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Hierarchical Linear Modeling: A Primer*
(People within Groups)

R. C. Gardner
Department of Psychology

As discussed by Raudenbush and Bryk (2002, pp 5-6), Hierarchical Linear Modeling
(HLM) has various names in different disciplines, multilevel linear models in sociology, mixed-
effects models and random-effects models in biometrics, random-coefficient regression models in
econometrics, and covariance components models in the statistical literature. Tabachnick and
Fidell (2007) refer to it as multilevel linear modeling. There are also many computer programs
that permit you to do the analysis, such as HLM (see Raudenbush, Cheong, Bryk, Congdon, &
du Toit, 2004), SPSS Mixed Models, and SAS Proc Mixed. These programs offer different types
of output (sometimes yielding different answers because of the different algorithms or tests of
significance used) and use at least two different analytic approaches (REML (REstricted
Maximum Likelhood, sometimes labelled MLR) and ML (Maximum Likelihood, sometimes
labelled MLF)). Finally, they are applicable to data derived from sampling from independent
observations or from repeated measures. This overview directs attention to data based on
independent observations and focusses initially on the simplest form of HLM, the random-
coefficients model. This involves a continuous dependent variable (e.g., school marks), a
continuous independent variable (e.g., a measure of motivation), and a categorical independent
variable (e.g., classes of students). Obviously, hierarchical linear modeling can be extended to
include more variables in the random-coefficients model as well as in more complex models
(e.g., an intercepts- and slopes-as-outcomes model). These extensions are discussed and
examples of their analysis using HLM are presented.

Purpose and Rationale

In essence, the question being asked in the simplest form of the random-coefficients
model is whether there is an association between the dependent variable and the continuous
independent variable and whether the categorical independent variable influences this
relationship. One way of answering this type of question is to perform a two-factor analysis of
variance of the dependent variable with the two independent variables as factors (cf., Gardner,
2003). Using multiple regression where the categorical factor (classes) is effect coded, the
continuous independent variable is centered, and product terms are made of the effect coded
vectors and the centered continuous variable, tests of significance of the increment in R? over the
other two sources of variance would test relevant hypotheses. Thus, a test of the increment in R?
over the other two sources of variance tests hypotheses concerning variation of the intercepts
over the different classes (Main effect for classes), variation of the slopes over classes
(Interaction effect of continuous and categorical factors), and difference of the mean slope from
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0 (Main effect for the continuous independent variable). A test of significance of the
unstandardized regression coefficient for the constant is a test of whether the mean intercept
differs significantly from 0. Hierarchical linear modeling tests comparable hypotheses, except
that a slightly different approach is taken.?

The reason for performing an hierarchical linear modeling analysis is to test hypotheses
about intercepts and slopes. For the simple example just described, four null hypotheses can be
tested. One is that the mean intercept (across all groups) is 0; a second is that the mean slope
(across all groups) is 0; the third is that the variance of the intercepts (over all groups) is 0; and
the fourth is that the variance of the slopes (over all groups) is 0. Unless the dependent variable
has a mean of 0 in the population, the first null hypothesis is of little interest. The others have
psychological meaning, however. Thus, if the mean slope is found to differ significantly from 0,
this indicates that there tends to be an average positive or negative relationship between the
dependent variable and the continuous independent variable in the population (cf., the Main
effect for the continuous independent variable discussed above). If the variance of the intercepts
is significantly greater than O (note, this is a one tailed test), this would indicate that some groups
tend to have higher intercepts (on the dependent variable) than others (cf., the Main effect for
classes discussed above). Finally, if the variance of the slopes is significantly greater than 0
(again a one tailed test), this would indicate that the slopes differ in the various groups (cf., a test
of the Interaction effects). As described above, this is akin to an analysis of variance where one
factor is categorical and the other is continuous. Generally, in HLM, the categorical factor is
random because the groups represent random, or at least representational sampling of a
population of possibilities.

