Measurable Cardinals

John L. Bell

Let κ be an infinite cardinal. A κ -complete nonprincipal ultrafilter, or, for short, a κ - ultrafilter on a set A is a (nonempty) family U of subsets of A satisfying (i) $S \subseteq U \& |S|^1 < \kappa \Rightarrow \bigcap S \in U$ (κ -completeness) (ii) $X \in U \& X \subseteq Y \subseteq A \Rightarrow Y \in U$, (iii) $\forall X \subseteq A \ [X \in U \text{ or } A - X \in U]$ (iv) $\{a\} \notin U$ for any $a \in A$. Notice that, if these conditions are satisfied, then every member of U has cardinality $\geq \kappa$, U contains the complement of every subset of A of cardinality $< \kappa$, and, for any $S \subseteq \mathbf{P}A^2$, if $|S| < \kappa$ and $\bigcup S \in U$, then $S \cap U \neq \emptyset$.

The cardinal κ is said to be *measurable* if $\kappa > \aleph_0$ and there exists a κ -ultrafilter on any set of cardinality κ , or, equivalently, on κ itself. Henceforth, we fix a measurable cardinal κ and a κ -ultrafilter U on κ .

Now let $\mathfrak{V} = \langle V, \in \rangle$ be the universe of sets and write V^{κ} for the collection of all functions with domain κ . Define the equivalence relation \sim on V^{κ} by stipulating, for $f, g \in V^{\kappa}$, that

$$f \sim g \iff \{\xi < \kappa : f(\xi) = g(\xi)\} \in U.$$

For each $f \in V^{\kappa}$ let σ_f be the least rank of an element $g \in V^{\kappa}$ for which $f \sim g$ and define

$$f/U = \{g \in V^{\kappa} : \operatorname{rank}(g) = \sigma_f \& f \sim g\}.$$

Evidently $f/U = g/U \Leftrightarrow f \sim g$. Now define

$$V^{\kappa}/U = \{f/U: f \in V^{\kappa}\}.$$

And define the relation E on V^{κ}/U by

$$(f/U)E(g/U) \Leftrightarrow \{\xi < \kappa : f(\xi) \in g(\xi)\} \in U.$$

(Observe that

$$(f/U)E(g/U) \Rightarrow f/U \in \{h/U: h \in (\bigcup range(g))^{\kappa}\}\$$

so that $\{f/U: (f/U)E(g/U)\}$ is a set.)

The structure

$$\mathfrak{B}^{\kappa}/U = \langle V^{\kappa}/U, E \rangle$$

is then the *ultrapower* of \mathfrak{P} over U. This being the case, we have

Loś's Theorem for \mathfrak{B}^{κ}/U . Let $\varphi(v_0,...,v_n)$ be a formula of the language of set theory and let $f_0,...,f_n \in V^{\kappa}$. Then we have

$$\mathfrak{B}^{\kappa}/U \vDash \varphi(f_0/U,...,f_n/U) \Leftrightarrow \{\xi < \kappa : \varphi(f_0(\xi)...,f_n(\xi))\} \in U. \blacksquare$$

¹ We write |X| for the cardinality of a set X.

² For any set X, **P**X denotes the power set of X.

For each $x \in V$, let \hat{x} be the map on κ with constant value κ , and define $d: V \to V^{\kappa}/U$ by

$$d(x) = \hat{x} / U.$$

Putting $\widehat{x_i}$ for f_i in Łoś's theorem, we get

$$\mathfrak{B}^{\kappa}/U \vDash \varphi(d(x_0),...,d(x_n) \Leftrightarrow \varphi(x_0,...,x_n).$$

Thus d is an elementary embedding of \mathfrak{V} into \mathfrak{V}^{κ}/U . In particular

$$\mathfrak{P}^{\kappa}/U \models \mathbf{ZFC}$$
.

