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In intuitionistic set theory, the law of excluded middle is known to be derivable from the 

standard version of the axiom of choice that every family of nonempty sets has a choice 

function. In this paper it is shown that each of a number of intuitionistically invalid logical 

principles, including the law of excluded middle, is, in intuitionistic set theory, equivalent 

to a suitably weakened version of the axiom of choice.  Thus these logical principles may 

be viewed as choice principles.                                                                                                                          

 
 

We work in intuitionistic Zermelo-Fraenkel set theory IST (for a presentation, see  

[ 3 ], where it is called ZF′I). Let us begin by fixing some notation. For each set A we 

write PA for the power set of A, and QX for the set of inhabited subsets of A, that is, of 

subsets X of A for which ∃x (x ∈ A). The set of functions from A to B is denoted by BA; 

the class of functions with domain A is denoted by Fun(A). The empty set is denoted by 

0, {0} by 1, and {0, 1} by 2.  

We tabulate the following logical schemes: 

 

SLEM α ∨ ¬α      (α any sentence) 

Lin  (α → β) ∨ (β → α)    (α, β any sentences) 

Stone ¬α ∨ ¬¬α    (α any sentence) 

Ex  ∃x[∃xα(x) → α(x)]    (α(x) any formula with at most x free) 

Un   ∃x[α(x) → ∀xα(x)]    (α(x) any formula with at most x free) 

Dis1 ∀x[α ∨ β(x)] → α ∨ ∀xβ(x)      (α any sentence, β(x) any formula with at most x 

free) 

Over intuitionistic logic, Lin, Stone and Ex are consequences of SLEM; and Un implies 

Dis. All of these schemes follow, of course, from the full law of excluded middle, that is 

SLEM for arbitrary formulas. 

We formulate the following choice principles—here X is an arbitrary set and ϕ(x,y) 

an arbitrary formula of the language of IST with at most the free variables x, y: 

 
                                               
1 Dis is equivalent, over intuitionistic predicate logic, to what is called in [4] the higher dual distributive law— 
  

HDDL    ∀x[α(x) ∨ β(x)] → ∃xα(x) ∨ ∀xβ(x). 
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ACX  ∀x∈X ∃y ϕ(x,y) → ∃f∈Fun(X) ∀x∈X ϕ(x,fx) 

*ACX   ∃f∈Fun(X) [∀x∈X ∃y ϕ(x,y) → ∀x∈X ϕ(x,fx)] 

DACX  ∀f∈Fun(X) ∃x∈X ϕ(x,fx) → ∃x∈X  ∀y ϕ(x,y) 

*DACX  ∃f∈Fun(X) [∃x∈X ϕ(x,fx) → ∃x∈X  ∀y ϕ(x,y)] 

 

The first two of these are forms of the axiom of choice for X; while classically equivalent, 

in IST AC*X  implies ACX, but not conversely. The principles DACX and  *DACX are dual 

forms of the axiom of choice for X: classically they are both equivalent to ACX  and 

*ACX , but in IST *DACX  implies DACX, and not conversely.  

 We also formulate what we shall call the weak extensional selection principle, in 

which α(x) and β(x) are any formulas with at most the variable x free: 

 

WESP        ∃x∈2α(x) ∧ ∃x∈2β(x) → ∃x∈2∃y∈2[α(x) ∧ β(y) ∧ [∀x∈2[α(x) ↔ β(x)] → x = y]]. 

 

This principle asserts that, for any pair of instantiated properties of members of 2, 

instances may be assigned to the properties in a manner that depends just on their 

extensions. WESP is a straightforward consequence of ACQ2. For taking ϕ(u, y) to be      

y ∈ u in ACQ2 yields the existence of a function f with domain Q2 such that fu ∈ u for 

every u ∈ Q2. Given formulas α(x), β(x), and assuming the antecedent of WESP, the sets 

U = {x∈2: α(x)} and V = {x∈2: β(x)} are members of Q2, so that a = fU ∈ U , and b = fV ∈ V, 

whence α(a) and β(b). Also, if ∀x∈2[α(x) ↔ β(x)], then U = V, whence a = b; it follows then 

that the consequent of WESP holds.  

We are going to show that each of the logical principles tabulated above is  

equivalent (over IST) to a choice principle. Starting at the top of the list, we have first: 

 

• WESP and SLEM are equivalent over IST. 

Proof.  Assume WESP. Let σ be any sentence and define  

α(x)  ≡  x = 0  ∨  σ           β(x)  ≡  x = 1  ∨  σ . 

