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General Description, Example, and Purpose

Fisher (1925) introduced analysis of variance as a 
technique to assess the effects of treatments  by 
comparing variation attributed to treatments to 
variation due to random factors.  In time, very formal 
models were developed based on the complexity of 
various designs. Today, we can distinguish between 
two broad approaches:

a. The traditional (Experimental Design)
b. The General Linear Model (GLM) 
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The following example has A = 4 levels of a 
treatment and n = 8 observations in each treatment. 
The values below the table are the means and 
variances for each treatment as well as the grand 
mean (mean of the means) and the mean of the 
variances. 

This lecture, and subsequent ones for the next few 
weeks,  will focus on the Experimental Design 
Approach.   The General Linear Model Approach is 
reviewed on slides 16-18, and the multiple 
regression approach to GLM will be discussed in 
later lectures, and will be referred to as MRC.
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A4A3A2A1

Means 3.00 3.50 4.25 6.25 4.25

Variances             2.286 .857 1.071             4.500 2.179

Example from Kirk (1995, p. 230)
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The purpose of the analysis is to determine 
whether the means are more variable than 
can be reasonably attributed to chance.  If 
so, it might be concluded that the treatments 
had some effect.  In this case, one would be 
interested in determining:

1. The size of the effect, and/or the 
power of the test. 

2. Whether there are differences 
between any pairs of means (a contrast) or 
any other type of contrast (see Topic 4).
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SPSS Analysis

Using Clope to perform the analysis
Enter SPSS and put data in the Data Editor.  The data will consist of 
one column for the level of A and one for the dependent variable.

Two Programs are available
GLM Univariate. This program will perform one analysis at a time, 

yields estimates of η² and power, and permits tests of means if 
requested.

Click on: Analyze→GLM→Univariate

Oneway. This program will perform many single factor analyses of 
variance in the same run and permits tests of means if requested.

Click on: Analyze→Compare Means→Oneway
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SPSS GLM Run

GET
FILE='\\tsclient\E\PSYCH540\kirkdata171.sav'.

DATASET NAME DataSet1 WINDOW=FRONT.
UNIANOVA
x  BY b
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/EMMEANS = TABLES(b) COMPARE ADJ(BONFERRONI)
/PRINT = ETASQ OPOWER HOMOGENEITY
/CRITERIA = ALPHA(.05)
/DESIGN = b .

Estimates

Dependent Variable: x

3.000 .522 1.931 4.069
3.500 .522 2.431 4.569
4.250 .522 3.181 5.319
6.250 .522 5.181 7.319

b
1.00
2.00
3.00
4.00

Mean Std. Error Lower Bound Upper Bound
95% Confidence Interval
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Tests of Between-Subjects Effects

Dependent Variable: x

49.000b 3 16.333 7.497 .001 .445 22.492 .972
578.000 1 578.000 265.311 .000 .905 265.311 1.000
49.000 3 16.333 7.497 .001 .445 22.492 .972
61.000 28 2.179

688.000 32
110.000 31

Source
Corrected Model
Intercept
b
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a. 

R Squared = .445 (Adjusted R Squared = .386)b. 

Levene's Test of Equality of Error Variancesa

Dependent Variable: x

1.293 3 28 .296
F df1 df2 Sig.

Tests the null hypothesis that the error variance of
the dependent variable is equal across groups.

Design: Intercept+ba. 
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Experimental Design Approach

The Model:
Based on Fisher’s (1925) formulation, it proposes 

that an observation can be defined in terms of the 
parameters accounting for variation in sample values.  

aiaaiX εαµ ++=

µ = grand mean in the population

αa = effect of treatment a (i.e., µa – µ)

εai = random error (i.e., Xai – µa)

Thus:

where:
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Definitional Formulae
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Expected Mean Squares
The parameters in the model  estimated by the values of the 

statistics. They will differ depending on whether the model 
is fixed or random.

Fixed Effects Model: All levels of the factor in the population are 
included in the experiment, or generalizations are limited to the 
levels in the population that are included in the experiment.

Random Effects Model: A random sample of the levels of the 
factor in the population are included in the experiment. 
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Assumptions
Experimental Design Model:

Null Hypothesis. The treatment population means are equal.    
Ho: µ1 = µ2 = µ3 = µ4 = µ

Normality. The treatment populations are normally distributed.

Homogeneity of Variance. The variances in the treatment 
populations are equal.

Independent Random Sampling. Observations are 
independently and randomly obtained from the population. 
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Proportions of Variance
Experimental Design Model:
• ω² (Omega-squared for Fixed Effects)
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Effect Size
Cohen (1988) defines Effect Size as:
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Options available in G*Power 3.1

Test family
F-ratios

Statistical Test
ANOVA: fixed effects, omnibus,one way

Types of Calculations
A priori: Compute required sample size - - given α, power and 
effect size

Criterion: Compute required α - - given power, effect size, and 
sample size
Post hoc: Compute achieved power - - given α, sample 
size, and effect size

Sensitivity: Compute required effect size - - given α, power, 
and sample size

Compromise: Compute implied α and power - - given β to 
α ratio, sample size, and effect size
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iiii XXY εβββ ++++= ...22110
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where: i individualfor  DVYi =
parametersunknown ...,, 210 =βββ

sIV'known ...,, 321 =iii XXX
2   variance0, mean  error with random εσε ===

Matrix Notation:

General Linear Model Approach
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The next slide shows one example of GLM with the sample 
data.  The X-matrix is referred to as the Structural Matrix 
and is used to identify the treatment conditions.  The 
values of the β-vector will depend on how the treatment 
groups are identified.

Dummy coding is used in the example.  The first column 
identifies the constant while columns 2-4 indicate  the 
treatment level.  As a consequence the β values equal 
mean 4, mean 1 – mean 4, mean 2 – mean 4, and 
mean 3 – mean 4, respectively.  All types of coding will 
produce the same values of SSTO (Total SS), SSR 
(Treatment SS) and SSE (Within SS), and hence the same 
analysis of variance summary table.

SPSS uses GLM with Dummy coding.
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