One might well ask what is the difference between a two factor analysis of variance with
one continuous factor and a random-coefficients model in hierarchical linear modeling with one
continuous predictor and subjects nested in groups. The purpose of this manuscript is to explain
this difference. One difference between the analysis of variance approach and hierarchical linear
modeling is that the former makes use of least squares estimates of effects, while the other uses
maximum likelihood or restricted maximum likelihood. This is not the major distinction, but an
interesting aspect of it is that with least squares, there are formulae that one can use to calculate
the required statistics (i.e., sample values) which are then used to estimate the corresponding
parameters. With maximum likelihood (and restricted maximum likelihood) in hierarchical
linear modeling, there are no formulae to compute group statistics, but rather the solution makes
direct estimates of the corresponding parameters and where applicable also the estimates of
sampling error. The maximum likelihood procedures are iterative, beginning with the ordinary
least squares estimates, and continually estimating the corresponding parameters (including the
error terms) until the data fit the proposed model as closely as possible. It will be noted in many
runs, that the fit of the model isn’t always achieved, but that the fit approaches an asymptote at

2In the analysis of variance paradigm, the appropriate F-ratios would depend on the nature of the
categorical factor and can be determined by considering the expected mean squares for the model. The continuous
variable would be considered fixed by definition (because regression involves a fixed independent variable), but the
categorical variable could be fixed or random depending on how it is formed.
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some value, and the decision is made that this is an acceptable estimate of fit. In any event, none
of the values estimated with the maximum likelihood approaches can be linked directly with the
individual group statistics (such as those obtained with the least squares approach). Thus, the
major distinction between analysis of variance and hierarchical linear modeling is in the nature
of the models underlying the estimates of the parameters, their estimates of error, and the tests of
significance..

The Random-Coefficients model

For this type of data, hierarchical linear modeling considers two levels of models. The
model at level 1 is concerned with the regression of the dependent variable (school marks) on the
continuous independent variable (motivation) within each group. The formula given by
Raudenbush and Bryk (2002, p 19) is written as:

Y By B -X) e O

In this equation, the B’s refer to population values of unstandardized regression
coefficients, where {3, is the intercept and [3,; is the slope for group j, and r; is the error in
predicting Y;; with this equation. A more familiar form of the same equation for any one group
is:

Y, = by + bX, + ¢ @

That is the concern is with predicting values of the dependent variable from a knowledge
of the independent variable within each group. In addition to the differences in notation, the first
formula multiplies the slope by the deviation of each X from the mean of X in that group. The
second formula does not subtract the sample mean. In any event, the value of b, would be the
same as that for [3,;, but the values of b, and B,; would differ. There is no loss in generality.

For the Random-Coefficients model to be discussed here, the model at level 2 is
concerned with considering the values of B; and f3,; further from a knowledge of group
membership. The formulae given by Raudenbush and Bryk (2002, p. 26) are:

Boj = Yoo * Hy (3a)

where:
Yoo = Mean intercept over the groups
Mo = deviation of the intercept for group j from the mean intercept (i.e., By; - voo)

and
Bij = Va0 + My (3b)

where:
Y10 = Mean slope over the groups
W,; = deviation of the slope for group j from the mean slope (i.e., By; - y10)

Note equations 3a and 3b are in essence tautological. If one were to expand these two
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equations based on their defining terms, they would find that 3, = 3,;, and B,; = B;;. However, by
substituting their defined terms into equation 1, we now define the original value of Y;; in terms
of five parametric values instead of the three involved in the direct least squares approach used

in analysis of variance. That is, substituting the values for equations (3a) and (3b) into equation
(1) yields a more complex form of equation (1) as follows in equation (4):

Yj= Yoo VaoX=X)+ b+ HyfXy X))+ 1y

Note this equation indicates that the obtained Y/ is a function of four parameters, the
mean intercept ('y,,) and the mean slope ( vy,,) (both fixed parameters), plus two random
parameters, variation of the intercepts (u,;), and variation of the slopes ( ;). The residual
variation, (r;) is what is left over after these four parameters are estimated.

