Nursing Students’ Perceptions of Clinical Teachers’ Use of Empowering Teaching Behaviours: Instrument Psychometrics and Application*

Yolanda Babenko-Mould, Carroll L. Iwasiw, Mary-Anne Andrusyszyn, Heather K. Spence Laschinger, and Wayne Weston

Abstract

The authors present findings of 2nd year nursing students’ (N = 352) perceptions of their clinical teachers’ use of empowering teaching behaviours (ETB) and to highlight steps undertaken to establish psychometric properties of the Empowering Teaching Behaviours Questionnaire – Student (ETBQ-S). The authors identify a) the process involved in the adoption of the ETBQ-S, b) ETBQ-S validity procedures completed prior to instrument implementation, c) results of nursing students’ responses to the ETBQ-S, d) criterion validity, and e) ETBQ-S confirmatory factor analysis findings conducted after study completion. The ETBQ-S reliably measures five facets of empowering actions that clinical teachers can employ with nursing students in practice to enhance their confidence, involve them in decision-making and goal setting, make learning meaningful, and help them to become more autonomous nurses.

KEYWORDS: empowering teaching behaviours, psychometrics, clinical teachers, nursing students

*Thanks extended to Dr. Piotr Wilk, Assistant Professor, Western University, Canada for statistical advice.
Historically, nursing education curricula were grounded in behaviourist philosophies of teaching and learning. Empowerment was not overtly conceptualized in such curricula; thus, the concept was not fully realized or engaged in by teachers in the classroom or clinical context (Carlson-Catalano, 1992). When operating from a behaviourist paradigm, the teacher was often viewed as an authority figure and content expert. Today, nursing education has transitioned away from the behaviourist paradigm to a constructivist perspective of teaching and learning. In the constructivist learning environment, teachers and students interact to build upon existing knowledge and co-construct new knowledge (Brunner, 1990; Legg, Adelman, & Levitt, 2009). The teacher facilitates discussion through questioning of students’ ideas, and creates learning activities that engage students in problem-solving and inquiry (Hunter, 2008). These teaching behaviours are empowering as they motivate students to “…be more responsive to societal needs, more successful in humanizing the highly technological milieu of health care, more caring and compassionate, more insightful…more creative, more capable of critical thinking, and better able to bring scholarly approaches to client problems…” (Bevis & Watson, 2000, p. 1). Additionally, nursing teachers who apply constructivist principles to their teaching-learning ‘ways of being’ are able to engage with nursing students in an empowering way to facilitate development of professional competence and confidence (Johnson-Crowley, 2004). Thus, such students may become empowered and, upon graduation, be more prepared to “…optimize quality for the patients by creatively overcoming obstacles and customizing patient care” (Fullam, Lando, Johansen, Reyes, & Szaloczy, 1998, p. 254).

It is reasonable to propose that the use of empowering teaching behaviours (ETB) is important in nursing education. However, there is limited theoretically-based empirical research which examines the use of ETB by clinical teachers in acute care settings or literature that includes detailed ETB instrument psychometric information. Therefore, after ethics board and Deans/Directors’ approval from seven participating nursing program sites, a study was conducted with baccalaureate nursing students (N = 352) in their 2nd year who had completed an acute care clinical course to assess their perceptions of clinical teachers’ use of ETB. The purpose of this paper is to present findings of students’ perceptions of their clinical teachers’ use of ETB and to highlight the steps undertaken to establish psychometric properties of the instrument used to measure ETB. In particular, the authors identify a) the process involved in the adoption of the Empowering Teaching Behaviours Questionnaire – Student (ETBQ-S), b) ETBQ-S validity procedures completed prior to instrument implementation, c) results of nursing students’ responses to the ETBQ-S, d) criterion validity, and e) ETBQ-S confirmatory factor analysis findings conducted after study completion.
Empowerment and Empowering Behaviours

Over the past two decades, the concept of empowerment has become more widely recognized as a vital factor in the nursing profession (Campbell, 2003; Fullam et al., 1998; Kramer, Schmalenberg, & Maguire, 2010). In the nursing literature, empowerment has largely been studied with populations of clinical nurses and administrators, and to a much lesser extent with educators and nursing students. The concept has been examined from both work environment (Armstrong, Laschinger, & Wong, 2009; Greco, Laschinger, & Wong, 2006) and psychological (Hui, 1994; Laschinger, Wong, McMahon, & Kaufman, 1999) perspectives. Empowerment is considered to be a multi-dimensional process that fosters the development of power in people which then helps them increase control in their lives so that they can take action on priority issues (Chandler, 1992; Manojlovich, 2007). Conger and Kanungo (1988) defined empowerment as a motivational construct which involves enabling by leaders. Enabling actions move beyond leaders’ sharing of power to involve “building confidence and restoring a sense of personal power and self-efficacy” (Conger, 1989, p. 17).