With these instances of α and β the antecedent of WESP is clearly satisfied, so that 

there exist members a, b of 2 for which (1) α(a) ∧ β(b) and (2) ∀x [[∀x∈2[α(x) ↔ β(x)] →    

a = b. It follows from (1) that σ ∨ (a = 0 ∧ b = 1), whence (3) σ ∨ a ≠ b. And since clearly  

σ  →  ∀x∈2[α(x) ↔ β(x)] we deduce from (2) that σ → a = b, whence a ≠ b → ¬σ. Putting 

this last together with (3) yields σ ∨ ¬σ, and SLEM follows.  
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 For the converse, we argue informally. Suppose that SLEM holds. Assuming the 

antecedent of WESP, choose a ∈ 2 for which α(a). Now (using SLEM) define an element 

b ∈ 2 as follows. If ∀x∈2[α(x) ↔ β(x)] holds, let b = a; if not, choose b so that β(b). It is 

now easy to see that a and b satisfy α(a) ∧ β(b) ∧ [∀x∈2[α(x) ↔ β(x)] → a = b]. WESP 

follows.   

 

Remark.  The argument for WESP → SLEM  is another “stripped down” version of 

Diaconescu’s theorem that, in a topos, the axiom of choice implies the law of excluded 

middle.  The result may be compared with that of [2] to the effect that the presence of 

extensional ε-terms renders intuitionistic logic classical. 

 

Next, we observe that, while AC1 is (trivially) provable in IST, by contrast 

• 1
*AC and Ex are equivalent over IST. 

Proof.  Assuming 1
*AC , take ϕ(x,y) ≡ α(y) in its antecedent. This yields an  f ∈ Fun(1) 

for which ∀yα(y) → α(f0), giving ∃y[∃yα(y) → α(y)], i.e., Ex. 

Conversely, define α(y) ≡ ϕ(0,y). Then, assuming Ex, there is b for which ∃yα(y) → 

α(b), whence ∀x∈1∃yϕ(x,y) → ∀x∈1ϕ(x,b). Defining f ∈ Fun(1) by f = {〈0,b〉} gives 

∀x∈1∃yϕ(x,y) → ∀x∈1ϕ(x,fx), and 1
*AC follows.   

 

 Further, while DAC1 is easily seen to be provable in IST, we have 

 

• 1
*DAC and Un are equivalent over IST. 

Proof. Given α, Define ϕ(x,y) ≡ α(y). Then, for f ∈ Fun(1),  ∃x∈1ϕ(x,fx) ↔ α(f0) and 

∃x∈1∀yϕ(x,y) ↔ ∀yα(y). 1
*DAC then gives  

∃f∈Fun(1)[α(f0) → ∀yα(y)], 

from which Un follows easily. 

 Conversely, given ϕ, define α(y) ≡ ϕ(0,y). Then from Un we infer that there exists b 

for which α(b) → ∀yα(y), i.e. ϕ(0,b) → ∀yϕ(0,y). Defining f ∈ Fun(1) by f = {〈0,b〉} then 

gives ϕ(0,f0) → ∃x∈1∀yϕ(x,y), whence ∃x∈1ϕ(x,fx) → ∃x∈1∀yϕ(x,y), and Un follows.   

 

 Next, while AC2 is easily proved in IST, by contrast we have 
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• DAC2 and Dis are equivalent over IST. 

Proof.  The antecedent of DAC2 is equivalent to the assertion 
 

∀f∈Fun(2)[ϕ(0, f0) ∨ ϕ(1, f1)], 
 
which, in view of the natural correlation between members of Fun (2) and ordered pairs,  

is equivalent to the assertion 

 
∀y∀y′[ϕ(0, y) ∨ ϕ(1, y′)]. 

 
The consequent of DAC2 is equivalent to the assertion  
 

∀y∈Yϕ(0,y) ∨ ∀y′∈Yϕ(1,y′) 
 

So DAC2 itself is equivalent to 
 

∀y∀y′[ϕ(0,y) ∨ ϕ(1,y′)]  →  ∀yϕ(0,y) ∨ ∀y′ϕ(1,y′).         
 

But this is obviously equivalent to the scheme 
 

∀y∀y′[α(y) ∨ β(y′)]  →  ∀yα(y) ∨ ∀y′β(y′),         
 

where y does not occur free in β, nor y′ in α. And this last is easily seen to be equivalent 

to Dis.          