The difference between analysis of variance and hierarchical linear modeling lies in
adding the level 2 equations when estimating the slopes and intercepts for each group. Using
only equation (1) (which is the case if one uses multiple regression to perform an analysis of
variance of these data) will yield the actual intercepts and slopes computed on the data for each
group, and define the variance due to error in terms of the residual. Using equation (4) in
hierarchical linear modeling will yield maximum likelihood estimates of the group intercepts and
slopes taking into account the variation of the slopes and intercepts over the groups. The two
sets of answers will not be the same. Note that hierarchical linear modeling is concerned with
estimating the unique contribution of the various parameters in the final equation. Thus, the
term “hierarchical” refers to the fact that the slopes and intercepts are considered from the two
points of view, level 1 and level 2. It is not hierarchical in the same sense as hierarchical in
multiple regression, where various predictors are entered in different steps. In hierarchical linear
modeling, the equation is defined from the two points of view, but the final equation is solved in
terms of the unique contribution of each parameter (i.e., SSTYPE III).

Running HLM

To analyze data using the program HLM, consider the following example, where:
(a) the dependent variable is GRS (grades in English)
(b) the continuous independent variable is FMOT (Motivation),
(c) the subjects are nested in classes (ENV). Because there is no variable describing differences
between groups on some attribute, other than the group itself, this is referred to as a Random-
Coefficients Regression model.

The example given assumes the data are in the SPSS data format (.SAV). The analysis
proceeds as follows:

1. Enter HLM

2. Click on File in the tool bar. To create a new file, click on Make New MDM file, and then
select Stats Package Input.
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3. This presents a window. Select HLM2 if it is not already selected. Click on OK.

4. This presents another window (labelled MAKE MDM - HLM2). In this window:

a. Type in a file name with the extension .MDM in the pane at the upper right. This is
the file that will contain the instructions for this run. If you save it as suggested later in the
sequence, it will be available for future runs that might be edited, etc.

b. Click the drop down window for Input File Type and select SPSS/Windows. There is
a section indicating the type of data nesting. For the type of model considered here, the Nesting
of Input Data should have persons within groups indicated.,

c. Click Browse for Level 1.

5. This will open another window labelled Choose Level-1 File that presents a file source (e.g.,
C:\, H:\, E:\, etc, depending on your configuration). At the bottom of this window, Files of Type
should indicate SPSS/Windows files [*.SAV]. Click on Open.

6. This will return you to the window Make MDM-HLM2. Click on Choose variables (for
Level-1 Specification).

7. This will produce another window labelled Choose variables-HLM2. This window lists all
the variables in your file with two columns of boxes next to them. One is labelled ID, and the
other in MDM. Put a check in the box for ID for the variable which indicates which group the
subjects are in, and checks in the boxes in the in MDM columns for any variable that you might
wish to consider as a predictor at level 1. Click on OK.

8. This will return you to the window, Make MDM-HLM?2. This window also allows you to
indicate whether or not you have missing data. The default checked is no missing data. If you
have missing data, indicate this and then click on either delete missing data when making MDM
or on running analyses. Click on Browse for Level 2 Specification.

9. This will produce another window labelled Choose Level-2 File that presents a file source
(e.g., C:\, H:\, E:\, etc, depending on your configuration). At the bottom of this window click the
drop down arrow for Files of Type and select SPSS Windows files [.SAV]. Select the
appropriate folder and the data file from this folder. Note this could be the same file as in 5
above, as long as any group variables are indicated for each subject. In this example, the only
group variable is class number (ENV), hence we can read in the same file again for this purpose.
That is, in many cases the file of interest is the existing data file. If this is the case for you, select
that file again and click OK. In some instances, a researcher might describe the groups in a
separate file with columns for the relevant group variable and one row for each group. In this
case, one of the columns must have the same values (and label) as that indicating groups in the
original data file, but then the other variables can be group-defined variables. If you use this
option, then at this point you would select this file, and click Open. This will return you to the
Make MDM-HLM2 window. Click on Choose Variables (for Level-2 Specification).

10. In any event, this will reintroduce the window Choose variables-HLM2, which lists all the
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variables in this file with the two columns, ID, and in MDM after each one. You are to put a
check in the box for ID for the variable which indicates which group the subjects are in, and
checks in the boxes in the in MDM columns for any level 2 variable that you might wish to
consider as a predictor at level 2. Note there must be at least one variable checked in the MDM
column, even if it is not used later, so you must put a check in a column for at least one more
variable (one of the previous ones is fine if you selected the same file as before). Then click on
OK. This returns you to the window, Make MDM - HLMZ2.