Nursing students work closely in learning-teaching relationships with clinical teachers who, ideally, act as role models and promote nursing students’ development of knowledge, skills, and self-efficacy (confidence) for practice. Carlson-Catalano (1988) suggests that an educator’s primary role is to “…provide the knowledge and experiences necessary to empower [student] nurses in order that they may fulfill their professional role…” (p. ii). Such teachers prepare nursing students to work safely and effectively in the ‘real world’ of multifaceted and constantly evolving practice environments. Nursing students can become empowered when clinical teachers engage in ETB, such as assisting students to set and reach goals, and recognizing students’ achievements. In addition, use of ETB in the practice setting can ultimately promote students’ self-efficacy for professional practice. The Canadian Association of Schools of Nursing (2005) notes that clinical teachers help students develop the critical thinking, problem-solving and clinical decision-making skills, essential for a professional nurse. Given that clinical teachers’ actions can influence nursing students’ learning experiences in the practice setting, it is important to consider students’ perceptions of their teachers’ use of ETB.

In this research work, ETB is based on Conger and Kanungo’s (1988) concept of empowerment. Their view of empowerment is drawn from Bandura’s (1986) theory of self-efficacy, and “implies motivating through enhancing personal efficacy” (Conger & Kanungo, p. 473). Additionally, Conger and Kanungo’s theory of empowerment is composed of the following leader
behaviour categories: **expressing confidence in subordinates, fostering opportunities to participate in decision-making, providing autonomy from bureaucratic constraints, enhancing meaningfulness of work, and facilitating goal accomplishment.** We propose that clinical teachers, as nurse leaders in education, need to engage in empowering behaviours that provide sources of self-efficacy information to nursing students. As a result, students will be more apt to engage in actions in the clinical setting, which can enable them to address the health care needs of clients and families.

Although the concept of empowerment is not new for the nursing profession, much of the literature regarding empowerment in nursing education is anecdotal in nature. Literature grounded in theory primarily reflects assessment of the use of ETB from a teacher’s own perspective. Also, none of the studies provide factor analysis information on study instruments. Carlson-Catalano (1988) found that nurse educators (N = 106) underutilized a majority of ETB, as assessed with the researcher-developed *Status and Promotion of Professional Nursing Practice Questionnaire, Part II* (SPPNPQ-II). This 40 item instrument is divided into 4 subscale categories that represent empowering strategies used by nurse educators: **analytic nursing** (assist students to define problem situations), **change activities** (help students adapt to change and analyze working of organizations), **collegiality** (praising positive efforts made by students), and **sponsorship** (help student to determine support available in bureaucratic settings, and instruct students in methods of goal achievement in bureaucratic settings). Carlson-Catalano found that the change and sponsorship behaviour categories were not adequately utilized. Sixty percent of analytic behaviours and 40% of the collegiality behaviours were rated as adequately utilized by nurse educators with nursing students.

Brancato (2007) assessed frequency of use of ETB amongst full-time baccalaureate nursing faculty (N = 531) in the United States (U.S.) using the SPPNPQ-II instrument. Faculty responses indicated that they used “...only a limited number (approximately half) of empowering teaching behaviours, which is consistent with previous studies conducted by Carlson-Catalano (1988) and Hawks (1993)” (Brancato, p. 542). Most frequently used ETB were those in the analytical and collegiality subscale categories. The least used behaviours were associated with change and sponsorship subscale categories. The aforementioned studies begin to elucidate the importance of examining ETB; however, gaps exist in the literature about: students’ perspectives of ETB, the use of theory as a foundation to underpin the research, and in-depth psychometric assessment of the instrument(s) used to measure perceived use of ETB.
METHODS

A purposive sample of baccalaureate nursing students \((N = 352)\) from seven nursing program sites across Ontario, Canada who voluntarily completed and returned study packages via mail to the research team were included in the study. One of the research questions of the larger study focused on the extent to which nursing students perceived their clinical teachers to be engaging in empowering teaching behaviours during acute care clinical practicum courses. For the purposes of this paper, results from that research question will be presented.

