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General Rationale and Purpose

The logic underlying Factor Analysis is that measures are influenced by a
number of underlying constructs, and that the dimensions in factor analysis
(principal components) help to uncover them. This is done by decomposing the
correlations (or covariances, etc.) among them.

For example, scores on a statistics test might tap a number of dimensions, such
as knowledge of the course material, quantitative ability, verbal ability, test
anxiety, other possible elements, and error. It might be diagrammed as follows:

. Quant
Knowledge of Statistics Verb Error

10 20 30 40 50 60 70 80 90 100%

The purpose of factor analysis is to understand the relationships among
variables. This is achieved by identifying a number of dimensions and
seeing how the variables relate to them. These dimensions are simply
weighted aggregates of the variables. They are also referred to as
factors, components, or latent variables.

When conducting a factor analysis, one seeks to determine the number of
dimensions necessary to explain the bulk of the relationships among the
variables, and then to interpret them by investigating the correlations of the
variables with the dimensions.

One of the earliest applications of factor analysis identified dimensions
underlying scores on measures of mental ability (Thurstone, 1938).
Another application (McCrae & Costa, 1987) identified the Big 5
dimensions of personality as comprising:

Openness

Conscientiousness

Extraversion

Agreeableness

Neuroticism

Steps in conducting a factor analysis

There are three stages in conducting a factor analysis:

1. Calculate a matrix of associations. Most times, this is a
correlation matrix but it could be a covariance matrix, a
cross product matrix, etc.

2. Calculate an initial factor matrix. There are many types
of solutions, principal components, principal axis,
unweighted least squares, maximum likelihood, alpha
analysis, etc...

3. Produce a rotated solution. Sometimes, this isn’t done,
but if it is, there are a number of alternatives, varimax,
quartimax, equamax, oblimin, promax, etc...




Concepts and Terms

Fundamental Theorem. The correlation matrix can be reproduced from the
factor matrices as follows:

R=AA" foran orthogonal factor matrix
R=AgA" foranon-orthogonal factor matrix

where A is the structure matrix, ATis its transpose, and ® is the
matrix of correlations among the factors.

Pattern Matrix. A matrix of the weights used to define the factors.

Structure Matrix. A matrix of the correlations of each variable with the factors

Eigenvalue. The variance of a principal component

Eigenvalue 1 criterion. Retain all factors with eigenvalues > 1.

Scree test (Cattell, 1966). A plot of the eigenvalues to determine the
number of factors to retain.

An Example Using SPSS Factor:

One of the initial demonstrations of the logic underlying factor analysis was
Thurstone’s Box problem. Our version factor analyzes correlations of the
length, width, and height of each box, the areas of the 3 sides, the diagonals
of the 3 sides, the perimeters of the 3 sides, and the volume. The data are
on the webpage (Box Problem Data), and the Syntax file is as follows:

FACTOR
/VARIABLES LENGTH WIDTH HEIGHT BOTA BACKA SIDEA BOTP
BACKP SIDEP BOTD BACKD SIDED VOLUME
/MISSING LISTWISE
/ANALYSIS LENGTH WIDTH HEIGHT BOTA BACKA SIDEA BOTP
BACKP SIDEP BOTD BACKD SIDED VOLUME
/PRINT INITIAL CORRELATION EXTRACTION ROTATION
/PLOT EIGEN
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PC
/CRITERIA ITERATE(25)
/ROTATION VARIMAX
/METHOD=CORRELATION .

Definition of Variables Back
/
Side [ Height
Length
f Bottom

Measures Width

Length Perimeter of Bottom Volume

Width Perimeter of Back

Height Perimeter of Side

Area of Bottom
Area of Back
Area of Side

Diagonal of Bottom
Diagonal of Back
Diagonal of Side 7

Summary Statistics of the Basic Data

Descriptive Statistics

Mean Std. Deviation | Analysis N
LENGTH 15.0300 2.98389 200
WIDTH 10.1100 2.19133 200
HEIGHT 6.1200 1.48885 200
BOTA 151.0500 41.89083 200
BACKA 61.6500 19.19766 200
SIDEA 92.1950 28.14065 200
BOTP 50.2650 6.95894 200
BACKP 32.5100 5.10492 200
SIDEP 42.3750 6.47798 200
BOTD 18.3050 2.60691 200
BACKD 11.9050 1.98638 200
SIDED 16.3400 273713 200
VOLUME | 922.7950 334.47256 200 8