Next, we show that E is well-founded on V^{κ}/U . For suppose that $f_0, f_1,...$ is a sequence of members of V^{κ} such that $(f_{n+1}/U)E(f_n/U)$ for all $n \in \omega$. Then

$$X_n = \{\xi < \kappa : f_{n+1}(\xi) \in f_n(\xi)\} \in U$$

for all n, so that $\bigcap_{n\in\omega}X_n\in U$ by κ -completeness of U. In particular $U\neq\varnothing$, so

we may choose $\xi_0 \in \bigcap_{n \in \omega} X_n$. In that case $f_{n+1}(\xi_0) \in f_n(\xi_0)$ for all n,

contradicting the well-foundedness of \in . Therefore is well-founded.

Accordingly \mathfrak{F}^{κ}/U is isomorphic to a (unique) transitive \in -structure

$$\mathfrak{M} = \langle M, \in \rangle,$$

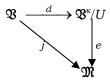
where the isomorphism e is given by

$$e(f/U) = \{e(g/U): (g/U)E(f/U)\}.$$

Since d is an elementary embedding of \mathfrak{V} into \mathfrak{V}^{κ}/U , the composite

$$j = e \circ d$$

is an elementary embedding of 3 into M.



We now note the following fact: for $\alpha < \kappa$, we have

(*)
$$(f/U)Ed(\alpha) \iff \exists \beta < \alpha[f/U = d(\beta)].$$

For

$$\begin{split} (f/U)Ed(\alpha) &\iff \{\xi < \kappa \colon f(\xi) \in \alpha\} \in U \\ &\iff \bigcup_{\beta < \alpha} \{\xi \colon f(\xi) = \beta\} \in U \\ &\iff (\exists \beta < \alpha) \{\xi \colon f(\xi) = \beta\} \in U \\ &\iff \exists \beta < \alpha[f/U = d(\beta)]. \end{split}$$

Lemma 1. $j(\xi) = \xi$ for all $\xi < \kappa$.

Proof. By induction on ξ . Suppose $\xi < \kappa$ and $(\forall \eta < \xi)$ $j(\eta) = \eta$. Then

 $j(\xi) = e(d(\xi)) = \{e(f/U): (f/U)Ed(\xi)\} = \{e(d(\eta)): \eta < \xi\} \text{ (by (*))} = \{j(\eta): \eta < \xi\} = \xi.$ ■ Now let ORD be the class of all ordinals.

Lemma 2.

(i) $j \mid ORD$ is an order preserving map of ORD into itself.

(ii) $\alpha \leq j\alpha$ for all α .

(iii) ORD $\subseteq M$.

Proof. (i) If $\alpha \in ORD$, then since j is elementary,

$$\mathfrak{M} \models j\alpha$$
 is an ordinal,

so $j\alpha$ really is an ordinal. Similarly, $\alpha < \beta \Rightarrow \mathfrak{M} \models j\alpha < j\beta \Rightarrow j\alpha < j\beta$.

(ii) follows immediately from (i).

(iii) We have $\alpha \le j\alpha \in M$, so $\alpha \in M$ by transitivity of M.

Lemma 3. $\kappa < j\kappa$.

Proof. Let id be the identity map on κ . By Łoś's theorem, we have $\mathfrak{F}^{\kappa}/U \models \mathrm{id}/U$ is an ordinal,

whence

$$\mathfrak{M} \vDash e(\mathrm{id}/U)$$
 is an ordinal,

And therefore $\alpha = e(id/U)$ actually is an ordinal. If $\xi < \kappa$, then

$$\{\eta < \kappa \colon \hat{\xi}(\eta) < \mathrm{id}(\eta)\} \in U,$$

so that $d(\xi)E(\mathrm{id}/U)$, whence $\xi = j\xi < \alpha$. Hence $\kappa \leq \alpha$. On the other hand, we have

$$\{\eta < \kappa : id(\eta) < \hat{\kappa}(\eta)\} \in U,$$

so that by Łoś's theorem (id/U) $Ed(\kappa)$, whence $\alpha < j\kappa$. The result follows.