Prior to implementing the study, a literature search was conducted to locate an instrument which would ‘fit’ both Conger and Kanungo’s (1988) conceptualization of empowerment and the acute care clinical education context. No instruments were found that measured this particular theory and the nursing context to be assessed. However, the Leader Empowerment Behaviours (Hui, 1994) instrument was selected, as it was based on Conger and Kanungo’s theory, and contained items focused on actions that appeared to be closely aligned with those that clinical teachers, as nurse leaders in education, would undertake with nursing students. Therefore, an initial step in the study process was to adapt with permission Hui’s original Leader Empowerment Behaviours instrument to create the Empowering Teaching Behaviours Questionnaire-Student (ETBQ-S).

The ETBQ-S was adapted from Hui’s (1994) instrument to be used as a self-report questionnaire to measure students’ perceptions of their teachers’ use of ETB in the acute care clinical setting. In the current study: a) the title was modified from the Leader Empowerment Behaviours instrument (Hui) to the ETBQ-S to reflect the population and context under study; b) the stem of the ETBQ-S subscale titles were tailored to fit with a nursing student population; and c) the wording of each of the 27 items was modified to illustrate clinical teacher behaviours that reflect leadership in the acute care practice setting. The ETBQ-S items assess five categories of ETB organized into subscales: a) enhancing meaningfulness of work (6 items), b) fostering opportunities for participation in decision-making (5 items), c) expressing confidence in high performance (5 items), d) facilitating goal accomplishment (6 items), and e) providing autonomy from bureaucratic constraints (5 items). Nursing students’ perceptions of clinical teachers’ use of ETB are rated on a 7-point response scale with anchors of 1= strongly agree, 2 = moderately agree, 3 = slightly agree, 4 = neither agree nor disagree, 5 = slightly disagree, 6 = moderately disagree, and 7= strongly disagree. This rating format was consistent with Hui’s (1994) original scoring system.
Prior to data analysis, the ETBQ-S items were reverse scored to be congruent with the scoring format of other study instruments (1= strongly disagree and 7= strongly agree). The items in each subscale are summed and averaged to obtain a subscale mean. Subscale scores can range from 5 to 35. An overall score for perception of ETB is attained by summing and averaging the 27 instrument items. A higher score is indicative of a higher level of students’ perceptions of their teachers’ use of ETB in the acute care practice setting.

Instrument Validity Prior to Implementation

An expert panel of nursing professors, familiar with Conger and Kanungo’s (1988) empowerment process model, nursing education, and instrument development, reviewed the ETBQ-S prior to distribution to establish face and content validity. The panel believed that the ETBQ-S was appropriately modified from Hui’s (1994) instrument to reflect a teaching-learning context relevant for the current study. In addition, the panel agreed that items within each subscale represented specific categories, and Conger and Kanungo’s concept of empowerment as a whole.

Prior to study commencement, Year-3 BScN students (N = 8) who had been involved in an acute care clinical rotation during Year-2 of their nursing program, completed a content validity index (CVI) of the ETBQ-S. “Scale developers often provide evidence of content validity by computing a content validity index…” (Polit & Beck, 2006, p. 489). Participants were provided with a copy of the ETBQ-S, which included a theoretical definition of ETB. The students were asked to select whether they agreed or disagreed (anchors: 1 = agree and 2 = disagree) that each item in each subscale was congruent with that particular subscale and with the overall concept of ETB. There is no neutral or ‘0’ – not sure’ option. In order to compute the CVI for items in each subscale, a table was created listing subscale items vertically on the left column, with a corresponding vertical column representing each rater. For each item, the rater’s score would be entered into the table as 1- agree that the item is relevant, or 2 - disagree that the item is relevant. Each item score rated as ‘1’ would be summed horizontally and then divided by the total number of raters. This value would reflect the specific item CVI. The overall item CVIs would then be summed and divided by the number of items in each subscale for an overall subscale CVI. Thus, an item CVI would be obtained as well as a subscale CVI. Finally, to obtain an overall instrument CVI the subscale CVIs would be summed and that value would be divided by the number of subscales. The ETBQ-S CVI value for each subscale is presented in Table 1. The total CVI value for the ETBQ-S was 0.754.
Table 1

ETBQ-S Content Validity Index (CVI)

