Research Design - - Topic 9 Fundamentals of Bivariate Regression and Correlation © 2010 R. C. Gardner, ph.D.
Bivariate regression (b)--defining formulae
Bivariate correlation (r)-- defining formulae
Test of significance for regression
An example showing the distinction between b and r
Interpretations of correlation
Three limited truths
Factors that influence the magnitude of r
Special cases of the Pearson correlation
Tests of significance
Correlations with simple aggregates

 Research Design -- Topic 9
 of Bivariate Regress.
 O2010 R. . Gardner, fh.D.

Bivariate Regression and Correlation

Bivariate regression refers to an equation that relates a dependent variable to an independent variable, or a criterion to a predictor. The
fundamental equation in raw score form is:

$$
Y^{\prime}=a+b_{y x} X
$$

with a and b determined such that $\Sigma\left(Y-Y^{\prime}\right)^{2}=\mathrm{a}$ minimum.
and

$$
\begin{aligned}
& a=\bar{Y}-b_{y x} \bar{X} \\
& b_{y x}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sum(X-\bar{X})^{2}}
\end{aligned}
$$

The formula in standard score form is:

$$
Z_{Y}^{\prime}=r_{X Y} Z_{X}^{\prime}
$$

where r is as defined on the next slide

Bivariate correlation refers to covariation between two variables, X and Y . The most common measure is the Pearson product-moment correlation coefficient defined as:

$$
\begin{aligned}
r_{X Y}= & \frac{\sum(X-\bar{X})(Y-\bar{Y})}{n S_{b_{X}} S_{b_{Y}}}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{(n-1) S_{u_{X}} S_{u_{Y}}} \\
& =\frac{\sum Z_{X} Z_{Y}}{n}=\frac{\sum Z_{X} Z_{Y}}{n-1}
\end{aligned}
$$

using biased $\left(\mathrm{S}_{\mathrm{b}}\right)$ and unbiased $\left(\mathrm{S}_{\mathrm{u}}\right)$ estimates of the standard deviations respectively.

Or alternatives:

$$
\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^{2} \sum(Y-\bar{Y})^{2}}}=\frac{N \sum X Y-\sum X \sum Y}{\sqrt{\left(N \sum X^{2}-\left(\sum X\right)^{2}\right)\left(N \sum Y^{2}-\left(\sum Y\right)^{2}\right)}}
$$

Given $Y=Y^{\prime}+\left(Y-Y^{\prime}\right)$, we can compute:

$$
\begin{aligned}
\sum(Y-\bar{Y})^{2} & =\sum\left(Y^{\prime}-\bar{Y}\right)^{2}+\sum\left(Y-Y^{\prime}\right)^{2} \\
\mathrm{SS}_{\text {TOTAL }} & =\mathrm{SS}_{\text {REGRESSION }}+\mathrm{SS}_{\text {RESIDUAL }}
\end{aligned}
$$

And with some algebra, we can construct the following summary table

Source	df	Sums of Squares	
Regression	1	$r^{2} S S_{\text {TOTAL }}$	$F=\frac{r^{2} S S_{\text {TOTAL }}}{\frac{S S_{\text {TOTAL }}\left(1-r^{2}\right)}{n-2}}$
Residual	$n-2$	$S S_{\text {TOTAL }}\left(1-r^{2}\right)$	
Total	$n-1$		$=\frac{r^{2}}{\left(1-r^{2}\right) /(n-2)}$

Consider the sample data set:					
	X	Y	Z_{x}	Z_{y}	
	3	3	-1.50	-1.50	
	4	5	-. 75	-. 50	
	4	5	-. 75	-. 50	
	4	3	-. 75	-1.50	
	5	7	0	. 50	
	5	6	0	0	
	5	7	0	. 50	
	6	9	. 75	1.50	
	7	7	1.50	. 50	
	7	8	1.50	1.00	
Mean	5.0	6.0	. 00	. 00	
S_{u}	1.33	2.00	1.00	1.00	5

Computing Regression Coefficients and Correlation

$$
\begin{aligned}
& b_{y x}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sum(X-\bar{X})^{2}}=\frac{20}{16}=1.25 \\
& a_{y x}=\bar{Y}-b_{y x} \bar{X}=6.0-(1.25)(5.0)=-.25 \\
& b_{x y}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sum(Y-\bar{Y})^{2}}=\frac{20}{36}=.56 \\
& a_{x y}=\bar{X}-b_{x y} \bar{Y}=5.0-(.56)(6.0)=1.64 \\
& r_{X Y}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{(n-1) S_{u_{x}} S_{u_{y}}}=\frac{20}{9(1.33)(2.00)}=.84
\end{aligned}
$$