11. Click on Save MDMT file and save the file you just created in a folder of your choice. The
computer presents a window to save files. If the default file source is not the one you want, click
on the down arrow in the Save In window, select the source and folder of interest, click on the
File Name pane and type in the file name. Click on Save. This returns you to the Make
MDM-HLM2 window.

12. Click on Make MDM. This presents a black screen with white writing showing the
descriptive statistics for all the variables chosen.

13. Click on Done. The computer advizes you to check the statistics. Click on OK and then on
Done again. This leads to the next window.

14. This presents a blank window in which you can build the model. First, click on Level 1,
then click on the dependent variable (GRS in our example) and then on Outcome variable. This
will produce the beginning of the Level 1 equation. Next click on the continuous independent
variable (FMOT in our example), and then on add variable grand mean centered. There are
actually three choices you can make here, uncentered, group mean centered, and grand mean
centered (see Raudenbush & Bryk, 2002, pp. 31-35).

15. Click on Level 2, and build the Level 2 model. Our interest here is simply to study the
effects of groups, thus there are no variables to add. At this point, there are two equations at
Level 2. Itis possible that one of the terms, wij is presented in a faded manner in the second
equation. If so, click on that term (to toggle it), and it will become darker. This will cause the
estimate of the variance in the group slopes to be estimated, which you will want in order to
determine whether the within group slopes differ. If you do not want to estimate these variances,
click on it to toggle it off (it becomes a lighter font).

Following is a window showing the final form of the equations.
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16. To view the final equation (i.e., the full model), click on Mixed in the lower right hand side
of the window. This will present the following window. This is the equation containing all the
parameters that are being estimated. Note in this example that, except for differences in
notation, it is identical to equation 4. It shows FMOT to be grand mean centered because that is
what we selected at step 14.

Mixed Model

GRS = o+ 14g*(FMOT,.- FMOT ) + v

+u, #FMOT, - FMOT, ) + 1,

o5

17. HLM does not output the maximum likelihood regression coefficients or the ordinary least
squares ones by default. If the maximum likelihood estimates are desired, an SPSS.SAV file
with the estimates (and other estimates) can be obtained by clicking on Basic Settings in the
tool bar. This will produce another window. Click on Level 2 Residual File. This produces
another window that shows the dependent variable in a pane labelled Possible choices. Double
click on the dependent variable and it will move it to the pane Variables in the Residual file.
Note that at the bottom, it indicates the file (e.g., resfil2.sav).(In more complex models there
may other variables to move. Also, if you wanted the Level 1 residual file, you could obtain this
by following comparable instructions after having checked Level 1 Residual File). Click on
OK.

18. To have the ordinary least squares regression coefficients printed as part of the output, Click
on Other Settings in the tool bar and when a new window is presented turn off Reduced
Output in that window. This will result in the OLS regression coefficients being presented in
the output file along with other intermediate results. The maximum likelihood results will be the
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last stage presented (there are intermediate results before them).

19. To choose the type of analysis (i.e., REML or ML), click on Other Settings in the tool bar,
and then on Estimation Settings. The default setting is Restricted Maximum Likelihood
(REML), which we will use in this example, but you could choose Maximum Likelihood (ML) if
you prefer. The answers differ as well as some of the output depending on which one you select.

20. When the model is ready, click on Run Analysis. If you have not saved the run, the
computer will remind you of this. If you choose Save and Run, it will produce another window,
Save Command File. Type in the file name and it will save it.

21. To view the output, click File and View Output.

The Output

A data set of 136 participants distributed in 6 classes was analyzed following these
directions. The dependent variable was GRS (grades in English at the end of the school year),
the continuous independent variable was Motivation assessed at the beginning of the year
(FMQT), and Classes were identified as ENV. The values of the six relevant statistics calculated
using REML are as follows:

1. Mean Intercept 55.433175
2. Mean Slope 2.866550
3. Variance of intercepts 41.33254
4. Variance of slopes 2.01738

5. Covariance of slopes and intercepts 3.26090
6. Variance of Residuals at level 1 213.22126

A sample of some of the output including tests of significance is printed below.

