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In 1895 Cantor gave a definitive formulation of the concept of set (menge), to wit, 

A collection to a whole of definite, well-differentiated objects of our 
intuition or thought. 

Let us call this notion a concrete set.  More than a decade earlier Cantor had 
introduced the notion of cardinal number (kardinalzahl) by appeal to a process of 
abstraction: 

Let M be a given set, thought of as a thing itself, and consisting of 
definite well-differentiated concrete things or abstract concepts which 
are called the elements of the set. If we abstract not only from the nature 
of the elements, but also from the order in which they are given, then 
there arises in us a definite general concept…which I call the power or 
the cardinal number belonging to M.  

As this quotation shows, one would be justified in calling abstract sets what 
Cantor called termed cardinal numbers2. An abstract set may be considered as what 

                                                                 
1 This paper has its origins in a review [2] of Lawvere and Rosebrugh’s book [5]. 
2 This usage of the term “abstract set” is due to F. W. Lawvere: see [4] and [5].  Lawvere’s usage 

contrasts strikingly with that of Fraenkel, for example, who on p. 12 of [3] remarks:  
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arises from a concrete set when each element has been purged of all intrinsic 
qualities aside from the quality which distinguishes that element from the rest. An 
abstract set is then an image of pure discreteness, an embodiment of raw plurality; 
in short, it is an assemblage of featureless but nevertheless distinct “dots” or 
“motes”3.  The sole intrinsic attribute of an abstract set is the number of its 
elements.  

Concrete sets are typically obtained as extensions of attributes.  Thus to be a 
member of a concrete set C is precisely to possess a certain attribute A, in short, to 
be an A. (It is for this reason that Peano used ∈, the first letter of Greek εστι, “is”, 
to denote membership.) The identity of the set C  is completely determined by the 
attribute A. As an embodiment of the relation between object and attribute, 
membership naturally plays a central role in concrete set theory; indeed the usual 
axiom systems for set theory such as Zermelo-Fraenkel and Gödel-Bernays take 
membership as their sole primitive relation. Concrete set theory may be seen as a 
theory of extensions of attributes. 

By contrast, an abstract set cannot be regarded as the extension of an 
attribute, since the sole “attribute” possessed by the featureless dots—to which we 
shall still refer as elements—making up an abstract set is that of bare 
distinguishability from its fellows. Whatever abstract set theory is, it cannot be a 
theory of extensions of attributes. Indeed the object/attribute relation, and so a 
fortiori the membership relation between objects and sets cannot act as a primitive 
within the theory of abstract sets.   

The key property of an abstract set being discreteness, we are led to derive 
the principles governing abstract sets from that fact. Now it is characteristic of 
discrete collections, and so also of abstract sets, that relations between them are 
reducible to relations between their constituting elements4. Construed in this way, 
relations between abstract sets provide a natural first basis on which to build a 
theory thereof5. And here categorical ideas can first be glimpsed, for relations can 
be composed in the evident way, so that abstract sets and relations between them 
form a category, the category Rel.  

In fact Rel does not play a central role in the categorical approach to set 
theory, because relations have too much specific “structure” (they can, for 
example, be intersected and inverted). To obtain the definitive category associated 
with abstract sets, we replace arbitrary relations with maps between sets. Here a 
map from an abstract set X to an abstract set Y is a relation f  between X and Y 
which correlates each element of X with a unique element of Y. In this situation we 

                                                                                                                       
Whenever one does not care about what the nature of the members of the set may be one speaks of an 

abstract set.  
Fraenkel’s “abstraction” is better described as “indifference”.  
3 Perhaps also as “marks” or “strokes” in Hilbert’s sense. 
4 This is to be contrasted with relations between continua. In the case of straight line segments, for 

example, the relation of being double the length is clearly not reducible to any relation between points or 
“elements”. In the case of continua, and geometric objects generally, the relevant relations take the form of 
mappings. 

