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Bivariate regression ( b ) - - defining formulae

Bivariate correlation ( r ) - - defining formulae
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An example showing the distinction between b and r

Interpretations of correlation

Three limited truths

Factors that influence the magnitude of r

Special cases of the Pearson correlation

Tests of significance

Correlations with simple aggregates
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Bivariate Regression and Correlation
Bivariate regression refers to an equation that relates a dependent 
variable to an independent variable, or a criterion to a predictor.  The 
fundamental equation in raw score form is:

XbaY yx+='

with a and b determined such that Σ(Y-Y’)² = a minimum.
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The formula in standard score form is:
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where r is as defined on the next slide
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Bivariate correlation refers to covariation between two variables, X and 
Y.  The most common measure is the Pearson product-moment 
correlation coefficient defined as:
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using biased (Sb) and unbiased (Su) estimates of the standard deviations 
respectively.
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Source

Regression

Residual
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df Sums of Squares
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Given Y=Y’ + (Y-Y’), we can compute:
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And with some algebra, we can construct the following summary table
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1.001.002.001.33Su

.00.006.05.0Mean
1.001.5087
.501.5077

1.50.7596
.50075
0065

.50075
-1.50-.7534
-.50-.7554
-.50-.7554

-1.50-1.5033
ZyZxX

Consider the sample data set:
Y
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Computing Regression Coefficients and Correlation
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Regression of 
y on x

Regression of 
x on y

bxy = .56

byx = 1.25

axy = 1.64

ayx = -.25

The two regression 
plots in raw score 
form

In each case:
a = the intercept - - the 
value of the dependent 
variable when the 
independent variable is 0.

b = the slope of the 
regression line (the rise 
over the run).
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Regression of 
Zx on Zy
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r = .84
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Regression of 
Zy on Zx

Zy

Zx

r = .84

The two regression 
plots in standard 
score form

Note.  The slope of the 
regression line in standard 
score form is the same in 
each case and is equal to the 
correlation coefficient (.84). 
The intercept is 0.
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Different Interpretations of Correlation

1.  Correlation is a measure of the linear relation between y and y’:
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2.  Correlation is a measure of the slope of the regression line
in standard score form:

Zy

Zx

Z’y

Zy r = slope = xy
x

y rZZ
Z
Z

=∴ '
'

Best fit line ( ) =−∑
2'

yy ZZ minimum

( ) yxxyxy ZZrZrZrZZ ∑−∑+∑=−∑ 22222

( ) 02222 =∑−∑+∑ yxxy ZZrZrZ
dr
d

0220 2 =∑−∑+ yxx ZZZr

xy
yx

x

yx r
n

ZZ
Z
ZZ

r =
∑

=
∑

∑
= 2

12
2

==
∑

xZ
x S

n
Z

Note:

11

3.  Correlation is a measure of the accuracy of predicting y given x:
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Three Limited Truths*

Given 1
2

2 =
∑
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r can equal +1, only if Zx = Zy and -1, only if Zx = -Zy

Thus, for this to be true, the standardized distributions of x and y
must be:

a) Identical
b) Symmetrical (not necessarily normal)

1. The Pearson product-moment correlation varies from -1
to +1.  True, only under very specific circumstances.

Proof:

* Adapted from Gardner (2000).
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2. Given a large enough sample size, the correlation will 
always be significant.  True, only because of artifacts.

XMXRX EETX ++= YMYRY EETY ++=

it is possible that

,0=
YXTTρ

.0≠XYρ

Given

0, notareand
YMXMXMYYMX EEETET ρρρ

Thus, even with two variables that are truly independent, 
the correlation between measures of those variables may 
not be 0, and given a large enough sample size it may be 
significant.

Proof:

(i.e., the measures of X and Y consist of true scores (TX & TY), 
random error (EXR and EYR) and measurement error (EXM & EYM)).

Given:

because the correlations 
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3. Correlation does not mean causation.  This is not a limitation 
of the statistic, but rather the nature of the underlying design.

Consider an experiment on the effects of the amount of alcohol 
consumed in the afternoon and number of hours slept that night. 
This study could be run in controlled conditions with careful 
attention to detail, etc. 