Correlation Matrix

Correlation Matrix

LENGTH | WIDTH | WEIGHT | BOTA | BACKA | SIDEA | BoTP | BACKP | SIDEP | BOTD | BACKD | SIDED | vOLUME
Correlaton TENGTH | 1000 | -116 | -074 612 | 102 593 785 | 140 880 860 | 160 e 455
WIDTH e | 1000 083 684 509 13 530 804 147 a7 895 136 466
HEIGHT o4 | -oe3| o0 | -076 710 731 -100 500 s | -109 310 144 591
BOTA 612 684 | 076 | 1000 a2 363 964 545 530 890 595 585 73
BACKA 102 509 710 a6 | 1000 521 315 044 244 200 841 056 820
SIDEA s03 | 113 731 363 s21 | 100 a3 334 893 a0 172 746 805
BOTP 765 539 | -100 964 315 a3 | 1000 408 660 72 445 733 699
BACKP -149 804 500 546 944 334 06 | 1000 103 250 062 | 037 753
SiDEP. E —ry 3% 530 224 893 660 103 | 1000 72| 008 959 699
BOTD 860 Ed 108 8% 200 404 a2 259 742 | 1000 285 826 640
BACKD -169 895 310 595 841 72 s %2 |  -o08 286 | 1000 | -02 654
SIDED 065 | -13 144 585 056 746 73| 0w 959 826 | 102 | 1000 576
VOLUME 455 465 591 733 820 805 6% 753 699 640 654 576 | 1000

The first section gives the eigenvalues for each of the 13
dimensions, the second repeats this for the 3 factors retained, and
the third section gives the sum of squared loadings for the 3
factors after rotation. Note:

1. The percentage is the eigenvalue divided by 13.

2. The sum of the 13 eigenvalues = 13.

3. The rotation sums of squared loadings attempts to even out the

The correlation matrix is subjected to an analysis that extracts factors
accounting for decreasing amounts of variance. This produces a table
of the variance extracted by each factor (see next slide). These
variances are referred to as eigenvalues. Given 13 variables, that table
presents the variances associated with each of 13 factors extracted.

values.
Total Variance Explained
Initial Ei o Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Component Total % of Variance | Cumulative % Total % of Variance | Cumulative % Total % of Variance | Cumulative %
1 6.847 52.669 52.669 6.847 52.669 52.669 5.439 41.839 41.839
2 3.718 28.597 81.265 3718 28.597 81.265 4.463 34.328 76.167
3 2.246 17.280 98.546 2.246 17.280 98.546 2.909 22379 98.546
4 057 435 98.980
5 040 310 99.291
6 031 236 99.527
7 020 156 99.683
8 014 110 99.793
9 010 079 99.872
10 008 060 99.931
1" 004 032 99.964
12 004 031 99.994
13 001 006 100.000

Extraction Method: Principal Component Analysis.

Communalities

The proportion of variance that variable has in common with all the other
variables. They are set at 1.0 in Principal Components; the extraction
communalities are the proportions captured by the 3 factors retained.

. Communalities
Note. The communalities are

the sum of squares of the Initial __| Extraction
factor loadings across the ;ﬁgng 1832 'ZZS
factors in both the |n|t!al and HEIGHT 1.000 982
rotated factors. That is: BOTA 1.000 o717
From slide 13, BACKA 1.000 979
.6622+(-.736)2+(-.118)% = .993 SIDEA 1.000 985
and from slide 14 BOTP 1.000 .996
9772+(-.190)2+.0582 = .993 BACKP 1.000 994
SIDEP 1.000 995
BOTD 1.000 .980
BACKD 1.000 975
SIDED 1.000 989
VOLUME 1.000 978

Extraction Method: Principal Component Analysis.

A Plot of the Eigenvalues associated with each component.

The Scree test is used to distinguish the true factors from those reflecting error.
This is identified by the elbow in the plot. This plot indicates three factors.
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Initial Factor matrix
The principal component matrix is a structure matrix, consisting of the
correlations of each variable with each of the three factors. It is generally not
interpreted. Typically, interpretation is done with the rotated matrix.

Component Matrix

Varimax Rotated Factor Matrix

This is a structure matrix, consisting of the correlations of the variables with

the rotated factors. It is typically considered to offer a more parsimonious

interpretation than a non-rotated matrix.