We have therefore proved

Theorem 1. Let $\kappa > \aleph_0$ be a measurable cardinal. Then there is an elementary embedding j of the universe of sets \mathfrak{B} into a transitive \in -structure $\mathfrak{M} = \langle M, \in \rangle$ (containing ORD) such that $j\kappa > \kappa$ and $j\xi = \xi$ for all $\xi < \kappa$.

The converse of this result also holds.

Theorem 2. Suppose that $\kappa > \aleph_0$ and there is an elementary embedding j of \mathfrak{B} into a transitive \in -structure $\mathfrak{M} = \langle M, \in \rangle$ such that $j\kappa > \kappa$ and $j\xi = \xi$ for all $\xi < \kappa$. Then κ is measurable. In fact, the set

$$U_i = \{x \subseteq \kappa : \kappa \in jx\}$$

is a κ-ultrafilter on κ.

Proof. (i) U_j is "ultra". If $x \subseteq \kappa$, then since j is elementary and M is transitive, we have: $j(\kappa - x) = j\kappa - jx$. Thus since $\kappa \in j$, either $\kappa \in jx$ or $\kappa \in j(\kappa - x)$. Hence $x \in U_j$ or $\kappa - x \in U_j$.

(ii) $x \in U_i \& x \subseteq y \subseteq \kappa \implies y \in U_i$. Similar to (i).

(iii) U_j is nonprincipal. If $\xi < \kappa$, then

$$\forall \eta < \kappa [\eta \in \{\xi\} \Leftrightarrow \eta = \xi],$$

so

$$\forall \eta < j\kappa [\eta \in j\{\xi\} \Leftrightarrow \eta = j\xi = \xi].$$

Hence $j(\xi) = \{\xi\}$ and consequently $\{\xi\} \notin U_i$.

(iv) U_j is κ -complete. Suppose $\alpha < \kappa$ and $g: \alpha \to U_j$. We want to show that $\bigcap_{\xi < \alpha} g(\xi) \in U_j$. For this it suffices to establish

$$j(\bigcap_{\xi<\alpha}g(\xi))=\bigcap_{\xi<\alpha}j(g(\xi)).$$

Writing $b = \bigcap_{\xi < \alpha} g(\xi)$, we have

$$\forall \eta [\eta \in b \Leftrightarrow (\forall \xi < \alpha) \eta \in g(\xi)],$$

so

$$\forall \eta [\eta \in jb \Leftrightarrow (\forall \xi < \alpha) \eta \in (jg)(\xi)].$$

Since $j\xi = \xi$, we have $(j(g)(\xi) = (jg)(j\xi) = j(g(\xi))$, so that $\forall \eta [\eta \in jb \iff (\forall \xi < \alpha)\eta \in j(g(\xi))]$,

which is (*).

Theorem 3. If κ is measurable, it is inaccessible.

Proof. Suppose κ measurable, and fix j, \mathfrak{M} to satisfy the conditions of Theorem 1.

Were κ singular, there would exist $\alpha < \kappa$ and a map $f : \alpha \to \kappa$ with range(f) cofinal in κ . In that case

$$\mathfrak{M} \models jf: \alpha \rightarrow j\kappa,$$

and since $\forall \xi < \kappa \exists \eta < \alpha (\xi \leq f(\eta))$,

$$\mathfrak{M} \vDash \forall \xi < j \kappa \exists \eta < \alpha(\xi \leq (jf)(\eta)).$$

Since $\kappa < j\kappa$, there is accordingly $\eta < \alpha$ for which $\kappa \le (jf)(\eta)$. But $f(\eta) < \kappa$, so

$$(jf)(\eta) = (jf)(j\eta) = j(f(\eta)) = f(\eta) < \kappa.$$

Contradiction. So κ is regular.

Suppose now that $\alpha < \kappa$ and $\kappa \le 2^{\alpha}$. Let f be an injection of κ into $\mathbf{P}\alpha$; then $\mathbf{j}f$ is an injection of $\mathbf{j}\kappa$ into $\mathbf{P}\alpha$. We show that:

(i)
$$x = jx$$
 for all $x \subseteq \alpha$. For

$$\xi \in x \Rightarrow \xi = j\xi \in jx$$

and

$$\xi \in jx \Rightarrow \xi \in jx \subseteq j\alpha = \alpha \Rightarrow j\xi = \xi \in jx \Rightarrow \xi \in x.$$

(ii) range(jf) \subseteq range(f). For if $x \in$ range (jf), then $x \subseteq \alpha$ and x = jx.

