Research Design - - Topic 7 Split-Plot Factorial Designs © 2010 R.C. Gardner, Ph.D.

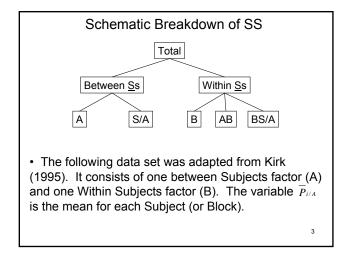
- General Description, Purpose, Example
- Univariate Approach
 Experimental Design Model
- Multivariate Approach
- Running SPSS GLM REPEATED MEASURES
- Tests of Means
 As presented in texts
 As performed by SPSS Repeated

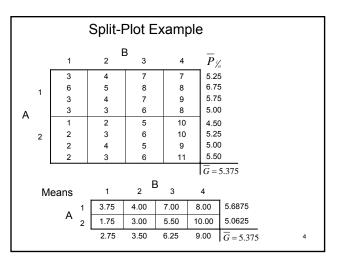
1

• The Split-plot Factorial Design consists of at least two factors, where one factor is based on independent observations and the other is based on correlated observations. It is sometimes referred to as a mixed design, or a mixed Between/Within design.

• There are two general sources of variation. One is the Between Subjects variation while the other is the Within Subjects (or Within Blocks) variation.

• The following diagram shows the breakdown of the Total sum of squares into the Between and Within Subject components





Questions to ask of the data.

• Main Effect of A. Do the means for the Between Subjects factor (A) vary more than can be reasonably attributed to chance?

• Main Effect of B. Do the means for the Within Subjects factor (B) vary more than can be reasonably attributed to chance?

• Interaction Effects of A and B. Do the AB-means vary from what you would expect given the values of the A-Means and the B-means?

5

Experimental Design Model

The score for each individual is considered to be composed of parameters as follows:

 $X_{abi} = \mu + \alpha_a + \pi_{i/a} + \beta_b + \alpha \beta_{ab} + \beta \pi_{i/a} + \varepsilon_{ib/a}$

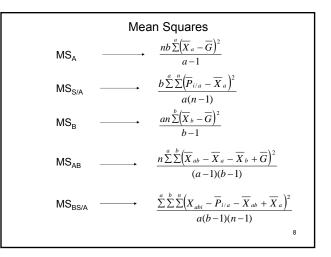
Note , this is a non-additive model that assumes there is an interaction between B and Subjects nested in A (i.e., $\beta \pi_{i/a}$). (We could also write an additive model by eliminating $\beta \pi_{i/a}$.)

This model can be used to generate the Cornfield Tukey algorithm (see slide 10).

The following slide shows the definitional formulae for the Summary Table.

6

	Definitional Formulae	
Source	Sum Of Squares	df
Between <u>S</u> s	$b\sum_{i=1}^{a}\sum_{j=1}^{n} (\overline{P}_{i/a} - \overline{G})^{2}$ $nb\sum_{i=1}^{a} (\overline{X}_{a} - \overline{G})^{2}$	an – 1
А	$nb\sum^{a}(\overline{X}_{a}-\overline{G})^{2}$	a – 1
S/A	$b\sum_{i=1}^{a}\sum_{i=1}^{n}\left(\overline{P}_{i/a}-\overline{X}_{a}\right)^{2}$	a(n-1)
Within <u>S</u> s	$\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{i=1}^{n} \left(X_{abi} - \overline{P}_{i/a}\right)^{2}$	an(b-1)
В	$an\sum^{b} \left(\overline{X}_{b} - \overline{G}\right)^{2}$	b-1
AB	$n\sum_{a}^{a}\sum_{b}^{b} \left(\overline{X}_{ab} - \overline{X}_{a} - \overline{X}_{b} + \overline{G}\right)^{2}$ $\sum_{a}^{b}\sum_{a}^{b}\sum_{a}^{n} \left(\overline{X}_{abi} - \overline{P}_{i/a} - \overline{X}_{ab} + \overline{X}_{a}\right)^{2}$	(a-1)(b-1)
BS/A	$\sum_{n=1}^{a}\sum_{j=1}^{b}\sum_{abi}^{n}\left(X_{abi}-\overline{P}_{i/a}-\overline{X}_{ab}+\overline{X}_{a}\right)^{2}$	a(b-1)(n-1)
Total	$\sum^{a} \sum^{b} \sum^{n} \left(X_{abi} - \overline{G} \right)^{2}$	abn – 1
		7