The correlation between the two could be considered an index of 
the linear effects of alcohol on hours slept (and an indication of 
causality) if the amount consumed was randomly determined and 
administered by the experimenter.

The correlation between the two would simply be an index of the 
covariation between the two if the amount consumed was not 
determined randomly.  The regression equation would describe 
the nature of the linear relationship.
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Factors That Affect the Pearson Product Moment Correlation Coefficient
1.  Non-linear relationships.

y

x

rxy will approach 0, even though
there is a non-linear relationship
between the variables.

2.  Heteroscedasticity.

y

x

y

x

Homoscedastic Heteroscedastic

An assumption underlying rxy is
homoscedasticity – viz., that the 
variation around the regression line is 
relatively constant
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3.  Restriction in Range.

y

x
Truncated Range

Entire Range r relatively high

r relatively low

If selection on one variable has restricted
its range, this could influence the
magnitude of rxy.  To correct for this, calculate

xxxyxy

xxxy
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sSrr
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where Sx = stand. dev. uncurtailed

sx = stand. dev. curtailed

4.  Asymmetrical Distributions.

If the distributions aren’t symmetrical, 
It can influence the value of rxy.

concentration of cases
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5.  The Presence of Outliers. A few very extreme scores can influence
the correlation.

6.  A Confounding Variable.

y

x

Mixing samples can sometimes eliminate 
meaningful relationships.  Assume X = IQ,  
Y = grades.  Two classes may be similar
on IQ, but differences in level of teacher 
grading might obscure relation 
between grades and IQ if the samples 
are merged.
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7.  Reliability.
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The correlation between two measured variables underestimates the 
correlation between the true variables in the population as the reliability of 
the measures decreases.  The correction for such attenuation is:

where rxx and ryy are the reliabilities of the measured variables.:
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Special Cases of the Pearson Product Moment Correlation

Spearman Rank Order = ρs

Correlation between two variables, ranked from 1 to N.
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Point Biserial = rpb

Correlation between a dichotomous and continuous variable.
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Phi Coefficient = Φ

caxx +=∑=∑ 2

Correlation between two dichotomous variables.
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Effect Strength and Power

Cohen’s (1988) definitions:
Small ρ=.10. “many relationships pursued in “soft”

behavioral sciences are of this magnitude” ( p. 79).   
Medium ρ=.30.  “this degree of relationship would be 

perceptible to the naked eye of a reasonably 
sensitive observer” (p. 80). 

Large ρ=.50. “around the upper end of the range of 
(nonreliability) r’s one encounters in those fields of 
behavioral science which use them extensively”
(p.80).  

Power can be calculated using Cohen (1988) or G*Power3.  
Note that G*Power3 has three routines that can be used for 
this purpose, one with t, one with F, and one with Exact tests. 
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Testing the significance of a single bivariate correlation coefficient
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Testing the significance of a single multiple correlation coefficient

3. Ho: ρ = 0.
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Testing the difference between  two correlation coefficients
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1.  Test proposed by Dunn and Clark (1969).
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2.  Test proposed by Meng, Rosenthal & Rubin (1992).
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Comparing two correlations from the same sample (with a common variable)
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Comparing two correlations from the same sample (with different variables) 
(Cross Lagged Panel Analysis)

Time 1 Time 2
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Behav Behav
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Testing the Significance of an average correlation
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Note.  These two statistics yield identical results, except 
that F = t² (both at N-3 df). 

Testing the significance of a partial correlation

Testing the significance of a semipartial (part) correlation
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and df = n1 + n2 – 4.

Comparing two bivariate regression coefficients
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Correlations Involving Aggregates
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For these data:
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1.0000.1742.0259.2675

.17421.0000.8688.7346

.0259.86881.0000.7415

.2675.7346.74151.0000

X1 X2 X3Y

X1

X2

X3

Y

000.11742.8688.000.1
2675.7346.7415.
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Correlation Matrix

Aggregated Standard Scores:



9

33

7.1291.400.1225.321
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Covariance Matrix

Aggregated Raw Scores:
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Correlations Involving Difference Scores

(1) Correlation of Initial Score with the Difference
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(2) Correlation of one variable (A) with a Difference (y – x)
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(3) Correlation between two Difference Scores
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