Rotated Component Matri®

Note the sum of the squared factor Component
loadings for each factor equals the Component 1 2 3
ei en\?alue for that factor. that is: d 2 3 INO!;. Th? en (:]ffsquared fa[I:tor LENGTH o7 ~1%0 058
g : : TENGTH 662 736 118 oadings for each factor equals WIDTH 082 963 -.233
WIDTH 487 683 -533 the value reported in the last part HEIGHT -105 154 973
6622+ ... +.9432=6.847 HEIGHT 366 292 873 of the table in slide 10. That is: BOTA 757 628 -.099
BOTA 872 025 -.465 BACKA .008 773 617
BACKA 649 672 .326 9772+ ... + 5452 =5439 SIDEA .566 .030 815
SIDEA 751 -.229 607 BOTP 879 465 -.084
BOTP .884 -176 -429 BACKP .006 925 .370
BACKP 636 .766 .052 SIDEP .852 -.101 .509
SIDEP 784 -.540 299 BOTD 943 295 -.061
BOTD .850 -.346 -.370 BACKD .006 974 163
BACKD 584 781 -.154 SIDED 943 -.158 273
SIDED 734 -666 077 VOLUME 545 582 585
VOLUME 943 192 -229 Extraction Method: Principal Component Analysis.
Extraction Method: Principal Component Analysis. 13 Rotation Method: Varimax with Kaiser Normalization. 14
a. 3 components extracted. a. Rotation converged in 6 iterations.
Interpreting a Factor Analysis Varimax Rotated Factor Matrix
This analysis of the measurements of the boxes suggested that 3 factors
accounted for the relationships among the measures, explaining 98.55% of Rotated Component Matri%
the total variance. The variance of the first factor was 6.847, accounting for c t
52.67% of the variance; that for the second factor was 3.718 (28.60%), and 1 2 3
that for the third was 2.246 (17.28%). These factors are defined to account for \I;v et ST e o
as much of the variance as possible in the matrix. H HEIGHT 105 154 73
L*W BOTA 757 628 -.099
Generally, the initial matrix is not interpreted. Instead, the factors are rotated W*H BACKA -008 773 617
to produce a more parsimonious picture, where each variable has a L'H SIDEA 566 030 815
combination of high and low loadings across the factors. Interpretation AL sot® 879 405 o8
( tion of hig ¢ g " - Interp! 2(H+W) BACKP 006 925 370
involves identifying what is common to the variables loading high on a factor 2(L+H) SIDEP 852 -101 509
and what distinguishes them from the variables not having high loadings on SQRT(L2 + W2)| BOTD 943 295 -.061
that factor. Consider the rotated factor matrix in slide 14, and attempt to SQRT(H22+ Wj) zACKD 006 974 163
identify the common feature of each factor. The next slide might make the SQ':::,(VT; L% vlc?quME ’zjg ;:2 2;2
task a bit easier, because there we show the basic elements of each - - -
. N Extraction Method: Principal Component Analysis.
measure. This helps to emphasize that you must know a lot about the Rotation Method: Varimax with Kaiser Normalization.
measures involved in a factor analysis to be able to make a meaningful a. Rotation converged in 6 iterations.
interpretation of the factors. 15 16




Factor Interpretation

Factor | accounts for 41.84% of the variance." It is defined by high
loadings (>.30) from Length (L), BOTA (L*W), SIDEA (L*H), BOTP
(2(L+W)), SIDEP (2(L+H)), BOTD (sqrt(L? + W?)), SIDED (sqrt(L? + H?)),
and Volume (L*W*H). Length is involved in all 8 of these measures so it
seems reasonable to define this as a Length factor.

Factor Il accounts for 34.33% of the variance. It is defined by high loadings
(>.30) from Width (W), BOTA (L*W), BACKA (W*H), BOTP (2(L+W)),
BACKP (2(H+W)), BACKD (sqrt(H? + W?)), and Volume (L*W*H), and
BOTD (sqrt(L? + W2)),has a loading of .295. Thus, it seems reasonable to
define this as a Width factor.

Factor Il accounts for 22.38% of the variance. It is defined by high loadings
(>.30) from Height (H), BACKA (W*H), SIDEA (L*H), BACKP (2(H+W)),
SIDEP (2(L+H)) and Volume (L*W*H). Although BACKD (sqrt(H? + W?)) and
SIDED (sqrt(L? + H2)) do not contribute substantially to this factor, it seems
reasonable nonetheless to define this as a Height factor.

1 See the table in slide 10 in the section under Rotation Sums of Squared Loadings1.7

Principal Components Analysis: Basic Mathematics
A Small Example
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A factor is a weighted aggregate of all the variables in the study. When
factor analyzing a correlation matrix, the general form of the aggregate for
each factor is:

Z, =Wz, +W,Z, +WZy +. W, 2

Given an mxm correlation matrix, there will be m such factors. For each one,
the weights, w, and the variance of each factor will differ. The variance of
each factor is called the eigenvalue.