2. Correlation is a measure of the slope of the regression line in standard score form:

$$
\frac{d}{d r}\left(\sum Z_{y}^{2}+r^{2} \sum Z_{x}^{2}-2 r \sum Z_{x} Z_{y}\right)=0
$$

Note:
$0+2 r \sum Z_{x}^{2}-2 \sum Z_{x} Z_{y}=0$
$\frac{\sum Z_{x}^{2}}{n}=S_{Z_{x}}^{2}=1 \quad r=\frac{\sum Z_{x} Z_{y}}{\sum Z_{x}^{2}}=\frac{\sum Z_{x} Z_{y}}{n}=r_{x y}$
3. Correlation is a measure of the accuracy of predicting y given x

$$
\begin{aligned}
& \text { Given } \quad y=y^{\prime}+\left(y-y^{\prime}\right) \\
& \qquad \begin{array}{l}
S_{y}^{2}=S_{y^{\prime}}^{2}+S_{y-y^{\prime}}^{2} \quad \text { where } y^{\prime} \text { and }\left(y-y^{\prime}\right) \text { are independent } \\
\therefore S_{y^{\prime}}^{2}=S_{y}^{2}-S_{y-y^{\prime}}^{2} \\
\text { Defining } \quad r_{x y}^{2}=\frac{S_{y^{\prime}}^{2}}{S_{y}^{2}}=\frac{S_{y}^{2}-S_{y-y^{\prime}}^{2}}{S_{y}^{2}} \\
\\
r_{x y}^{2}=1-\frac{S_{y-y^{\prime}}^{2}}{S_{y}^{2}} \\
\therefore r_{x y}= \pm \sqrt{1-\frac{S_{y-y^{\prime}}^{2}}{S_{y}^{2}}}
\end{array}
\end{aligned}
$$

Three Limited Truths*

1. The Pearson product-moment correlation varies from -1 to +1. True, only under very specific circumstances.

$$
\begin{array}{rlrl}
\text { Proof: } & \text { Given } & S_{Z_{x}}^{2} & =\frac{\sum Z_{x}^{2}}{N}=1 \\
\text { and } & r & =\frac{\sum Z_{x} Z_{y}}{N}
\end{array}
$$

r can equal +1 , only if $Z_{x}=Z_{y}$ and -1 , only if $Z_{x}=-Z_{y}$
Thus, for this to be true, the standardized distributions of x and y must be:
a) Identical
b) Symmetrical (not necessarily normal)

* Adapted from Gardner (2000).

2. Given a large enough sample size, the correlation will always be significant. True, only because of artifacts.

Proof: Given $X=T_{X}+E_{X R}+E_{X M} \quad Y=T_{Y}+E_{Y R}+E_{Y M}$ (i.e., the measures of X and Y consist of true scores ($T_{X} \& T_{Y}$), random error (E_{XR} and E_{YR}) and measurement error (E_{XM} \& $\left.\mathrm{E}_{\mathrm{YM}}\right)$).

$$
\text { Given: } \quad \rho_{T_{X} T_{Y}}=0
$$

$$
\text { it is possible that } \quad \rho_{X Y} \neq 0
$$

because the correlations

$$
\rho_{T_{X} E_{Y M}}, \rho_{T_{Y} E_{X M}} \text { and } \rho_{E_{X M} E_{Y M}} \text { are not } 0
$$

Thus, even with two variables that are truly independent, the correlation between measures of those variables may not be 0 , and given a large enough sample size it may be significant.
3. Correlation does not mean causation. This is not a limitation of the statistic, but rather the nature of the underlying design.

Consider an experiment on the effects of the amount of alcohol consumed in the afternoon and number of hours slept that night. This study could be run in controlled conditions with careful attention to detail, etc.

The correlation between the two could be considered an index of the linear effects of alcohol on hours slept (and an indication of causality) if the amount consumed was randomly determined and administered by the experimenter.

The correlation between the two would simply be an index of the covariation between the two if the amount consumed was not determined randomly. The regression equation would describe the nature of the linear relationship.

Factors That Affect the Pearson Product Moment Correlation Coefficient 1. Non-linear relationships.