Also $\mathfrak{M} \models \exists \xi [\langle \xi, jx \rangle \in jf]$, so that $\exists \xi [\langle \xi, x \rangle \in f]$, whence $\exists \xi [f\xi = x]$, and so $x \in \text{range } (f)$.

Finally, if $\xi < \kappa$, then, using (i),

$$(jf)(\xi) = (jf)(j\xi) = j(f(\xi)) = f(\xi).$$

From this it follows, using the injectivity of jf, that $(jf)(\kappa) \notin \text{range}(f)$, contradicting (ii).

A κ-ultrafilter U on a measurable cardinal κ is *normal* if whenever $f \in \kappa^{\kappa}$ satisfies then there is $\alpha < \kappa$ for which

$$\{\xi < \kappa : f(\xi) = \alpha\} \in U.$$

Łoś's theorem immediately yields

Lemma 4. *U* is normal iff $e(id/U) = \kappa$.

Lemma 5. If κ is measurable, there is a normal ultrafilter on κ .

Proof. Let j, \mathfrak{M} satisfy the conditions of Thm. 2 We show that U_j , as defined in the proof of that theorem, is a normal ultrafilter on κ .

Suppose $f \in \kappa^{\kappa}$ and

$$A = \{\xi < \kappa : f(\xi) < \xi\} \in U_i.$$

Then $A \in jA$. Also, we have

$$\forall \xi < \kappa [\xi \in A \Leftrightarrow f(\xi) < \xi\},$$

and so

$$\forall \xi < j\kappa [\xi \in jA \Leftrightarrow (jf)(\xi) < \xi\}.$$

Since $\kappa < j\kappa$ and $\kappa \in jA$, it follows that $(jf)(\kappa) < \kappa$. Hence there is $\beta < \kappa$ for which

$$(if)(\kappa) = \beta.$$

Putting $B = \{\xi < \kappa: f(\xi) = \beta\}$, then, as before, since $j\beta = \beta$, we have

$$\forall \xi < j \kappa [\xi \in j B \Leftrightarrow (j f)(\xi) = \beta\};$$

hence, by (*), $\kappa \in jB$, so $B \in U_j$.

Lemma 6. Let U be a normal ultrafilter on the measurable cardinal κ , and let \mathfrak{M} be the transitive \in -structure isomorphic to \mathfrak{B}^{κ}/U . Then, for any formula $\varphi(v_0)$ of the language of set theory,

$$\mathfrak{M} \vDash \phi[\kappa] \iff \{\xi < \kappa \colon \phi(\xi)\} \in \mathit{U}.$$

Proof. By Lemma 4 and Łoś's theorem, we have

$$\mathfrak{M}\vDash \phi[\kappa]$$

$$\Leftrightarrow \mathfrak{M} \models \varphi[e(\mathrm{id}/U)]$$

$$\Leftrightarrow \mathfrak{B}^{\kappa}/U \models \varphi[\mathrm{id}/U]$$

$$\Leftrightarrow \{\xi < \kappa : \varphi(id(\xi))\} \in U$$

$$\Leftrightarrow \{\xi < \kappa : \varphi(\xi)\} \in U. \blacksquare$$

Theorem 4. If κ is measurable and U is a normal ultrafilter on κ , then

$$\{\xi < \kappa: \xi \text{ is inaccessible}\} \in U.$$

Proof. Write $In(\xi)$ for " ξ is inaccessible". We know that $In(\kappa)$ by Theorem 3, so $\mathfrak{M} \models In[\kappa]$. The result now follows from Lemma 6.

Lemma 7. Let κ be measurable, U a normal ultrafilter on κ , and let $\mathfrak{M} = \langle M, \in \rangle$ be the transitive \in - structure isomorphic to \mathfrak{A}^{κ}/U . Then

$$\mathbf{P}\kappa \in M$$
.