<table>
<thead>
<tr>
<th>Subscale</th>
<th>Subscale Items</th>
<th>CVI (N = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancing meaningfulness of work</td>
<td>6</td>
<td>0.708</td>
</tr>
<tr>
<td>Fostering opportunities for participation in decision making</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>Expressing confidence in high performance</td>
<td>5</td>
<td>0.825</td>
</tr>
<tr>
<td>Facilitating goal accomplishment</td>
<td>6</td>
<td>0.813</td>
</tr>
<tr>
<td>Providing autonomy from bureaucratic constraints</td>
<td>5</td>
<td>0.525</td>
</tr>
</tbody>
</table>

The CVI scores reveal that the items were measuring the overall concept of ETB. The recommended item CVI and scale CVI is .78 or higher (Polit & Beck, 2006). There were a few items in the providing autonomy from bureaucratic constraints subscale that were not as highly agreed upon, as were items associated with the aforementioned subscales. The CVI for the autonomy subscale ultimately impacted the overall average instrument CVI value. However, since this would be the first time that the adapted instrument was to be used in a teaching-learning context, it was deemed prudent to retain all the items until the ETBQ-S underwent testing with a larger population of nursing students.

RESULTS

Further psychometric analysis was conducted on the ETBQ-S in a large study with baccalaureate nursing students (N = 352) involved in an acute care clinical rotation during Year 2 of their nursing program. The larger study involved testing a model linking students’ perceptions of teachers’ use of ETB to students’ structural empowerment and self-efficacy for professional nursing practice. In order to preserve anonymity and confidentiality, participants from seven nursing program sites in Ontario completed coded questionnaires, including the ETBQ-S, which were mailed back to the researcher using return-addressed paid envelopes. Data were analyzed using SPSS (2008) V16 statistical software to establish response frequency, means, standard deviations, and Cronbach alpha reliability values.
Demographics

The majority of participants were female (93.5%), aged 18-47 ($M = 23.51$, $SD = 5.50$) and had been enrolled in a college (31.5%) or university (30.7%) program prior to entering their nursing program. Most (82.7%) of the Year 2 participants indicated that they wanted to practice in an acute care setting after graduation.

ETBQ-S Response Distribution

The total overall ETBQ-S mean of 5.23 ($SD = 1.26$) (anchors 1 = strongly disagree and 7 = strongly agree) signified that nursing students perceived their clinical teachers as engaging in ETB in the acute care setting. Students most strongly perceived their teachers as using behaviours which expressed confidence in students’ performance ($M = 5.46$, $SD =1.45$). Enhancing meaningfulness of work ($M = 5.43$, $SD = 1.46$), fostering opportunities for participation in decision-making ($M = 5.38$, $SD = 1.54$), and facilitating goal accomplishment ($M = 5.22$, $SD = 1.32$) were teaching behaviours that students felt were used by clinical teachers to a strong degree. Nursing students reported that providing autonomy from bureaucratic constraints ($M = 4.76$, $SD = 1.18$) were teaching behaviours that were practiced by clinical teachers to a moderate degree.

ETBQ-S Internal Consistency

The ETBQ-S instrument was assessed for internal consistency with the nursing student ($N = 352$) data. The ETBQ-S, Cronbach alpha reliability coefficients for subscales ranged from 0.74 to 0.96 with an overall reliability of 0.89. Subscale reliability values are: providing autonomy from bureaucratic constraints = 0.74, facilitating goal accomplishment = 0.88, expressing confidence in high performance = 0.93, fostering opportunities for participation in decision-making = 0.94, and enhancing meaningfulness of work = 0.96. The results of Cronbach alpha coefficient analysis demonstrate internal consistency reliability of the ETBQ-S with the nursing student population involved in this study.