5 We conceive a relation R between two abstract sets X and Y is as correlating (some of) the elements of X 
with (some of) the elements of Y. 
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write f: X → Y, and call X and Y the domain, and codomain, respectively, of f. 
Since the composite of two maps is clearly a map6, abstract sets and mappings 
between them form a category Set known simply as the category of abstract sets.  

While definitions in concrete set theory are presented in terms of membership 
and extensions of predicates, in the category of abstract sets definitions are 
necessarily formulated in terms of maps, and correlations of maps. This is the case 
in particular for the concept of membership itself. Thus in Set an element of a set X 
is defined to be a mapping 1 → X, where 1 is any set “consisting of a single dot”, 
that is, satisfying the condition, for any set Y, that there is a unique mapping Y → 
1. In categorical terms, 1 is a terminal element of Set. In Set 1 has the important 
property of being a separator for maps in the sense that, for any maps f, g with 
common domain and codomain, if the composites of f and g with any element of 
their common codomain agree, then f and g are identical.  

The “empty” set ∅ may be characterized as an initial object of Set, i.e., such 
that, for any set Y, there is a unique map ∅ → Y. 

In Set the concept of set inclusion is replaced by that of monic (or one-to one) 
map, where a map m: X → Y is monic if, for any f, g: A → X, m f = m g ⇒ f = g. A 
monic map to a set Y is also known as a subobject of Y. 

Any two-element set 2 (characterized categorically as the sum of a pair of 1s; 
to be specific, we may choose 2 to be the set {∅, 1}) plays the role of a subobject 
classifier or truth-value object in Set. This means that, for any set X, maps X → 2 
correspond naturally to subobjects of X. Maps X → 2 correspond to attributes on X, 
with the members of 2 playing the role of truth values: ∅ “false” and 1 “true”. 

Along with ∈, in concrete set theory the concept of identity or equality of sets 
—essentially defined in terms of ∈—plays a seminal role. In abstract set theory, 
i.e. in Set, by contrast, it is the equality of maps which is crucial; it is, in fact, 
taken as a primitive notion. Equality for sets is, to all intents and purposes, 
replaced by the notion of isomorphism, that is, the existence of an invertible map 
between assemblages of dots. An abstract set is then defined “up to 
isomorphism”—the precise identity of the “dots” composing the set in question 
being irrelevant, the sole identifying feature is the “form” of the set.  

In abstract or categorical set theory sets are identified not as extensions of 
predicates but through the use of the omnipresent categorical concept of 
adjunction. Consider, for instance, the definition of exponentials. In concrete set 
theory the exponential BA of two sets A, B is defined to be the set whose elements 
are all functions from A to B. In categorical set theory BA is introduced in terms of 
an adjunction, that is, the postulation of an appropriately defined natural bijective 
correspondence, for each set X, between maps X → BA  and mappings X × A → B . 
(Here X  × A is the Cartesian product of X and A, itself defined by means of a 
suitable adjunction expressing the fact that maps from an arbitrary set Y to A × X 
are in natural bijective correspondence with pairs of maps from Y to X and A. We 
note in passing that relations between X and A can be identified with subobjects of 

                                                                 
6 If f: X → Y and g: Y → Z, we write g f: X → Z for the composite of g and f. 
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X × A.) Thus defined, BA is then determined uniquely up to isomorphism, that is, as 
an assemblage of dots. We note that the exponential 2X then corresponds to the 
power set of X. 

The axiom of choice is a key principle in the theory of abstract sets. Stated in 
terms of maps, it takes the following form. Call a map p: X → Y epic if f, g: Y → A, 
f p = g p ⇒ f = g: p is then epic if it is “onto” Y in the sense that each element of Y 
is the image under p of an element of X. A map s: Y → X is a section of p if the 
composite ps is the identity map on Y. Now the axiom of choice for abstract sets is 
the assertion that any epic map in Set has a section (and, indeed usually many). 
This principle is taken to be correct for abstract sets because of the totally arbitrary 
nature of the maps between them. Thus in the figure below the choice of a section s 
of the epic map p can be made on purely combinatorial grounds since no constraint 
whatsoever is placed on s (aside, of course, from the fact that it must be a section 
of p).  