 
 Now consider 2

*DAC . This is quickly seen to be equivalent to the assertion 
 

∃z∃z′[ϕ(0,z) ∨ ϕ(1,z′)  → ∀yϕ(0,y) ∨  ∀y′ϕ(1,y′), 
 

i.e. to the assertion, for arbitrary α(x), β(x), that  
 

∃z∃z′[α(z) ∨ β(z′)  →  ∀yα(y) ∨  ∀y′β(y′)]. 
 

This is in turn equivalent to the assertion, for any sentence α, 
 

                                 ∃y[α ∨ β(y)  →  α ∨  ∀yβ(y)]                                      (*) 
 
 
Now (*) obviously entails Un.  Conversely, given Un, there is b for which β(b) → ∀yβ(y). 

Hence α ∨ β(b) → α ∨ ∀yβ(y), whence (*). So we have shown that 

 

• Over IST, 2
*DAC  is equivalent to Un, and hence also to 1

*DAC . 
 

In order to provide choice schemes equivalent to Lin and Stone we introduce  
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X
*ac       ∃f∈2X [∀x∈X ∃y∈2 ϕ(x,y) → ∀x∈X ϕ(x,fx)] 

X
*wac     ∃f∈2X [∀x∈X ∃y∈2 ϕ(x,y) → ∀x∈X ϕ(x,fx)]  provided  IST ∀x[ϕ(x,0) → ¬ϕ(x,1)] 

Clearly X
*ac  is equivalent to  

∃f∈2X [∀x∈X[ϕ(x,0) ∨ ϕ(x,1)] → ∀x∈X ϕ(x,fx)] 

and similarly for X
*wac  . 

Then 

• Over IST, 1
*ac and 1

*wac are equivalent, respectively, to Lin and Stone. 

Proof. Let α and β be sentences, and define ϕ(x,y) ≡ x = 0 ∧ [(y = 0 ∧ α) ∨ (y  =1 ∧ β)]. 

Then α ↔ ϕ(0,0) and β ↔ ϕ(0,1), and so ∀x∈1[ϕ(x,0) ∨ ϕ(x,1)] ↔ ϕ(0,0) ∨ ϕ(0,1) ↔ α ∨ β. 

Therefore 

∃f∈21 [∀x∈1[ϕ(x,0) ∨ ϕ(x,1)] → ∀x∈1 ϕ(x,fx)] ↔  ∃f∈21[α ∨ β → ϕ(0,f0)] 

↔ [α ∨ β → ϕ(0,0)] ∨ [α ∨ β → ϕ(0,1)] 

↔ [α ∨ β → α] ∨ [α ∨ β → β] 

↔ β → α  ∨  α → β. 

This yields 1
*ac → Lin. For the converse, define α ≡ ϕ(0,0) and β ≡ ϕ(0,1) and reverse the 

argument.   

 To establish the second stated equivalence, notice that, when ϕ(x,y) is defined as 

above, but with β replaced by ¬α, it satisfies the provisions imposed in 1
*wac . As 

above, that principle gives (¬α → α) ∨ (α → ¬α), that is, ¬α ∨ ¬¬α. So Stone follows 

from 1
*wac .  Conversely, suppose that ϕ meets the condition imposed in 1

*wac  Then 

from ϕ(0,0) → ¬ϕ(0,1) we deduce ¬¬ϕ(0,0) → ¬ϕ(0,1); now,  assuming Stone, we have  

¬ϕ(0,0) ∨ ¬¬ϕ(0,0), whence ¬ϕ(0,0) ∨ ¬ϕ(0,1). Since ¬ϕ(0,0) → [ϕ(0,0) → ϕ(0,1)] and 

¬ϕ(0,1) → [ϕ(0,1) → ϕ(0,0)] we deduce [ϕ(0,0) → ϕ(0,1)] ∨ [ϕ(0,1) → ϕ(0,0)]. From the 

argument above it now follows that ∃f∈21 [∀x∈1[ϕ(x,0) ∨ ϕ(x,1)] → ∀x∈1 ϕ(x,fx)]. 

Accordingly 1
*wac is a consequence of Stone. 

  

 In conclusion, we show how certain of the principles we have introduced can be 

derived in the presence of term-forming operators. 

The ε- and τ-operators are term-forming operators yielding, for formulas α(x), 

terms εxα and τxα in which the variable x is no longer free; they are introduced in 

conjunction with the axioms—the ε- and τ-schemes: 
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∃xα(x) → α(εxα)        α(τxα) →  ∀xα(x). 