Criterion Validity

“The ability of a test to make accurate predictions…is measured by how well it predicts an outside criterion” (Vogt, 1999, p. 62). Pedhazur and Schmelkin (1991) recommend the use of multiple regression techniques to examine scores between a criterion (dependent) and predictor (independent) variable. Thus,
multiple regression analysis was used to assess criterion validity or the extent to which students’ perceptions of clinical teachers’ use of ETB scores predicted overall students’ structural empowerment between the ETBQ-S and the Conditions of Work Effectiveness-II-ED (CWEQ-II-ED) (Siu, Laschinger, & Vingilis, 2005) instrument. Both instruments had been adapted with permission. The CWEQ-II-ED assesses nursing students’ structural empowerment based on Kanter’s (1977, 1993) theory of structural power in organizations. The instrument by Siu et al. is grounded in the psychometrically sound CWEQ-II, which is a shortened version of the CWEQ and was developed by Laschinger, Finegan, Shamian, and Wilk (2001). In this study, the regression model with each of the ETBQ-S subscales (predictor variables) entered significantly predicted structural empowerment \((F (5, 346) = 26.91, p < .000). \) The adjusted R squared value was 0.27. This indicates that 27% of the variance in structural empowerment was explained by the model of empowering teaching behaviour subscales. Therefore, initial criterion validity has been established as nursing students’ scores on all ETB subscales predicted their overall structural empowerment scores.

Confirmatory Factor Analysis

Carmines and Zeller (1979) note that “…an indicator must be more than reliable if it is to provide an accurate representation of some abstract concept. It must also be valid” (p. 12). Essentially, an instrument should measure what it is meant to measure (DeCoster, 1998). Therefore, confirmatory factor analysis (CFA) was conducted on the ETBQ-S to assess instrument validity. CFA is ‘driven’ by theory (Albright & Myong Park, 2009) and is useful to study the associations between latent variables (unobservable variables) and continuous variables (observable/manifest variables) (Muthén & Muthén, 2007). For instance, ETB is a latent variable represented by several indicators or observable variables (items). The Mplus - Version 5.2 (Muthén & Muthén) software program was used in the CFA process.

CFA findings. The measurement model with five first order factors (five subscales) and one second order factor (concept of empowering teaching behaviours), and 25 items fit the data extremely well. That is, the ETBQ-S items were valid indicators of their respective subscales. The analysis revealed that items 22 and 25 were weakly correlated with their associated subscales. These low correlations may be attributed to the wording of the items from the negative, when all other items were worded from the positive. Thus, items 22 and 25 were removed from the final overall CFA process, which involved all five subscales (unobservable/latent variables) and remaining 25 instrument items (observable variables).
The Chi² (x²) test of model fit value was 657.780 with 270 degrees of freedom. Since this fit index may be influenced by sample size, Kline (1998) suggests a method to decrease the “sensitivity of the x² statistic to sample size”…by dividing “…its value by the degrees of freedom…” (p. 128). The subsequent ratio should be less than 3.0. In this study, the ratio was 2.43, which indicates an acceptable goodness of fit index.

Additional goodness of fit tests was conducted. The comparative fit index (CFI) ranges from ‘0’ for a poor fit to ‘1’ for a good fit. The CFI for the ETBQ-S was 0.943. The Tucker-Lewis index (TLI) is interpreted in the same fashion as the CFI. In this study, the TLI was 0.937. The Root Mean Square Error of Approximation (RMSEA) goodness of fit evaluation was conducted. A RMSEA value of 0.6 or below suggests a reasonably good fit of the instrument to the data. The RMSEA value for the ETBQ-S was 0.06. Finally, the Standardized Root Mean Square Residual (SRMSR) was calculated with a resultant value of 0.039. Kline (1998) reports that a favourable SRMSR value is 0.10 or less.

Standardized model results were examined to assess the loadings of items on subscales. It was found that each of the subscales had acceptable item loadings. In addition, the “squared multiple correlations provide information about how much variance of an observed variable the factors can account for” (Albright & Myong Park, 2009, p. 58). The standardized factor loadings and R-square estimates for the ETBQ-S five factors and 25 items are presented in Table 2.

DISCUSSION

The findings of this psychometric analysis provide initial support for the use of the ETBQ-S with BScN students in acute care clinical rotations. The total ETBQ-S Cronbach alpha reliability coefficient of 0.89, and a subscale range of 0.74 to 0.96 reveals that the respondents are interpreting the instrument items in a similar way, thus establishing strong initial internal reliability of the ETBQ-S with this population of nursing students. High subscale Cronbach alpha values ranging from 0.95 to 0.97 have also been reported in studies using the Leader Empowerment Behaviours (Hui, 1994) instrument with both nursing and non-nursing populations (Ahearne, Mathieu, & Rapp, 2005; Greco, Laschinger, & Wong, 2006; Hui, 1994; Laschinger, Wong, McMahon, & Kaufmann, 1999; McMahon, 1998; Peachey, 2002).
Table 2