There are a number of approaches for calculating the eigenvalues. One is to
make use of the determinantal equation, set it equal to 0, and solve for the
eigenvalues. This is written as:

IR—21|=0

R = the correlation matrix, | = an identity matrix, and A = the eigenvalue

(a) Determinantal Equation ‘R - ﬂl‘ =0

Given R (i.e. an m x m matrix of correlations), this would produce m A's
arranged in decreasing order. If all m A’s were obtained,

2A=m

The A is called the eigenvalue or the characteristic root, or latent root. Itis a
measure of the variance of a component.

| R A I | =0
1000 0889 0.147 0323 10 00 00 00
0889 1000 0091 0.472| 100 10 00 00|| o
0147 0.091 1.000 0.903 00 00 1.0 00|
0322 0172 0.903 1.000 00 00 00 10

1-2 0889 0.147 0.323

0889 1-1 0091 0.172| e
0147 0091 1-4 0903| al +bA +cl”+4=0

0323 0.172 0.903 1-4

Results in an equation of the type

Yielding 4 values of A. 20




The four eigenvalues for this matrix are:
2.269, 1.539, .146, and .047.
Note that they sum to 4, the number of variables.

We can use this information to produce the eigenvector for
each factor. The eigenvector is the set of weights for the
variables associated with that factor (i.e., a pattern matrix). This is
done by solving a set of simultaneous equations such as:

[R-A4,1TW]=0

1-1 0889 0.147 0.323|W,
0.889 1-4 0.091 0.172|W,

(1-A)w, +.889w, +.147w, +.323w, =0

889w, + (1- A)w, +.091w, +.172w, =0

147w, +.091w, + (1- A)w, +.903w, =0

323w, +.172w, +.903w; + (1-A)w, =0
With 4 equations and 4 unknowns, we can obtain an infinite set
of solutions. We obtain a unique one by requiring that the sum of

squares of the weights equal 1. In matrix form, this is the side
condition that:

W™W =1 whichis equivalentto > W* =1

=0 For the first factor, this produces the weights
0.147 0091 1-2 0.903 | W, _ - _ "
0323 0172 0903 1-4 W, . w1 =.521, w2 = 471, w3 = 473, w4 = .533 ”
Thus: Z, =.521Z, + A7T1Z, + A73Z, +.533Z,

and the variance of this aggregate is the eigenvalue:
That is: S; =4,=2269
For the second factor, this produces the weights
wl = .467, w2 = .536, w3 = -.539, w4 = -.451
and S; =1,=1539

SPSS Factor defines the values in the Component Matrix as:
2 _ 2 _
Zaj,p - lpzwivp - /Ip

It does not output a pattern matrix, though in this case it will be
noted that there is a 1 to 1 correspondence between the two. The
component matrix is a structure matrix but it differs from the
pattern matrix solely in the magnitude of the values so that the
sums of squares are A and 1 respectively. 23

a; =W, /1p where

Component Matrix®

The loadings on the principal Component

components axes and the — 1 = 2 =
varimax rotated axes. These I 709 65
are structure matrices because | ,3 712 669
they are the correlations of the | x4 803 -560

variables with the factors. Extraction Method: Principal Component Analysis.

a. 2 components extracted.

Rotated Component Matri®

The factor plot for these Component
loadings is shown on the . 1 = 2 =
. N X . B

next slide. It will be noted

) ; x2 037 971
that the points don’t move 3 a77 025
lnfspace. Only the x4 965 166
reterence axes are Extraction Method: Principal Component Analysis.
rotated.

Rotation Method: Varimax with Kaiser Normalization.
. Rotation converged in 3 iterations.

24




Factor plot showing the
variables plotted against the
solid axes for the principal
component loadings and
against the broken axes for
the varimax loadings.

Varimax
axes

The varimax solution is
described as orthogonal
because the axes are
kept at right angles with
each other. A non-
orthogonal solution
would have the rotated
axes at less than right
angles.

78 \'

Principal

.4 axes

component

25

The plot below illustrates the difference between pattern and structure
coefficients with non-orthogonal rotation.

A pattern coefficient is the
value of the projection
that is parallel to the other
axis, while the structure
coefficient is the p
projection that is at right Y V3
angles to the axis. d

SPSS Analysis of the Box Problem
Using Principal Components and an Oblique Rotation

With an oblique rotation, the rotated solution consists of a Pattern Matrix, a
Structure Matrix, and a Matrix of Correlations among the Factors.