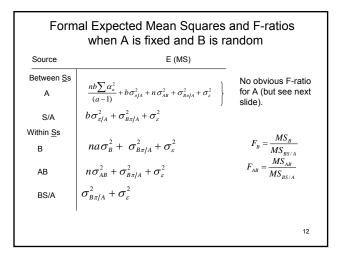


Applying the de data produces Summary Tabl	the follow				
Source	SS	df	MS	F	
Between <u>S</u> s A	12.500 3.125	7 1	3.125	2.000	
S/A	9.375	6	1.562		
Within <u>S</u> s	223.000	24	16.333		
В	194.500	3	64.833	127.875	
AB	19.375	3	6.458	12.738	
BS/A	9.125	18	0.507		
Total	235.500	31			
Note. This analy (i.e., A and B are			fixed ef	fects mod	el ,

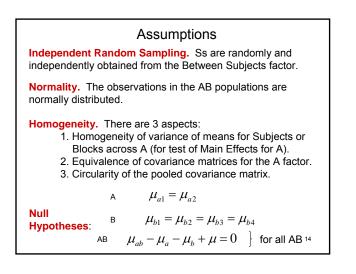
	Cornfield Tukey Algorithm
Source	E (MS)
Between <u>S</u> s	
А	$nb\theta_A^2 + b\sigma_{\pi/A}^2 + n(1-b/B)\theta_{AB}^2 + (1-b/B)\sigma_{B\pi/A}^2 + \sigma_{\varepsilon}^2$ $b\sigma_{\pi/A}^2 + (1-b/B)\sigma_{B\pi/A}^2 + \sigma_{\varepsilon}^2$
S/A	$b\sigma_{\pi/A}^2+ig(1-b/Big)\sigma_{B\pi/A}^2+\sigma_{arepsilon}^2$
Within <u>S</u> s	
В	$na\theta_B^2 + n(1-a/A)\theta_{AB}^2 + \sigma_{B\pi/A}^2 + \sigma_{\varepsilon}^2$
AB	$na \theta_B^2 + n(1 - a/A) \theta_{AB}^2 + \sigma_{B\pi/A}^2 + \sigma_{\varepsilon}^2$ $n \theta_{AB}^2 + \sigma_{B\pi/A}^2 + \sigma_{\varepsilon}^2$
BS/A	$\sigma^2_{B\pi/A} + \sigma^2_s$
Total	
Note. "a" ref	ers to the number of levels of A, "b" to the number

of levels of B, and "n" to the number of individuals in each level of A. θ , σ , and the sampling fractions are defined as before.

Formal Expe	ected Mean Squares an fixed effects model	
Source	E(MS)	
Between <u>S</u> s		MC
А	$\frac{nb\sum \alpha_a^2}{(a-1)} + b\sigma_{\pi/A}^2 + \sigma_{\varepsilon}^2$	$F_A = \frac{MS_A}{MS_{S/A}}$
S/A	$b\sigma_{\pi/A}^2 + \sigma_{\varepsilon}^2$	
Within <u>S</u> s		MS
В	$\frac{na\sum \beta_b^2}{(b-1)} + \sigma_{B\pi/A}^2 + \sigma_{\varepsilon}^2$	$F_B = \frac{MS_B}{MS_{BS/A}}$
AB	$\frac{na\sum \beta_b^2}{(b-1)} + \sigma_{BefA}^2 + \sigma_{\varepsilon}^2$ $\frac{n\sum \alpha \beta_{ab}^2}{(a-1)(b-1)} + \sigma_{BefA}^2 + \sigma_{\varepsilon}^2$	$F_{AB} = \frac{MS_{AB}}{MS_{BS/A}}$
BS/A	$\sigma_{\scriptscriptstyle B\pi/A}^2+\sigma_{\scriptscriptstyle {\cal S}}^2$	
		11