An assumption underlying r_{xy} is homoscedasticity - viz., that the variation around the regression line is relatively constant
Heteroscedastic

Special Cases of the Pearson Product Moment Correlation
Spearman Rank Order $=\rho_{s}$
Correlation between two variables, ranked from 1 to N .

$$
\begin{aligned}
& \sum x=\sum y=\frac{N(N+1)}{2} \quad \sum x^{2}=\sum y^{2}=\frac{N(N+1)(2 N+1)}{6} \\
& \text { Given: } \quad d=x-y \\
& \quad \sum d^{2}=\sum x^{2}+\sum y^{2}-2 \sum x y \\
& \therefore \sum x y=\frac{\sum x^{2}+\sum y^{2}-\sum d^{2}}{2} \\
& \therefore r=\frac{N \sum x y-\sum x \sum y}{\sqrt{\left[N \sum x^{2}-\left(\sum x\right)^{2}\right]\left[N \sum y^{2}-\left(\sum y\right)^{2}\right]}}=1-\frac{6 \sum d^{2}}{N\left(N^{2}-1\right)}=\rho_{s}
\end{aligned}
$$

Point Biserial $=r_{p b}$

Correlation between a dichotomous and continuous variable. x

$$
\begin{aligned}
& \begin{array}{c|c}
c & 1 \\
\hline \mathrm{y}_{1 \mathrm{i}} & \mathrm{y}_{2 \mathrm{i}}
\end{array} \quad \sum x=\sum x^{2}=n_{2} \quad \sum x y=n_{2} \bar{y}_{2} \\
& \\
& \cdot \quad . \\
& \text { • } \\
& \therefore r=\frac{N \sum x y-\sum x \sum y}{\sqrt{\left[N \sum x^{2}-\left(\sum x\right)^{2}\right]\left[N \sum y^{2}-\left(\sum y\right)^{2}\right]}}=\frac{\left(\bar{y}_{2}-\bar{y}_{1}\right) \sqrt{p q}}{S_{y}}=r_{p b} \\
& \bar{y}_{1} \quad \bar{y}_{2} \\
& n_{1} \quad n_{2}
\end{aligned}
$$

Phi Coefficient $=\Phi$

Correlation between two dichotomous variables.

$$
\sum x=\sum x^{2}=a+c
$$

$$
\Sigma y=\Sigma y^{2}=a+b
$$

$$
\sum x y=a
$$

$$
\therefore r=\frac{N \sum x y-\sum x \sum y}{\sqrt{\left[N \sum x^{2}-\left(\sum x\right)^{2}\right]\left[N \sum y^{2}-\left(\sum y\right)^{2}\right]}}=\frac{a d-b c}{\sqrt{(a+b)(c+d)(b+d)(a+c)}}=\phi
$$

$$
\text { and } \phi=\sqrt{\frac{x^{2}}{N}} \quad \text { for } 2 \times 2 \text { tables }
$$

Testing the significance of a single multiple correlation coefficient
3. $\mathrm{Ho}: \rho=0$.

$$
\begin{aligned}
F & =\frac{R^{2} / p}{\left(1-R^{2}\right) /(N-p-1)} \\
@ d f_{1} & =p ; \quad d f_{2}=N-p-1
\end{aligned}
$$

$$
t=\frac{r \sqrt{N-2}}{\sqrt{1-r^{2}}}
$$

$@ d f=N-2$.
2. Ho: $\rho=0$. (Forlarge N).

$$
Z=r \sqrt{N-1}
$$

Testing the difference between two correlation coefficients
4. $\mathrm{Ho}: \rho_{1}=\rho_{2}$ for independent samples.

Fisher's Z

$$
\begin{aligned}
& Z_{r 1}=\frac{1}{2} \log _{e} \frac{\left(1+r_{1}\right)}{\left(1-r_{1}\right)} \\
& Z_{r 2}=\frac{1}{2} \log _{e} \frac{\left(1+r_{2}\right)}{\left(1-r_{2}\right)}
\end{aligned}
$$

and

$$
Z=\frac{Z_{r 1}-Z_{r 2}}{\sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}}}
$$

Comparing two correlations from the same sample (with a common variable) 5. Ho: $\rho_{12}=\rho_{13}$ for correlated correlations.