ETBQ-S Standardized Factor Loadings and R-Square Estimates

<table>
<thead>
<tr>
<th>ETBQ-S Subscale and Items</th>
<th>Standardized Factor Loadings*</th>
<th>Standard Error</th>
<th>R-Square Estimates*</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancing Meaningfulness of Work Subscale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 1</td>
<td>.903</td>
<td>.015</td>
<td>.816</td>
<td>.027</td>
</tr>
<tr>
<td>Item 2</td>
<td>.907</td>
<td>.014</td>
<td>.823</td>
<td>.025</td>
</tr>
<tr>
<td>Item 3</td>
<td>.868</td>
<td>.019</td>
<td>.754</td>
<td>.032</td>
</tr>
<tr>
<td>Item 4</td>
<td>.919</td>
<td>.012</td>
<td>.844</td>
<td>.022</td>
</tr>
<tr>
<td>Item 5</td>
<td>.909</td>
<td>.016</td>
<td>.826</td>
<td>.029</td>
</tr>
<tr>
<td>Item 6</td>
<td>.863</td>
<td>.021</td>
<td>.745</td>
<td>.037</td>
</tr>
<tr>
<td>Fostering Opportunities for Participation in Decision Making Subscale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 7</td>
<td>.871</td>
<td>.018</td>
<td>.759</td>
<td>.031</td>
</tr>
<tr>
<td>Item 8</td>
<td>.851</td>
<td>.027</td>
<td>.724</td>
<td>.046</td>
</tr>
<tr>
<td>Item 9</td>
<td>.898</td>
<td>.014</td>
<td>.807</td>
<td>.025</td>
</tr>
<tr>
<td>Item 10</td>
<td>.889</td>
<td>.017</td>
<td>.791</td>
<td>.031</td>
</tr>
<tr>
<td>Item 11</td>
<td>.928</td>
<td>.013</td>
<td>.861</td>
<td>.024</td>
</tr>
<tr>
<td>Expressing Confidence in High Performance Subscale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 12</td>
<td>.760</td>
<td>.034</td>
<td>.578</td>
<td>.051</td>
</tr>
<tr>
<td>Item 13</td>
<td>.907</td>
<td>.017</td>
<td>.823</td>
<td>.030</td>
</tr>
<tr>
<td>Item 14</td>
<td>.885</td>
<td>.022</td>
<td>.783</td>
<td>.039</td>
</tr>
<tr>
<td>Item 15</td>
<td>.825</td>
<td>.030</td>
<td>.681</td>
<td>.049</td>
</tr>
<tr>
<td>Item 16</td>
<td>.885</td>
<td>.022</td>
<td>.784</td>
<td>.038</td>
</tr>
<tr>
<td>Facilitating Goal Accomplishment Subscale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 17</td>
<td>.923</td>
<td>.012</td>
<td>.851</td>
<td>.021</td>
</tr>
<tr>
<td>Item 18</td>
<td>.909</td>
<td>.016</td>
<td>.826</td>
<td>.030</td>
</tr>
<tr>
<td>Item 19</td>
<td>.911</td>
<td>.016</td>
<td>.829</td>
<td>.028</td>
</tr>
<tr>
<td>Item 20</td>
<td>.883</td>
<td>.018</td>
<td>.780</td>
<td>.033</td>
</tr>
<tr>
<td>Item 21</td>
<td>.860</td>
<td>.019</td>
<td>.740</td>
<td>.032</td>
</tr>
<tr>
<td>Providing Autonomy from Bureaucratic Constraints Subscale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 23</td>
<td>.742</td>
<td>.037</td>
<td>.550</td>
<td>.055</td>
</tr>
<tr>
<td>Item 24</td>
<td>.854</td>
<td>.027</td>
<td>.730</td>
<td>.046</td>
</tr>
<tr>
<td>Item 26</td>
<td>.554</td>
<td>.060</td>
<td>.307</td>
<td>.066</td>
</tr>
<tr>
<td>Item 27</td>
<td>.424</td>
<td>.056</td>
<td>.180</td>
<td>.047</td>
</tr>
</tbody>
</table>

Note: *p<.0001
Confirmatory factor analysis findings from the goodness of fit indices, factor loadings, and R-square estimates suggest that the instrument fits the data at a satisfactory level. Also, findings from criterion validity analysis are indicative of the instrument’s ability to accurately predict another variable. Thus, the ETBQ-S appears to consist of both reliability and validity and is suitable for use in nursing education contexts.