Comp	uting quasi F-ratios
Determine an appropriate en Mean Squares.	ror term for A by adding and subtracting various
. MS _{S/A}	
+ MS _{AB}	+ $n\sigma_{AB}^2 + \sigma_{B\pi/A}^2 + \sigma_{\varepsilon}^2$
- MS _{BS/A}	$-\sigma_{B\pi/A}^2+\sigma_{\varepsilon}^2$
	$b\sigma_{\pi/A}^2+n\sigma_{\scriptscriptstyle AB}^2+\sigma_{\scriptscriptstyle B\pi/A}^2+\sigma_{\scriptscriptstyle {\cal E}}^2$
Therefore: $F_A^{+} = \frac{1}{MS_{S/A}}$	$\frac{MS_{A}}{a + MS_{AB} - MS_{BS/A}} = \frac{\frac{hb\sum \alpha_{a}^{2}}{a-1} + b\sigma_{x^{2}a}^{2} + n\sigma_{AB}^{2} + \sigma_{\beta c^{2}A}^{2} + \sigma_{z}^{2}}{b\sigma_{x^{2}A}^{2} + n\sigma_{AB}^{2} + \sigma_{\beta c^{2}A}^{2} + \sigma_{z}^{2}}$
= 1.562	$\frac{3.125}{+6.458507} = .416$
Numerator df = (a-1) = 1	
Denominator df = $\frac{(MS)}{MS}$ (Satterthwaite, 1946) $\frac{dS}{df_s}$	$\frac{S_{5/A} + MS_{AB} - MS_{BS/A})^2}{S_{5/A}^2 + MS_{AB}^2 + MS_{BS/A}^2} = \frac{7.513^2}{1.562^2} = \frac{7.513^2}{6} = \frac{3.94}{1.8}$

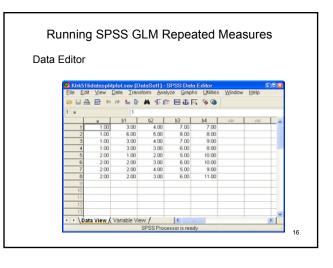


Tests of Homogeneity

Box's M test of equivalence of the covariance matrices. If this test is significant, it indicates that the covariance matrices are not equivalent.

Mauchly's test of Sphericity. If this test is significant, it indicates that the pooled covariance matrix does not satisfy the assumption of circularity.

Generally, these tests are not robust with respect to violations of normality and it is recommended that regardless of the results of these tests, the degrees of freedom for the within subjects effects be reduced using an epsilon multiplier. Kirk recommends using the Greenhouse-Geisser estimate. SPSS GLM presents the degrees of freedom for the case where the assumptions are satisfied as well as when the epsilon value is applied.



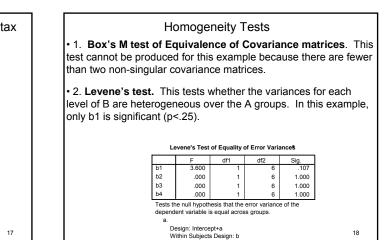
Cloping the appropriate choices produces the Syntax file.

> GET FILE='C:\PSYCH540\kirk516data.sav'. DATASET NAME DataSet2 WINDOW=FRONT. GLM b1 b2 b3 b4 BY a /WSFACTOR = b 4 Polynomial /METHOD = SSTYPE(3) /PRINT = ETASQ OPOWER HOMOGENEITY /CRITERIA = ALPHA(.05) /WSDESIGN = b /DESIGN = a .

The following 4 slides present the major output.