The sample size, intercept, and slope for each of the six classes are presented below.
Both the OLS and the REML estimates are given. If the analysis was performed using ML, the
maximum likelihood values would differ. These values can be obtained in HLM (see items 17
and 18 above), but note, that the OLS values are simply those that you would obtain if you were
to compute them separately for each group using the bivariate regression program in SPSS or
any other package.

Ordinary Least Restricted Maximum

Squares (OLS) Likelihood (REML)

Group N Intercept Slope Intercept Slope
1 22 56.065 1.400 55.994 1.829

2 21 50.967 0.682 53.328 1.486

4 21 48.820 5.710 51.838 3.820

5 23 57.821 4.102 57.036 3.617

6 25 47.912 4.392 48.851 4.153
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7 24 67.816 2.470 65.550 2.293
Mean 54.900 3.126 55.433 2.866
Variance 55.5959 3.7240 33.183 1.288

Inspection of the OLS and REML estimates for each of the 6 classes will reveal that there
are differences in the corresponding individual values in the two sets, though the rank order of
both the intercepts and the slopes are similar. The rank order correlation is 1.0 for the intercepts
and .94 for the slopes. It will be noted too that the means of the two sets of coefficients are
similar, but that the variances are much lower for the REML estimates than the OLS ones. (If
the ML solution were used, the answers would be slightly different).

The output from HLM contains the following information. Some explanatory comments
are made to identify the nature of the information.

The tau matrix is a covariance matrix for the group intercepts and slopes. The diagonal
values are the estimates of the population variances of the intercepts and slopes respectively,
while the value in the off-diagonal is the estimate of the covariance of the intercepts and slopes.®
This matrix is also presented in standard score form and hence is the correlation matrix obtained
from the covariance matrix by dividing by the product of the associated standard deviations.
Following are the two matrices:

Tau Matrix

INTRCPT1, BO 41.33254 -3.26090
FMOT, B1 -3.26090 2.01738
Tau (as correlations)

INTRCPT1, BO 1.000 -0.357
FMOT, B1 -0.357 1.000

The next two tables are tests of the mean intercept and slope across the various groups
and the tests of the variances of the intercepts and slopes for the various groups respectively.
The first table is identified as tests of the final estimation of fixed effects. In this case, there is
one test of the null hypothesis that the mean intercept is 0, and another that the mean slope is 0.
These are single sample t-tests with degrees of freedom equal to the number of groups minus 1.
Note too that the values given for the Coefficient are the mean intercept and slope as given in the
summary of the REML values presented above; the values of Standard Error, however, are also

% In the full maximum likelihood solution, this is followed by a matrix of standard errors but these
are not given in the REML solution. In other programs such as SAS Proc Mixed and SPSS Mixed Models,
these standard errors are used to test the significance of these variances and covariances, but
Raudenbush and Bryk (2002, p. 64) indicate that the approximation provided by this test can be extremely
poor, and recommend and actually make use of another test of these hypotheses in the HLM program (in
both the REML and ML solutions).
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REML estimates and are not the square roots of the variances shown above.

Final estimation of fixed effects:

Standard Approx.

Fixed Effect Coefficient  Error T-ratio d.f. P-value
For INTRCPT1, BO

INTRCPT2, GOO 55.433175 2.928026 18.932 5 0.000
For FMOT slope, B1

INTRCPT2, G10 2.866550  0.727615 3.940 5 0.015

The second table presents tests of variability of the intercepts and slopes over the classes.
These are considered random effects in that classes are considered a random factor, and the
generalization of interest is whether these variances are greater than 0 in the population of all
possible classes. Note that the variance components are in fact the diagonal values in the tau
matrix presented above. The tests of significance in this case make use of a Chi-square statistic
with degrees of freedom equal to the number of classes minus 1.