 

 
 
An abstract set X is said to be infinite if there exists an isomorphism between 

X and the set X +1 obtained by adding one additional “dot” to X. It was the 
discovery of Dedekind in the 19th century that the existence of an infinite set in this 
sense is equivalent to that of the system of natural numbers. The axiom of infinity, 
which is also assumed to hold in abstract set theory, is the assertion that an infinite 
set exists. 

The category Set is thus supposed to satisfy the following axioms: 

1. There is a ‘terminal’ object 1 such that, for any object X, there is a unique 
arrow X → 1  

2. Any pair of objects A, B has a Cartesian product A × B. 

3. For any pair of objects A, B one can form the ‘exponential’ object BA of 
all maps   A → B. 
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4. There is an object of truth values Ω such that for each object X there is a 
natural correspondence between subobjects (subsets) of X and arrows X → 
Ω. (In Set, as we have observed, one may take Ω to be the set 2 = {∅, 1}.) 

5. 1 is not isomorphic to ∅. 

6. The axiom of infinity. 

7. The axiom of choice. 

8. “Well-pointedness” axiom: 1 is a separator. 

A category satisfying axioms 1. – 6. (suitably formulated in the first-order 
language of categories) is called an elementary nondegenerate topos with an 
infinite object, or simply a topos7. The category of abstract sets is thus a topos 
satisfying the special additional conditions 7. and 8.  

The objects of the category of abstract sets have been conceived as pluralities 
which, in addition to being discrete, are also static or constant in the sense that 
their elements undergo no change. There are a number of natural category-theoretic 
approaches to bringing variation into the picture. For example, we can introduce a 
simple form of discrete variation by considering as objects bivariant sets, that is, 
maps 0 1:F X X⎯⎯→  between abstract sets. Here we think of X0 as the “state” of 
the bivariant set F at stage 0, or “then”, and X1 as its “state” at stage 1, or “now”. 
The bivariant set may be thought of having undergone, via the “transition” F, a 
change from what it was then (X0) to what it is now (X1). Any element x of X0, that 
is, of F “then” becomes the element Fx of X0 “now”. Pursuing this metaphor, two 
elements “then” may become one “now” (if F is not monic), or a new element may 
arise “now”, but because F is a map, no element “then” can split into two or more 
“now” or vanish altogether8.  

The appropriate maps between bivariant sets are pairs of maps between their 
respective states which are compatible with transitions. Thus a map from 

0 1:F X X⎯⎯→  to 0 1:G Y Y⎯⎯→ is a pair of maps 0 0 0:h X Y⎯⎯→ , 

2 1 1:h X Y⎯⎯→ for which G Ε h1 = h2  Ε F.  Bivariant sets and maps between them 
defined in this way form the category Biv of bivariant sets. 

Now, like Set, Biv is a topos but the introduction of variation causes several 
new features to emerge. To begin with, the subobject classifier Ω in Biv is no 
longer a two -element constant set but the bivariant set i: Ω0 → Ω1 = 2,  where Ω0 
is the three-element set {∅, Φ, 1}, that is, 2 together with a new element Φ, and i 
sends ∅ to ∅ and both Φ and 1 to 1. 

                                                                 
7 See, e.g., [6] or [7]. 
8 Note that had we employed relations rather than maps the latter two possibilities would have to be 

allowed for, complicating the situation considerably. 
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And while axioms 5 and 6 continue to hold in Biv, axioms 7 and 8 fail9. In 
short, the axiom of choice and well-pointedness are incompatible with even the 
most rudimentary form of discrete variation. 