Proof. It is enough to show that $\mathbf{P}_{\kappa} \subseteq M$. For then, since $\mathfrak{M} \models \mathbf{ZFC}$, we have $\mathbf{P}^{(\mathfrak{M})}_{\kappa} \in M$ and $\mathbf{P}^{(\mathfrak{M})}_{\kappa} = \mathbf{P}_{\kappa} \cap M = \mathbf{P}_{\kappa}$.

As before, we let $d: \mathfrak{B}^{\kappa} \prec \mathfrak{B}^{\kappa}/U$ and $e: \mathfrak{B}^{\kappa}/U \cong \mathfrak{M}$. Let $a \in \mathbf{P}\kappa$; we show that $a \in M$. To do this, we define $f \in V^{\kappa}$ by

$$f(\xi) = a \cap \xi$$

for $\xi < \kappa$, and prove that

$$a = e(f/U) \in M$$
.

To do this it suffices to show:

(*)
$$(g/U)E(f/U) \Leftrightarrow \exists \alpha \in a[g/U = d(\alpha)].$$

One direction is easy: indeed if $\alpha \in a$, then

$$\{\xi < \kappa : \widehat{\alpha}(\xi) \in f(\xi)\} \in U$$
,

whence

$$d(\alpha) = \hat{\alpha}/U E f/U.$$

Conversely, suppose that (g/U)E(f/U). Then

$$\{\xi\colon g(\xi)\in a\cap \xi\}\in U,$$

so that

$$\{\xi: g(\xi) < \xi\} \in U.$$

Since *U* is normal, there is $\alpha < \kappa$ such that

$$\{\xi\colon g(\xi)=\alpha\}\in U,$$

whence

$$g/U = d(\alpha)$$
.

But

$$\{\xi\colon g(\xi)\in\alpha\}\cap\{\xi\colon g(\xi)=\alpha\}\subseteq\{\xi\colon\alpha\in\alpha\},$$

and, by (§) and (§§), the intersection on the left of " \subseteq " is a member of U. So therefore is the set on the right, which means that $\alpha \in a$. This proves (*), and the Lemma.

Theorem 5. Let κ be measurable, and let U be a normal ultrafilter on κ . If

$$\{\lambda < \kappa : 2^{\lambda} = \lambda^{+}\} \in U,$$

then

$$2^{\kappa} = \kappa^+$$
.

Thus, if $2^{\kappa} > \kappa^+$, then

$$|\{\lambda < \kappa: 2^{\lambda} > \lambda^+\}| = \kappa.$$

Proof. Let $\mathfrak{M} = \langle M, \in \rangle$ be the transitive \in -structure isomorphic to \mathfrak{V}^{κ}/U . Suppose now that

$$\{\lambda < \kappa : 2^{\lambda} = \lambda^{+}\} \in U.$$

Then by Lemma 6,

$$\mathfrak{M} \vDash 2^{\kappa} = \kappa^{+}$$
.

That is,

$$\mathfrak{M} \vDash \exists f [f : \kappa^+ \xrightarrow{onto} \mathbf{P} \kappa],$$

and hence

$$\exists f [f : (\kappa^+)^{(\mathfrak{M})} \xrightarrow{onto} \mathbf{P}^{(\mathfrak{M})} \kappa],$$

Now, by Lemma 7, $\mathbf{P}\kappa \in M$, so $\mathbf{P}^{\mathfrak{M}}\kappa = \mathbf{P}\kappa$. Therefore, by (*)

$$|\mathbf{P}\kappa| \leq |(\kappa^+)^{\mathfrak{M}}|.$$

But clearly $(\kappa^+)^{(\mathfrak{M})} \leq \kappa^+$, so $|(\kappa^+)^{(\mathfrak{M})}| \leq \kappa^+$, and hence, by $(**), |\mathbf{P}\kappa| \leq \kappa^+$.