Final estimation of variance components:

Random Effect Standard  Variance df Chi-square P-value
Deviation Component

INTRCPT]1, uo 6.42904  41.33254 5 28.67176 0.000
FMOT slope, Ul 1.42034 2.01738 5 16.17150 0.007
level-1, R 14.60210 213.22126

Interpretation

Interpretation of these data would focus on the two tables given immediately above, Final
estimation of fixed effects, and Final estimation of variance components. In the first table, it is
shown that the mean intercept is 55.43 (note this is in fact the mean of the REML intercepts
shown in the table of the regression coefficients presented earlier) and that it differs significantly
from 0. This is of little interest, however, because all the values of the dependent variable were
greater than 0. It is akin to the test of the constant in traditional analysis of variance, which
would only have meaning if the dependent variable could take positive and negative values.
Second, the mean slope is shown to be 2.87 (i.e., the mean of the REML slopes given in the table
presented earlier), and it too differs significantly from 0 (p<.015). This indicates that the mean
slope across the different classes is significantly positive. That is, on average, there is a positive
association between grades and motivation across the classes. These two tests of significance
are performed using t-tests with standard errors and degrees of freedom based on the REML
estimates. The output in the run itself (but not presented here) also shows tests using robust
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standard errors, but then warns that these data do not satisfy the conditions necessary to use these
tests.

The second set of output of interest presents the final estimation of variance components.
Three estimates are shown. The first is the variance of the intercepts across the classes estimated
at 41.33, and tested for significance using a chi-square statistic. It is significant, indicating that
the intercepts vary across the six classes. The intercept for any given group is that value when
the continuous independent variable is 0 (the grand mean when it is centered), thus this can be
interpreted as indicating that these measures of central tendency (adjusted means) for the various
group differ more than can be reasonably attributed to chance. As can be seen in the estimates
given earlier, the lowest intercept was obtained in class 6 (48.85) and the highest in class 7
(65.55). The second is the variance of the slopes, estimated at 2.02, and tested for significance
using a chi-square test. It too is significant, indicating that the slopes in the various groups differ
more than one could reasonably attribute to chance. That is, for some groups the slopes are
larger than for others. A close examination of the REML estimated slopes presented earlier
shows in fact that these slopes vary from 1.49 (class 2 ) to 4.15 (class 6). The final statistic
estimated is the residual variance shown to be 213.22. This value is a measure of the variance
not accounted for by the analysis, and is not tested for significance in HLM.

Generalizing the Analyses

The Random-Coefficients Model with two Level 1 Predictors

Of course, it is possible to perform much more complex analyses. Thus, within the
Random-Coefficients model, you could have more than one Level 1 predictor. For example, you
might add another variable (e.g., FANX) to the equation and investigate the intercepts and slopes
for the two predictors (i.e., FMOT and FANX). Following the instructions for using HLM and
including both FMOT and FANX as level 1 predictors yields the following equation:

Mixed Model

GRS, = 1y + 1, FMOT - FRMOT ) 4, #(FANX, - FANK ) +

; -+ 1, #(FMOT - FIOT )

a

+ u, AN, - FANK ) + 1,

Note that this equation is a direct extension of Equation 4 (and the corresponding
equation for the random-coefficients model with one predictor presented in the first example)
except that it has two additional elements. The equivalent of equation 1 then is:

Yy = By + By - X)) + Byl - X)) + vy (a)

and following the substitution for level 2 equations for 3, By;, and B,;, the general form of the
equation can be written as:

Yi= Yoo YaolXuyX )+ HyfXay=X)) + Mg + 1y
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* YZO(XZij_)TZ.j)+ I“IZj(XZij_)TZ.j)

Note that the first part of the equation is identical to that of equation (4) except that the subscript
1 has been introduced to refer to the first set of X values. The two new terms are introduced on
the second line. One is the cross-product of the mean slope with the second centered variable
and the other is the cross-product of the deviations of the group slopes from the mean slope with
the second centered variable. These correspond to the terms, y,,*FANX ; deviations and
Ky *FANX; deviations in the equation shown in HLM, and can be used to assess the mean slope
and the variance in these slopes for the second variable.