1. Test proposed by Dunn and Clark (1969).
$Z=\frac{\left(r_{12}-r_{13}\right) \sqrt{N}}{\sqrt{\left(1-{r_{12}}^{2}\right)^{2}+\left(1-{r_{13}}^{2}\right)^{2}-2 r_{23}^{3}-\left(2 r_{23}-r_{12} r_{13}\right)\left(1-{r_{12}}^{2}-{r_{13}}^{2}-{r_{23}}^{2}\right)}}$
2. Test proposed by Meng, Rosenthal \& Rubin (1992).

$$
Z=\left(Z_{r 1}-Z_{r 2}\right) \sqrt{\frac{N-3}{2\left(1-r_{23}\right) h}}
$$

where each: $\quad Z_{r}=\frac{1}{2} \log _{e} \frac{(1+r)}{(1-r)}$
and $\quad f=\frac{1-r_{23}}{2\left(1-\left(r_{12}^{2}+r_{13}^{2}\right) / 2\right)} \quad h=\frac{1-f\left(r_{12}^{2}+r_{13}^{2}\right) / 2}{1-\left(r_{12}^{2}+r_{13}^{2}\right) / 2} \quad 26$

Comparing two correlations from the same sample (with different variables) (Cross Lagged Panel Analysis)
6. Ho: $\rho_{12}=\rho_{45}$ for correlated correlations.

$Z=\frac{\left(r_{12}-r_{45}\right) \sqrt{N}}{\sqrt{\left(1-r_{12}{ }^{2}\right)^{2}+\left(1-r_{45}{ }^{2}\right)^{2}-r_{12} r_{45}\left(r_{14}{ }^{2}+r_{15}{ }^{2}+r_{24}{ }^{2}+r_{25}{ }^{2}\right)-2\left(r_{14} r_{25}+r_{15} r_{24}\right)+C}}$
where:

$$
C=2\left(r_{12} r_{14} r_{15}+r_{12} r_{24} r_{25}+r_{14} r_{24} r_{45}+r_{15} r_{25} r_{45}\right)
$$

Testing the Significance of an average correlation
7. $\mathrm{Ho}: \rho_{a v}=0$

$$
Z_{A V}=\frac{\left(n_{1}-3\right) Z_{r 1}+\left(n_{2}-3\right) Z_{r 2}+\ldots+\left(n_{k}-3\right) Z_{r k}}{\left(n_{1}-3\right)+\left(n_{2}-3\right)+\cdots+\left(n_{k}-3\right)}
$$

where:

$$
Z_{r}=\frac{1}{2} \log _{e} \frac{1+r}{1-r}
$$

then:

$$
Z=Z_{A V} \sqrt{\left(\left(n_{1}-3\right)+\left(n_{2}-3\right)+\cdots+\left(n_{k}-3\right)\right)}
$$

Testing the significance of a partial correlation
8. $\mathrm{Ho}: \rho_{12.3}=0$

$$
t=\frac{r_{12.3}}{\sqrt{\left(1-r_{12.3}{ }^{2}\right) /(N-3)}} \quad d f=N-3 .
$$

Testing the significance of a semipartial (part) correlation
9. $\mathrm{Ho}: \quad \rho_{1(2.3)}=0$

$$
F=\frac{(N-3) r_{1(2.3)}^{2}}{1-R_{1.23}^{2}} \quad d f=1, \quad N-3
$$

Note. These two statistics yield identical results, except that $F=t^{2}$ (both at $N-3 d f$).

Comparing two bivariate regression coefficients
10. $\mathrm{Ho}: b_{1}=b_{2}$ in the population

$$
t=\frac{b_{1}-b_{2}}{S_{D b}}
$$

where: $\quad S_{D b}=C \sqrt{\frac{n_{1} S_{y 1}{ }^{2}\left(1-r_{1}{ }^{2}\right)+n_{2} S_{y 2}{ }^{2}\left(1-r_{2}{ }^{2}\right)}{\left(n_{1}+n_{2}-4\right)}}$
and:

$$
C=\sqrt{\frac{1}{n_{1} s_{x 1}^{2}}+\frac{1}{n_{2} s_{x 2}^{2}}}
$$

and $\mathrm{df}=\mathrm{n}_{1}+\mathrm{n}_{2}-4$.
30

Correlations Involving Aggregates

Raw Data

X_{1}	X_{2}	X_{3}	Y	T_{X}	$\mathrm{T}_{\text {z }}$	
6	10	32	100	48	-. 51	For these data:
8	9	25	97	42	-2.34	$Z_{x 3}$
10	13	31	103	54	2.37	$I_{Z}=Z_{X 1}+Z_{X 2}+Z_{X 3}$
9	13	29	106	51	1.06	$r_{T_{z} y}=.769$
10	15	30	105	55	2.66	
7	9	27	92	43	-2.15	$T_{X}=X_{1}+X_{2}+X_{3}$
6	10	29	85	45	-1.64	$r_{T_{x} y}=.754$
11	18	26	106	55	2.73	
7	9	24	90	40	-3.28	
9	12	30	93	51	1.10	31