Theorem 6. (Scott) If there is a measurable cardinal, then $V \neq L$. **Proof.** Suppose that a measurable cardinal exists and let κ_0 be the least one. Let U be a κ -ultrafilter on κ , let $\mathfrak{M} = \langle M, \in \rangle$ be the transitive ϵ -structure isomorphic to \mathfrak{B}^{κ}/U , and let $j: \mathfrak{M} \to \mathfrak{B}^{\kappa}/U$ be the associted elementary embedding. If V = L, then then M = V since \mathfrak{M} is a transitive model of **ZFC** containing ORD. (Accordingly j is an elementary self-embedding of \mathfrak{B} .) Let $\varphi(x)$ be the formula expressing: x is the least measurable cardinal. Then we have $\varphi(\kappa_0)$, so that

$$\mathfrak{M} \vDash \varphi[j\kappa_0].$$

Since M = V, it follows that $\varphi(j\kappa_0)$. Therefore $j\kappa_0$ would itself be the least measurable cardinal, contradicting the fact (Lemma 3) that $\kappa_0 < j\kappa_0$.

Corollary. If κ is measurable and U is a κ -ultrafilter on κ , then $U \notin L$.

Proof. Suppose $U \in L$. Then, since $\kappa \in L$,

$$\langle L, \in \rangle \vDash \kappa$$
 is measurable.

But, by Theorem 6,

ZFC
$$\vdash \exists \kappa (\kappa \text{ is measurable}) \rightarrow V \neq L.$$

Since $\langle L, \in \rangle \vDash \mathbf{ZFC}$, it follows that

$$\langle L, \in \rangle \vDash V \neq L,$$

a contradiction.

For each set X write **Fin**(X) for the collection of all finite subsets of X, and, for each $n \in \omega$, $X^{[n]}$ for the collection of all n-element subsets of X.

A cardinal κ is a *Ramsey* cardinal if for each set I with $|I| < \kappa$ and each $f: \mathbf{Fin}(\kappa) \to I$ there is a subset $Z \subseteq \kappa$ such that $|Z| = \kappa$ and $|f[Z^{[n]}]| = 1$ for all $n \in \omega$. Under these conditions Z is said to be *homogeneous* for f. Equivalently κ is Ramsey if for each partition $\{C_i: i \in I\}$ of $\mathbf{Fin}(\kappa)$ with $|I| < \kappa$ there is a subset $Z \subseteq \kappa$ with $|Z| = \kappa$ and a sequence $i_1, i_2, \ldots \in I$ such that $Z^{[n]} \subseteq C_i$ for $I = 1, 2, \ldots$

Theorem 8. Each measurable cardinal is Ramsey.

Proof. Let $\kappa > \aleph_0$ be measurable and let U be a κ -ultrafilter over κ . Now suppose $|I| < \kappa, f : \mathbf{Fin}(\kappa) \to I$, and $X \in \kappa^{[n]}$. Define

$$A_i = \{y: f(X \cup \{y\}) = i\}$$

for each $i \in I$. Then $\{A_i: i \in I\}$ forms a partition of κ and consequently exactly one of the A_i is in U. We put

$$f^*(X)$$
 = that i for which $A_i \in U$.

Thus f^* : **Fin**(κ) $\to I$. We now define $f_0 = f$, $f_1 = f_0^*$, ..., $f_{n+1} = f_n^*$, Let $S = (Z \subseteq \kappa: \forall n \forall X [X \subseteq Z \land |X| = n \Rightarrow \forall m [f_m(X) = f_{m+n}(\emptyset)]] \}$.

It is easy to see that S is closed under unions of chains, so it has a maximal member Z_0 . It is clear that each member of S is homogeneous for f, so to prove the Theorem it suffices to show that $|Z_0| = \kappa$.

Suppose on the contrary that $|Z_0| < \kappa$. We will show that Z_0 can be extended to a larger member of S, contradicting the former's maximality.

