154 .142
.154 1.000 .101
.142 .101 1.000

Component
1
2
3

1 2 3

Extraction Method: Principal Component Analysis.  
Rotation Method: Oblimin with Kaiser Normalization.

The correlation among the factors is shown in the following table. With a 
sample size of 200, a correlation greater than .14 is significant at the .05 level, 
two-tailed.



8

29

Other Factor Analytic Solutions

There are many other factor analytic solutions.  An important 
issue in this regard is the distinction between principal 
components which analyzes the total variance and common 
factors which analyzes the common variance.  There is 
controversy about which approach is best.  Stevens (1996, pp. 
383-388) discusses the issues involved and favours principal 
components analysis.  An alternative view is expressed by 
Fabrigar, Wegener, MacCallum & Strahan (1999).   

30

The Principal Axis Solution

This is a common alternative.  Rather than analyzing the total 
variance among the variables, it analyzes the common 
variance.  This is achieved by substituting a measure of 
common variance into the correlation matrix instead of 1’s. A 
common estimate is the squared multiple correlation of each 
variable with all the other variables in the matrix.

Principal Axis factoring in SPSS first performs a principal 
components analysis to determine the number of factors, then 
estimates the diagonal values (the communalities) using R².  It 
then extracts the number of factors initially determined, computes 
the communalities and compares them with the R² values.  If they 
do not agree, the program uses these communalities to extract 
factors, and continues iterating until stable estimates of the 
communalities are obtained.  It then performs the rotation selected 
by the user.
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Factor Scores

These include:
1. Simply summing the variables that define a factor.  This 

procedure is not recommended because the correlations 
between these scores do not reflect the correlations among the 
factors. 

2. Procedures used by SPSS Factor
The Regression Method (see next slide)
The Bartlett Method
The Anderson-Rubin Method

Used to estimate the individual’s score on factors if they could be 
measured on the factors.  They can be determined either for the 
unrotated (e.g. Principal Components) matrix or the rotated one.  
Note, for the Principal Components analysis one possible form is
simply the original principal components (e.g. ZI = w1Z1 + w2Z2 + 
… + wpZp), but as can be seen below they could also be computed 
using a number of procedures. 
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iyiiiI rr 1−=β

Note: This procedure results in biased estimates, but as long as the initial 
solution is principal components, the factor scores will display the same 
correlations as the factors on which they’re based.  If the factors are 
orthogonal the mean of the factor scores = 0, and the standard deviation = 
1.0. If the factors are correlated, the means of the factor scores = 0, but the 
standard deviation may not be 1.0.  If the initial solution is principal axis, the 
factor scores are indeterminate.  Among other things, this means that the 
factor scores do not necessarily reflect the correlations among the factors.

rii
-1 is the inverse of the matrix of correlations among the predictors 

(variables in this case).
riy are the correlations of the predictors with the criterion (i.e., the 

factor).  In this case, the correlations are the loadings from the appropriate 
structure matrix.

where

The Regression Method is commonly used. It makes use of multiple
regression to estimate scores on each factor for the individuals. Recall that 
with multiple regression, the β’s can be computed as:
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