Pattern Matrix*

Structure Matrix

‘Component c t
1 2 1 2 3

[ENGTH 1,003 ~280 017 TENGTH 957 27 057
WIDTH 040 966 -331 WIDTH 142 939 -228
HEIGHT -155 167 974 HEIGHT 008 241 968
BOTA 740 567 -229 BOTA 795 658 -.067
BACKA -.060 782 548 BACKA 139 828 618
SIDEA 541 -019 762 SIDEA 646 142 837
BOTP 873 391 -210 BOTP 904 505 -.047
BACKP -.060 936 286 BACKP 126 956 372
SIDEP 852 -178 440 SIDEP 887 -.002 543
BOTD 946 213 -178 BOTD 954 342 -022
BACKD -.054 985 073 BACKD 108 984 165
SIDED 958 244 199 SIDED 949 -076 310
VOLUME 499 541 482 VOLUME 651 667 607

Extraction Method: Principal Component Analysis.
Rotation Method: Oblimin with Kaiser Normalization.

a. Rotation converged in 10 iterations.

Extraction Method: Principal Component Analysis.
Rotation Method: Oblimin with Kaiser Normalization

27

Interpreting an Oblique Solution

Interpretation is based on the pattern matrix, because this describes the unique
contributions of the factor to each variable. In the present example, the factors
are relatively uncorrelated (see below), so the interpretations are comparable.
The structure matrix represents the correlation of each variable with the factor,
but in the case of oblique factors this correlation is confounded with the
correlations among the factors.

The correlation among the factors is shown in the following table. With a
sample size of 200, a correlation greater than .14 is significant at the .05 level,
two-tailed.

Component Correlation Matrix

Component 1 2 3

1 1.000 154 142

2 154 1.000 101

3 142 101 1.000

Extraction Method: Principal Component Analysis.

Rotation Method: Oblimin with Kaiser Normalization. 28




Other Factor Analytic Solutions

There are many other factor analytic solutions. An important
issue in this regard is the distinction between principal
components which analyzes the total variance and common
factors which analyzes the common variance. There is
controversy about which approach is best. Stevens (1996, pp.
383-388) discusses the issues involved and favours principal
components analysis. An alternative view is expressed by
Fabrigar, Wegener, MacCallum & Strahan (1999).

29

The Principal Axis Solution

This is a common alternative. Rather than analyzing the total
variance among the variables, it analyzes the common
variance. This is achieved by substituting a measure of
common variance into the correlation matrix instead of 1’s. A
common estimate is the squared multiple correlation of each
variable with all the other variables in the matrix.

Principal Axis factoring in SPSS first performs a principal
components analysis to determine the number of factors, then
estimates the diagonal values (the communalities) using R2. It
then extracts the number of factors initially determined, computes
the communalities and compares them with the R? values. If they
do not agree, the program uses these communalities to extract
factors, and continues iterating until stable estimates of the
communalities are obtained. It then performs the rotation selected
by the user. 30

Factor Scores

Used to estimate the individual’s score on factors if they could be
measured on the factors. They can be determined either for the
unrotated (e.g. Principal Components) matrix or the rotated one.
Note, for the Principal Components analysis one possible form is
simply the original principal components (e.g. ZI = w1Z1 + w2Z2 +
... + wpZp), but as can be seen below they could also be computed
using a number of procedures.

These include:

1. Simply summing the variables that define a factor. This
procedure is not recommended because the correlations
between these scores do not reflect the correlations among the
factors.

2. Procedures used by SPSS Factor

The Regression Method (see next slide)
The Bartlett Method
The Anderson-Rubin Method 31

The Regression Method is commonly used. It makes use of multiple
regression to estimate scores on each factor for the individuals. Recall that
with multiple regression, the §’s can be computed as:

By =%, where

ri’'is the inverse of the matrix of correlations among the predictors
(variables in this case).

r;, are the correlations of the predictors with the criterion (i.e., the
factor). In this case, the correlations are the loadings from the appropriate
structure matrix.

Note: This procedure results in biased estimates, but as long as the initial
solution is principal components, the factor scores will display the same
correlations as the factors on which they're based. If the factors are
orthogonal the mean of the factor scores = 0, and the standard deviation =
1.0. If the factors are correlated, the means of the factor scores = 0, but the
standard deviation may not be 1.0. If the initial solution is principal axis, the
factor scores are indeterminate. Among other things, this means that the
factor scores do not necessarily reflect the correlations among the factors.
32
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