17

19



• 3. Mauchly's Test of Sphericity of the Pooled Covariance Matrix Mauchly's Test of Sphericity easure: MEASURE Epsilon^a Vithin Subjects Effect Mauchly's W Huynh-Feldt Chi-Square 5.449 Sig. 372 e-Geisser .584 df Lower-bound .333 Tests the null hypothesis that the error covariance matrix of the orthono proportional to an identity matrix. malized transformed depend a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table. Design: Intercept+a Within Subjects Design: b Mauchly's test is not significant, indicating that the assumption of circularity is satisfied. Nonetheless, it is customary to adjust the degrees of freedom for the repeated measures F-ratios by multiplying them by an epsilon multiplier.

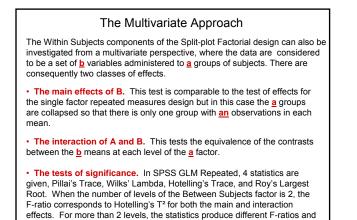
U	nivariate	Tests	of th	ne Wit	hin S	Subje	ects E	ffects	5
			Taste	of Within-Subie	cte Effecte				
Measure:	MEASURE 1		10313	or mann oubje	CIS Encols				
Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ⁸
b	Sphericity Assumed	194.500	3	64.833	127.890	.000	.955	383.671	1.000
	Greenhouse-Geisser	194.500	1.752	110.992	127.890	.000	.955	224.113	1.000
	Huynh-Feldt	194.500	2.830	68.738	127.890	.000	.955	361.879	1.000
	Lower-bound	194.500	1.000	194.500	127.890	.000	.955	127.890	1.000
b*a	Sphericity Assumed	19.375	3	6.458	12.740	.000	.680	38.219	.998
	Greenhouse-Geisser	19.375	1.752	11.056	12.740	.002	.680	22.325	.969
	Huynh-Feldt	19.375	2.830	6.847	12.740	.000	.680	36.048	.998
	Lower-bound	19.375	1.000	19.375	12.740	.012	.680	12.740	.843
Error(b)	Sphericity Assumed	9.125	18	.507					
	Greenhouse-Geisser	9.125	10.514	.868					
	Huynh-Feldt	9.125	16.978	.537					
	Lower-bound	9,125	6.000	1.521					

As indicated earlier, it is typical to interpret the results using the Greenhouse-Geisser adjustment. Thus, the results for B would be written as *F*(2,11)=127.89 , *p*<.0004), rounding the degrees of freedom to the next highest integer; those for AB would be written as *F*(2,11)=12.74, *p*<.002. 20

			Tests of Ber	tween-Subjec	ts Effects			
Measure:	MEASURE_1							
Transform	ed Variable: Ave	rage						
	Type III Sum					Partial Eta	Noncent.	Observed
Source	of Squares	df	Mean Square	F	Sig.	Squared	Parameter	Power ^a
Intercept	924.500	1	924.500	591.680	.000	.990	591.680	1.000
а	3.125	1	3.125	2.000	.207	.250	2.000	.223
Error	9.375	6	1.563					
a. Com	puted using alph	a = .05						

significantly from 0, F(1,6) = 591.68, p < .0004. The test of A indicates that the effects due to A are not significant, F(1,6) = 2.00, ns.

21



22

degrees of freedom for the interaction.

Assumptions Assumptions for the repeated measures effects are: • Independent random sampling. Ss are independently and randomly sampled from the Between Subjects factor • Multivariate Normality. This assumption applies to each level of the Between Subjects factor. • Equivalence of the Covariance Matrices. The covariance matrices for the Between Subjects factor are the same in the population. Multivariate Null Hypotheses for Within Subjects Effects Main Effect for B μ_{b4} μ_{b1} μ_{b4} μ_{b2} = μ_{b3} μ_{b4} v1 = b-1 Degrees of freedom: v2 = N-(a-1) -(b-1) Interaction Effect for AB $\begin{bmatrix} \mu_{a1b1} - \mu_{a1b4} \\ \mu_{a1b2} - \mu_{a1b4} \\ \mu_{a1b3} - \mu_{a1b4} \end{bmatrix} = \begin{bmatrix} \mu_{a2b1} - \mu_{a2b4} \\ \mu_{a2b2} - \mu_{a2b4} \\ \mu_{a2b3} - \mu_{a2b4} \end{bmatrix}$ v2 = N - a - b + 2 Degrees of freedom: v1 = (a-1)(b-1) 24