Correlation Matrix

	Y		X_{1}	X_{2}
y	X_{3}			
Y	1.0000	.7415	.7346	.2675
X_{1}	.7415	1.0000	.8688	.0259
X_{2}	.7346	.8688	1.0000	.1742
X_{3}	.2675	.0259	.1742	1.0000

Aggregated Standard Scores:

$$
\begin{aligned}
r_{T_{z y} y}=\frac{\sum_{j=1}^{m} r_{j y}}{\sqrt{\sum_{j=1}^{m} \sum_{k=1}^{m} r_{j k}}} & =\frac{.7415+.7346+.2675}{\sqrt{1.000+.8688+\cdots+.1742+1.000}} \\
& =\frac{1.7436}{\sqrt{5.1378}}=\frac{1.7436}{2.2667}=.769
\end{aligned}
$$

$$
\begin{aligned}
& \text { Aggregated Raw Scores: } \\
& \begin{aligned}
r_{T_{x y} y}=\frac{\sum_{j=1}^{m} \operatorname{cov}_{j y}}{S_{y} \sqrt{\sum_{j=1}^{m} \sum_{k=1}^{m} \operatorname{cov}_{j k}}} & =\frac{9.778+16.473+5.321}{\sqrt{55.503} \sqrt{3.133+4.629+\cdots+1.400+7.129}} \\
& =\frac{31.572}{(7.450) \sqrt{31.624}}=\frac{31.572}{41.895}=.754{ }_{33}
\end{aligned}
\end{aligned}
$$

Correlations Involving Difference Scores

(1) Correlation of Initial Score with the Difference

$$
\begin{aligned}
r_{x(y-x)} & =\frac{\sum(x-\bar{x})[(y-x)-(\bar{y}-\bar{x})]}{N S_{x} S_{y-x}} \\
& =\frac{M r_{x y}-1}{\sqrt{1+M^{2}-2 M r_{x y}}}
\end{aligned}
$$

where: $\quad M=\frac{S_{y}}{S_{x}}$
(2) Correlation of one variable (A) with a Difference ($y-x$)

$$
\begin{aligned}
r_{A(y-x)} & =\frac{\sum(A-\bar{A})[(y-x)-(\bar{y}-\bar{x})]}{N S_{A} S_{y-x}} \\
& =\frac{M r_{A y}-r_{A x}}{\sqrt{1+M^{2}-2 M r_{x y}}} \quad \text { where }: \quad M=\frac{S_{y}}{S_{x}}
\end{aligned}
$$

(3) Correlation between two Difference Scores

$$
\begin{aligned}
r_{(B-A)(y-x)} & =\frac{\sum[(B-A)-(\bar{B}-\bar{A})][(y-x)-(\bar{y}-\bar{x})]}{N S_{B-A} S_{y-x}} \\
& =\frac{M\left(L r_{B y}-r_{A y}\right)-\left(L r_{B x}-r_{A x}\right)}{\sqrt{\left[L^{2}+1-2 L r_{A B}\right]\left[M^{2}+1-2 M r_{x y}\right]}}
\end{aligned}
$$

where: $\quad M=\frac{S_{y}}{S_{x}} \quad ; \quad L=\frac{S_{B}}{\substack{S_{A} \\ 36}}$

References

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (Second Edition). Hillsdale, NJ: Lawrence Erlbaum.
Dunn, O.J. \& Clark, V.A. (1969). Correlation coefficients measured on the same individuals. Journal of the American Statistical Association, 64, 366-377.
Gardner, R. C. (2000). Correlation, causation, motivation and second language acquisition. Canadian Psychology, 41, 10-24.
Gardner, R.C. \& Erdle, S. (1984). Aggregating scores: To standardize or not to standardize? Educational and Psychological Measurement, 44,813-822.
Gardner, R.C. \& Neufeld, R.W.J. (1987). Use of the simple change score in correlational analyses. Educational and Psychological Measurement, 47, 849-864.
Meng, X-L, Rosenthal, R. \& Rubin, D.B. (1992). Comparing correlated correlation coefficients. Psychological Bulletin, 111, 172-175.
Tabachnick, B. G. \& Fidell, L.S. (2007). Using Multivariate Statistics (Fifth Edition). Needham Heights, MA: Allyn \& Bacon.