Abstract sets can also be subjected to continuous variation. This can be done 
in the first instance by considering, in place of abstract sets, bundles over 
topological spaces. Here a bundle over a topological space X is a continuous map p 
from some topological space Y to X. If we think of the space Y as the union of all 
the “fibres” Ax =   p–1(x) for x ∈ X, and Ax as the “value” at x of the abstract set A, 
then the bundle p itself may be conceived as the abstract set A varying 
continuously over X.  A map f: p → p′ between two bundles p: Y → X and  

p′: Y′ → X over X is a continuous map f: Y → Y′ respecting the variation over X, 

that is, satisfying p′ Ε f = p. Bundles over X and maps between them form a 
category Bun(X), the category of bundles over X.  

While categories of bundles do represent the idea of continuous variation in a 
weak sense, they fail to satisfy the topos axioms 3. and 4. and so fall short of being 
suitable generalizations of the category of abstract sets to allow for such variation. 
To obtain these, we confine attention to special sorts of bundles known as sheaves. 
A bundle p : Y → X over X is called a sheaf over X when p is a local 
homeomorphism in the following sense: to each a ∈ Y there is an open 
neighbourhood U  of a such that pU  is open in X and the restriction of p to U is a 
homeomorphism U → pU. The domain space of a sheaf over X  “locally resembles” 
X in the same sense as a differentiable manifold locally resembles Euclidean space.  
It can then be shown that the category Shv(X) of sheaves over X and maps between 
them (as bundles) is a topos the elements of whose truth-value object correspond 
bijectively with the open subsets of X10. Categories of sheaves are appropriate 
generalizations of the category of abstract sets to allow for continuous variation, 
and the term continuously varying set is taken to be synonymous with the term 
sheaf. In general, both the axiom of choice and the axiom of well-pointedness fail 
in sheaf categories11, showing that both principles are incompatible with continuous 
variation. 

If we take X to be a space consisting of a single point, a sheaf over X is a 
discrete space, so that the category of sheaves over X is essentially the category of 
abstract sets. In other words, an abstract set varying continuously over a one-point 

                                                                 
9 The axiom of choice fails in Biv since it is easy to construct an epic from the identity map on {0, 1} to 

the map {0, 1} → {0} with no section. That 1 is not a separator follows from the fact that ∅ → 1 has many 
different maps from it but no maps from 1 → 1 to it.  

10 See, e.g., [6]. 
11 This is most easily seen by taking X to be the unit circle S1 in the Euclidean plane, and considering the 

“double-covering” D of S1 in 3-space. The obvious projection map D → S1 is a sheaf over S1 with no 
elements in Shv(S1), so the latter cannot be well-pointed. The same fact shows that the natural epic map in 
Shv(S1) from  D → S1 to the identity map S1 → S1 (the terminal object of Shv(S1) has no section, so that the 
axiom of choice fails in Shv(S1). 
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space is just a (constant) abstract set. In this way arresting continuous variation 
leads back to constant discreteness12. 

There is an alternative description of sheaf categories which brings forth their 
character as categories of variable sets even more strikingly. For Shv(X) can also 
be described as the category of sets varying (in a suitable sense) over open sets in 
X13.  This type of variation can be further generalized to produce categories of sets 
varying over a given (small) category. Each such category is again a topos14. 
Further refinements of this procedure yield so-called smooth toposes, categories of 
variable sets in which the form of variation is honed from mere continuity into 
smoothness15. Regarded as universes of discourse, in a smooth topos all maps 
between spaces are smooth, that is, arbitrarily many times differentiable. Even 
more remarkably, the objects in a smooth topos can be seen as being generated by 
the motions of an infinitesimal object—a “generic tangent vector”—as envisioned 
by the founders of differential geometry.  

So, starting with the category of abstract sets, and subjecting its objects to 
increasingly strong forms of variation leads from discreteness to continuity to 
smoothness. The resulting unification of the continuous and the discrete is one of 
the most startling and far-reaching achievements of the categorical approach to 
mathematics. 
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