The multivariate tests are appropriate for the Within Subjects Effects. The Between Subjects Effects are assessed using the univariate approach as presented in Slide 21.

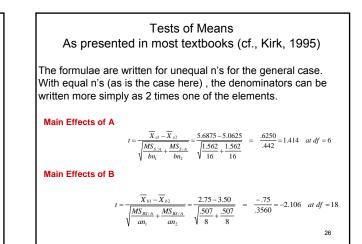
Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^a
b	Pillai's Trace	.973	47.192 ^D	3.000	4.000	.001	.973	141.577	1.000
	Wilks' Lambda	.027	47.192 ^b	3.000	4.000	.001	.973	141.577	1.000
	Hotelling's Trace	35.394	47.192 ^b	3.000	4.000	.001	.973	141.577	1.000
	Roy's Largest Root	35.394	47.192 ^b	3.000	4.000	.001	.973	141.577	1.000
b*a	Pillai's Trace	.856	7.906 ^b	3.000	4.000	.037	.856	23.718	.700
	Wilks' Lambda	.144	7.906 ^b	3.000	4.000	.037	.856	23.718	.700
	Hotelling's Trace	5.930	7.906 ^b	3.000	4.000	.037	.856	23.718	.700
	Roy's Largest Root	5.930	7.906 ^b	3.000	4.000	.037	.856	23.718	.700

a. Computed using alpha = .05
b. Exact statistic

c. Design: Intercept+a Within Subjects Design: b

The main effect for B is significant, F(3,4) = 47.19, p < .001 indicating that the B-means vary more than can be reasonably attributed to chance.

The AB interaction is significant, F(3,4) = 7.91, p < .037 indicating that some contrasts in A1 differ from the corresponding ones in A2. This is equivalent to a univariate interaction.



Tests of Cell Means

1. Tests of Simple main Effects

2. Tests of Interaction Effects

1. Simple Main Effects

To determine the appropriate error term, ask 2 questions:

- 1. What is the error term for the interaction?
 - 2. What is the error term for the factor being varied?

If the answer is the same, use that one Mean Square as the error term.

If the answer is not the same calculate a pooled error term by adding the sums of squares for the two error terms and dividing by the sum of their degrees of freedom.

27

Simple Main Effects of B at each level of A. The answer to each question is MS _{BSA} . Therefore:
$t = \frac{\overline{X}_{a1b1} - \overline{X}_{a1b2}}{\sqrt{\frac{MS_{BS/A}}{n_1} + \frac{MS_{BS/A}}{n_2}}} = \frac{3.75 - 4.00}{\sqrt{\frac{.507}{4} + \frac{.507}{4}}} = \frac{25}{.5035} =497 at \ df = 18$
Simple Main Effects of A at each level of B. The answer to question 1 is $MS_{BS/A}$ while that for question 2 is $MS_{S/A}$. Therefore:
$MS_{pooled\ error} = \frac{SS_{S/A} + SS_{BS/A}}{df_{S/A} + df_{BS/A}} = \frac{9.375 + 9.125}{6 + 18} = \frac{18.5}{24} = .771$
$df_{pooled\ error} = \frac{(SS_{S/A} + SS_{BS/A})^2}{\frac{SS_{S/A}^2}{df_{S/A}} + \frac{SS_{BS/A}^2}{df_{BS/A}}} = \frac{(9.375 + 9.125)^2}{9.375^2} + \frac{9.125^2}{18} = \frac{342.25}{14.648 + 4.626} = 17.759$
$t = \frac{\overline{X}_{a1b1} - \overline{X}_{a2b1}}{\sqrt{\frac{MS_{pooled error}}{n_1} + \frac{MS_{pooled error}}{n_2}}} = \frac{3.75 - 1.75}{\sqrt{\frac{.771}{.4} + \frac{.771}{.4}}} = \frac{2.00}{.621} = 3.221 at df = 17.759$