The run on HLM using this model produced the following results:

Tau Matrix

INTRCPT1, BO 43.43178 1.42032 9.17814
FMOT, B1 1.42032 2.27971 1.25093
FANX, B2 9.17814 1.25093 2.34899
Tau (as correlations)

INTRCPTL, BO 1.000 0.143 0.909
FMOT, B1 0.143 1.000 0.541
FANX, B2 0.909 0.541 1.000

Final estimation of fixed effects:

Standard Approx.
Fixed Effect Coefficient  Error T-ratio d.f. P-value
For  INTRCPTL1, BO
INTRCPT2, GOO 55.106946  2.969004 18561 5 0.000
For FMOT slope, B1
INTRCPT2, G10 2.476595  0.771614 3210 5 0.028
For FANX, slope, B2
INTRCPT2, G20 -1.923500 0.913282 -2.106 5 0.087
Final estimation of variance components:
Random Effect Standard  Variance df Chi-square P-value

Deviation  Component

INTRCPT1, uo 6.59028  43.43178 5 31.24741 0.000
FMOT slope, Ul 1.50987 2.27971 5 17.51254 0.004
FANX, slope, U2 1.53264 2.34899 5 5.38891 0.370

level-1, R 13.94577 194.48452
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There are a number of things that can be noted in these results, the major one of which is
that there are a few more estimates and many of the values that we obtained in the previous
analysis are slightly different. As before, the degrees of freedom for the t-tests of the fixed
effects are 5, but the estimates are slightly different, as are the t-values and the significance
levels. Nonetheless, it is still the case that the mean intercept is significantly different from 0 as
is the mean slope for FMOT. The t-test for the mean slope for FANX is not significant, t(5) = -
2.11, ns, indicating that in the presence of FMOT, FANX does not contribute to the prediction of
grades. The tests of the random effects, similarly have 5 degrees of freedom as before, and
although the variances and chi-square values are different, the variances of the intercepts and the
slopes for FMOT are still significantly greater than 0, indicating that they both differ among the
groups. The variance of FANX over the six groups is not significant, indicating that these slopes
do not differ across the groups, Chi-square = 5.39,ns.. Note, in this case the slopes for FMOT
and FANX are slopes in a model that has only these two predictors and, just as in multiple
regression, the values of the slopes of each variable are a function of the relationship of the two
predictors to each other as well as with the criterion (grades). In fact, the OLS estimates of these
slopes are the actual regression coefficients you would obtain if you were to perform the
multiple regression analysis separately for each group. Because of the rationale discussed
earlier, they would not be identical to the maximum likelihood estimates obtained with this
model. Clearly, this could be made more complex by adding more Level 1 predictors. As is the
case with multiple regression, however, the interpretation of the results becomes even more
complex.

The Intercepts- and Slopes-as-Outcomes Model

It is also possible to test a model with non-random varying slopes (Raudenbush &
Bryk, 2002, p. 28). In this case, one has at least one Level 2 variable and the question is whether
there is a linear relationship between the Level 2 variable(s) and the slopes (and intercepts) for
the Level 1 variables. In this case, the characteristic of the level 2 variable is defined as W, , a
value that describes some aspect of group j (i.e., is common to all members in group j) and the
fundamental level 1 equation is as before:

Yy = By + ByfX; - X) + 1y O
but now the two level 2 equations are:
Boj = Yoo * YoiWj + by

and
By = Yoo * YW, + Wy

Combining the two sets of equations leads to the general form:
Yi= Yoot YoW, + Hy + YyolXj - )?.j)+ Y11VVj(X1ij_)(_1.j)
* G - X) +

Thus, assume there was one Level 1 variable (e.g., FMOT, identified as X), and one
Level 2 variable (e.g., ATTCLAS, identified as W). For sake of illustration, assume that W was
the mean attitude toward the learning situation for each class. This could be entered into the data
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file for each individual in that class (for use in step 9 when setting up the HLM run), or could be
contained in another file where each level of class is indicated using the same code as in the
original data file, the score for ATTCLAS for each class, and some other variable (anything,
even nonsense numbers) and then read in at step 9 in the HLM run). For the simplest form
where there is the grouping variable (ENV), the Level 1 variable (FMOT), and the Level 2
variable (ATTCLAS), the full equation would appear in the HLM output as follows:

Mixed Model

GRS = 1y + 1y, ATTCLAS, - ATTCLAS ) +,,+(FMOT, - FMOT ) +

if
ot uU*(FMDTJ}. -FWOT ) + Yy

“{ATTCLAS, - ATTCLAS J+(FMOT, - FMOT ) + v

Ti1

Note this model has two additional terms. The first is the regression of the class
intercepts on ATTCLAS (i.e., Yo, *ATTCLAS deviation) and the second is the regression of the
class slopes on ATTCLAS (i.e., v,,*ATTCLAS*FMOT deviations). This is achieved by adding
ATTCLAS as a predictor at Level 2 to the equations for both the intercepts and the slopes. If it
were felt desirable to not estimate one of these values, that term could be left out of the model by
not including it in its equation. The results are:

Tau Matrix
INTRCPT1,BO 13.79450  -4.32908
FMOT,B1 -4.32908  2.44741
Tau (as correlations)
INTRCPT1,BO 1.000 -0.745
FMOT,B1 -0.745 1.000

Final estimation of fixed effects:

Standard Approx.
Fixed Effect Coefficient  Error T-ratio d.f. P-value
For INTRCPT1, BO
INTRCPT2, GOO 55.412869 1.998498 27.727 4 0.000
ATTCLAS, G01 -8.430881  3.202816 -2.632 4 0.056
For FMOT slope, B1
INTRCPT2, G10 2.905690 0.780974 3.721 4 0.033
ATTCLAS, G11 -0.067059 1.279706 -0.052 4 0.961
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Final estimation of variance components:

Random Effect Standard Variance df Chi-square  P-value
Deviation Component

INTRCPT]1, uo 3.71409 13.79450 4 9.62274 0.047
FMOT slope, Ul 1.56442 244741 4 16.17302 0.003
level-1, R 14.62204 213.80410

It is interesting to compare these results with those presented earlier. The models are
both comparable in that the only level 1 predictor is FMOT. In the first example, there was no
Level 2 predictor but in this case there is, ATTCLAS. Comparison of the Tau matrices will
reveal a very large decrease this time in the variance of the intercept from 32.45 to 13.79, but the
other values are comparable. The table of final estimation of the fixed effects is comparable as
well, though this table has an added set of tests for the Level 2 variable, ATTCLAS. As before,
the results demonstrate that the mean intercept is significantly greater than 0, t(4) = 27.73, as is
the mean slope, t(4) = 3.72. There is also a possible indication that the intercepts of the various
classes is negatively associated with ATTCLAS, suggesting that higher grades tend to be
associated with classes that have less positive attitudes toward the class, but the t-value just fails
to be significant, t(4) = -2.63, p < .06, aqnd that there is no association between the slopes in the
various classes and ATTCLAS, t(4) = .-05. As before, furthermore, the results indicate that both
the intercepts and slopes differ among the classes, x*(4) = 9.62 and 16.17, respectively.

The Issue of Centering

In the examples shown here, the predictor variables were all grand-mean centered. That
is, FMOT, FANX, and ATTCLAS were all centered such that their means were 0. As such, the
various intercepts referred to are the values of the dependent variable, GRS, when each of the
predictors is considered at its grand mean. In their general discussion of the location of the
predictors, Raudenbush and Bryk (2002, pp. 31-35) discuss the implications of using the original
metric (i.e., not centering), centering the predictor at the grand mean, centering the predictor at
the group level (so that the intercept corresponds to the value of the dependent variable at the
mean for each group), or other potentially interesting values. Obviously, the values obtained
(particularly those involving the intercepts) will differ depending on the choice one makes, and
on the associated interpretation. There are many possibilities, and the reader is referred to
Raudenbush and Bryk (2002) for a fuller discussion of some of the implications.



Data_analysis5.calm 16
References

Gardner, R.C. (2003). Analysis of Variance with a Continuous Independent Variable: Model I,
the Unique Approach. Unpublished manuscript, University of Western Ontario, London,
Canada..

Kirk, R. E. (1995). Experimental Design: Procedures for the Behavioral Sciences. Pacific
Grove, CA: Brooks/Cole.

Raudenbush, S.W. and Bryk, A.S. (2002). Hierarchical Linear Models: Applications and Data
Analysis Methods. Thousand Oaks, CA: Sage

Raudenbush, S.W., Bryk, A.S., Cheong, Y.F., Congdon, R. & du Toit, M. (2004). HLM6:
Hierarchical Linear and Nonlinear Modeling. Lincolnwood, IL: SSI Scientific Software
International.

Tabachnick, B. G. & Fidell, L. S. (2007). Using Multivariate Statistics. (Fifth Edition). Boston,
MA: Allyn & Bacon.