As this is the first occasion that the ETBQ-S has been used with nursing students, it would be prudent to use the questionnaire with various student populations in nursing education to further assess validity and reliability. For instance, a national study with a much larger sample size would add to the foundational psychometric support of the ETBQ-S, as findings would provide data as to the extent to which clinical teachers in both acute care and community practice settings are being perceived as engaging in actions that foster student motivation and confidence for professional practice. Also, a longitudinal study with students in various nursing programs that provide teachers with orientation sessions about use of ETB in comparison to programs that do not provide such initiatives might result in information about how programs that employ various faculty development strategies ultimately enhance students’ perceptions of teachers’ use of such actions in constructive ways.

Given the CVI results and some of the factor loadings in the ‘providing autonomy from bureaucratic constraints’ subscale, the subscale items could benefit from clarification, as some students may not have had a strong sense of how bureaucracy influences their learning experience, or how the clinical teacher may have enacted these behaviours. This might reflect the need for clinical teachers and nursing students to discuss issues related to bureaucracy in health care settings and what they can jointly do to accomplish goals in such circumstances.

Even though the instrument was developed and employed with nursing students in clinical settings, use of the ETBQ-S with students from various health science disciplines would be useful to compare and contrast students’ perceptions of teachers’ empowering behaviours. Such data could help to inform further qualitative research to understand why students feel the way they do about teachers’ behaviours and how that may fundamentally influence their learning. The context of the instrument’s use should be varied to include traditional ‘face-to-face’ settings and distance learning environments. In addition, the instrument could be tested in various academic nursing contexts in non-North American countries. The concept of empowering teaching behaviours might be relatively new for teachers in nursing programs to consider. In some countries, the idea of
empowerment in general might be construed as a different term, have different connotations, or may not exist as it is expressed in its current form in this paper.

Nurse educators involved in professional development activities could use this instrument as a guide to assist in an evolving understanding of how their teaching actions can be associated with empowerment. The study results and instrument items could stimulate reflection about the behaviours nurse educators in general and clinical teachers in particular, currently use with students. This process could result in an increased awareness of self as educator who has a role to play in developing nursing students’ professional knowledge, judgments, and attitudes. Nurse educators could utilize the instrument in a way that compares and contrasts their particular nursing program philosophy about teaching and learning with empowering behaviours, to gain a sense of how such philosophy and actions can be more aligned to provide the best student learning experience. As was the case with the larger study that this paper stems from, the instrument could also be used to examine clinical practice settings to gauge the extent to which the environments that clinical teachers and nursing students are involved in support teachers’ enactment of empowering behaviours.

The ETBQ-S provides researchers with a comprehensive view of key empowering behaviours that teachers enact with students in current practice settings. The core premise of the teaching actions included in the ETBQ-S reveals that leadership and empowerment can beget the same amongst nursing students. Newly graduated nurses will be required to hold leadership roles where they will be called upon to engage in “complex cognitive work” (Howard, 1998, p. 203) while being responsible for client care and collaboration with other health care personnel. In order to prepare nursing students for such roles, it is incumbent upon clinical teachers to role model leadership behaviours and be facilitators of learning from the outset of students’ involvement in a nursing program.

Clinical teachers who involve students in problem-solving and decision-making, praise students’ accomplishments, and work with students to cut through bureaucracy in hierarchical organizations are “walking the talk” (Howard, 1998, p. 205) of empowerment. By engaging students in the process of learning from an empowering standpoint, clinical teachers enable nursing students to develop into nurse leaders who will be decision-makers at the ‘front line’ of care with clients. Therefore, assessing the extent to which nursing students perceive their clinical teachers as using empowering behaviours provides valuable information regarding a key factor in students’ empowerment process.
CONCLUSION

Based on the promising psychometric properties of the Empowering Teaching Behaviours Questionnaire-Student (ETBQ-S), it is proposed that the instrument be used in nursing education. The instrument reliably measures five facets of empowering actions that teachers can employ with nursing students in the practice environment to enhance their confidence, involve them in decision-making and goal setting, making learning meaningful, and help them to become more autonomous nurses. The ETBQ-S is underpinned by theory and provides a viable method of assessing perceived use of empowering teaching behaviours. The instrument is applicable with students in both undergraduate and graduate programs, as the key aspects of employing actions to support student confidence is relevant across levels of nursing education.

REFERENCES