2. Interaction Effects

- a. Treatment/Contrast Interactions
- b. Contrast/Contrast Interactions

These are conducted as discussed in Topic 5. Note that the error term in each case would be the error term for the interaction because these are pure interaction effects and not confounds of main and interaction effects as is the case when performing tests of simple main effects.

29

Tests of Means in SPSS GLM Repeated Measures

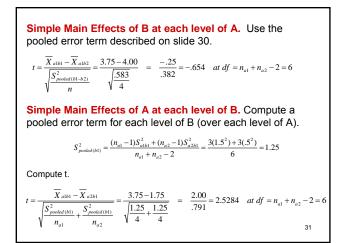
Main Effects of A. SPSS uses the formula described earlier (see slide 26) for this test.

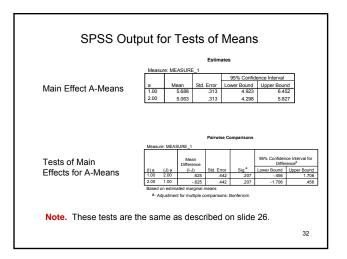
Main Effects of B. Compute a pooled estimate of the variance of the difference for each level of B over all levels of A. This requires computing the variance of the difference (i.e., b1-b2) in each A group, and pooling them as follows:

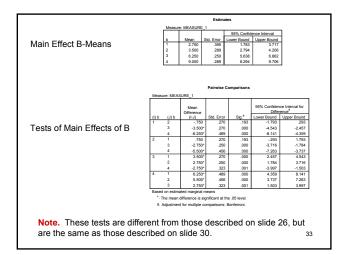
$$S_{pooled(b1-b2)}^{2} = \frac{(n_{a1} - 1)S_{a1(b1-b2)}^{2} + (n_{a2} - 1)S_{a2(b1-b2)}^{2}}{n_{a1} + n_{a2} - 2} = \frac{3(.9166) + 3(.25)}{6} = .583$$

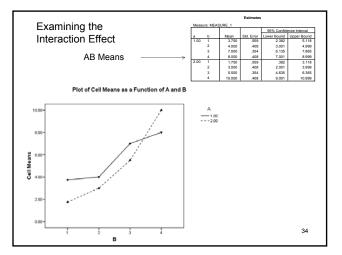
$$t = \frac{\overline{X}_{b1} - \overline{X}_{b2}}{\sqrt{\frac{S_{pooled}(b) - b2}{an}}} = \frac{2.75 - 3.50}{\sqrt{\frac{.583}{8}}} = \frac{-.75}{.270} = -2.778 \quad at \ df = n_{a1} + n_{a2} - 2 = 6$$

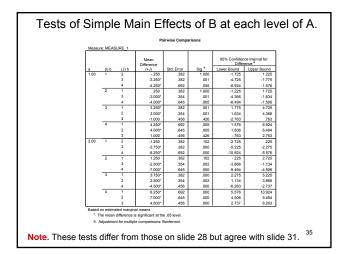
Note. This is different from that presented in slide 26 30

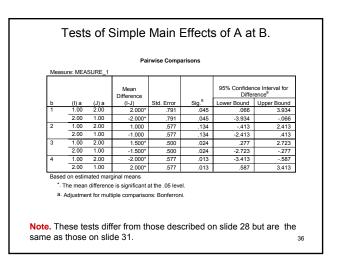












References

Satterthwaite, F.E. (1946). An approximate distribution of estimates of variance components. *Biometrics Bulletin, 2,* 110-114.

37