 

 It is an easy matter to derive Un from the τ-scheme when τ is merely allowed to 

act on formulas with at most one free variable. When τ’s action is extended to formulas 

with two free variables, the τ-scheme applied in IST yields the full dual axiom of choice 

∀X *DACX . For under these conditions we have, for any formula ϕ(x,y), 

 

                             ∀x∈X[ϕ(x,τyϕ(x,y)) → ∀yϕ(x,y)]                               (*) 

Let t ∈ Fun(X) be the map x  τyϕ(x,y). Assuming that ∀f∈YX∃x∈Xϕ(x, fx), let a ∈ X 

satisfy ϕ(a,ta). We deduce from (*) that ∀y∈Yϕ(a,y), whence ∃x∈X∀y∈Yϕ(x, y). The dual 

axiom of choice follows. 
In the case of the ε-operator, the number of free variables in the formulas on 

which the operator is allowed to act is an even more sensitive matter. If ε is allowed to 

act only on formulas with at most one free variable (so yielding only closed terms), the 

corresponding ε-scheme applied in IST is easily seen to yield both Ex  and 1
*ac , and so 

also Lin. But it is (in essence) shown in [1] that, if only closed ε-terms are admitted,  

SLEM is not derivable, and so therefore neither is WESP. The situation changes 

dramatically when ε is permitted to operate on formulas with two free variables. For 

then from the corresponding ε-scheme it is easy to derive ACX  for all sets X, and in 

particular ACQ2, and hence also SLEM.  

I have found three ways of strengthening, or modifying, the single-variable ε-

scheme so as to enable it to yield SLEM. The first, presented originally in [2], is to add 

to the ε-scheme Ackermann’s Extensionality Principle, viz. 

∀x[α(x) ↔ β(x)] → εxα = εxβ . 

From these WESP is easily derived, and so, a fortiori, SLEM. 

 The second approach is to take the ε-axiom in the (classically equivalent) form      

  
(*)                                          α(εxα) ∨ ∀x¬α(x). 

 
From this we can intuitionistically derive SLEM as follows: 
 
Given a sentence β, define α(x) to be the formula 
 

(x = 0 ∧ β) ∨ (x = 1 ∧ ¬β). 
 

Then from (*) we get  
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[(εxα = 0 ∧ β) ∨ ([(εxα = 1 ∧ ¬β)] ∨ ∀x¬[(x = 0 ∧ β) ∨ (x = 1 ∧ ¬β)],  
 

which implies 
 

[β ∨ ¬β) ∨ [∀x¬(x = 0 ∧ β) ∧ ∀x¬(x = 1 ∧ ¬β)],  
 

whence 
 

[β ∨ ¬β) ∨ [¬ β ∧ ¬¬β], 
 
winding up with 
 

β ∨ ¬β. 
 

The third method is to allow ε to act on pairs of formulas, each with a single free 

variable. Here, for each pair of formulas α(x), β(x) we introduce the “relativized” ε-term 

εxα/β and the “relativized” ε-axioms  

 

(1) ∃x β(x) → β(εxα/β)                 (2) ∃x [α(x) ∧ β(x)] → α(εxα/β). 

 

That is, εxα/β may be thought of as an individual that satisfies β if anything does, and 

which in addition satisfies α if anything satisfies both α and β. Notice that the usual 

ε−term εxα is then εxα/x = x. In the classical ε-calculus εxα/β may be defined by taking  

 

εxα/β = εy[[y = εx(α ∧ β) ∧ ∃x (α ∧ β)] ∨  [y = εxβ  ∧ ¬∃x (α ∧ β)]]. 

 

Βut the relativized ε-scheme is not derivable in the intuitionistic ε-calculus since it can 

be shown to imply SLEM. To see this, given a formula γ define  

 

α(x)  ≡  x = 1         β(x) ≡  x = 0  ∨   γ. 

 

Write a for εxα/β. Τhen we certainly have ∃xβ(x), so (1) gives β(a), i.e. 

 

(3)                                       a = 0 ∨ γ 

 
Αlso ∃x (α ∧ β) ↔ γ, so (2) gives γ → α(a), i.e. 
 

γ → a = 1, 
 

whence 
 

a ≠ 1 → ¬γ, 
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so that 
 

a = 0 → ¬γ. 
 

And the conjunction of this with (3) gives γ ∨ ¬γ, as claimed. 
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