Let $X \in \mathbf{Fin}(\kappa)$ and |X| = n-1. Then for $m \in \omega$ we have

$$f_m^*(X) = f_{m+1}(X) = f_{m+n}(\emptyset),$$

and so, by definition of f_m^* ,

$$D(X, m) = \{y: f_m(X \cup \{y\}) = f_{m+n}(\emptyset)\} \in U.$$

Hence

$$D(X) = \bigcap_{m \in \omega} D(X, m) \in U,$$

and, since $|Z_0| < \kappa$,

$$D_{Z_0} = \bigcap_{X \in \mathbf{Fin}(\kappa)} D(X) \in U.$$

Clearly, if $y \in D_{Z_0}$, $X \subseteq Z_0$ and |X| = n - 1, we have for all $m \in \omega$

$$f_m(X \cup \{y\}) = f_{m+n}(\emptyset),$$

so that $Z_0 \cup \{y\} \in S$ for all $y \in D_{Z_0}$. Since $D_{Z_0} \in U$, $|D_{Z_0}| = \kappa$ and so there is $y_0 \in D_{Z_0} - Z_0$. Hence $Z_0 \cup \{y_0\} \in S$ is the required proper extension of Z_0 .

Now let $\mathfrak A$ be a structure and let $\mathscr L_{\mathfrak A}$ be the language for $\mathfrak A$. Let $\mu(\mathfrak A)$ be the number of symbols in $\mathscr L_{\mathfrak A}$. We shall say that $\mathfrak A$ is good if whenever $\mathfrak B$ is a substructure of $\mathfrak A$ closed under the $\mathfrak A$ -denotations of all $\mathscr L$ -terms, then $\mathfrak B \prec \mathfrak A$.

Fact. Each structure $\mathfrak A$ has a good expansion $\mathfrak B$ for which $\mu(\mathfrak A) = \mu(\mathfrak B)$. ($\mathfrak B$ may be obtained by expanding $\mathfrak A$ to a Skolem structure.)

Lemma 8. Suppose that κ is measurable. Let $\mathfrak{A} = \langle A, R, ... \rangle$ be a structure with $\mu(\mathfrak{A}) = \aleph_0$, $R \subseteq A$, $|A| = \kappa$ and $|R| < \kappa$. Then \mathfrak{A} has an elementary substructure $\mathfrak{B} = \langle B, S, ... \rangle$ with $|B| = \kappa$ and $|S| \leq \aleph_0$.

Proof. We may assume without loss of generality that \mathfrak{A} is good. Let $|R| = \beta < \kappa$. Choose a linear ordering < of A and an element $a \in A - R$. Let T be the set of all \mathscr{G} -terms, and let

$$I = (R \cup \{a\})^T.$$

Since $|T| = \aleph_0$, $|R| = \beta$, and κ is strongly inaccessible, we have $|I| = \beta^{\aleph_0} < \kappa$.

Now define a partition $\{C_i: i \in I\}$ of **Fin**(A) as follows. Call a term $t \in T$ an *n-term* if all its free variables are among $v_0,...,v_n$, so enabling t to be written as $t(v_0,...,v_n)$. Let

$$x = \{a_0, ..., a_{n-1}\} \in \mathbf{Fin}(A)$$

with $a_0 < ... < a_{n-1}$. Then we put $x \in C_i$ where $i \in I$ is given by:

$$i(t) = a$$
 if t is not an n -term or t is an n -term and $t^{2}(a_0,...,a_{n-1}) \notin R$ $i(t) = u$ if t is an n -term and $t^{2}(a_0,...,a_{n-1}) \notin R$.

Since κ is a Ramsey cardinal, there is a subset $X \subseteq A$ of cardinality κ and elements $i_1, i_2,... \in I$ such that

$$X^{[n]} \subseteq C_{i_n}$$
, $n = 1, 2, \dots$

Let B be the closure of X under the denotations in \mathfrak{A} of all \mathscr{L} -terms, and let $\mathfrak{B} = \langle B, S, ... \rangle$ be the restriction of \mathfrak{A} to \mathfrak{B} . Then $|B| = \kappa$ and since \mathfrak{A} is good, $\mathfrak{B} \prec \mathfrak{A}$. It remains to show that $|S| \leq \aleph_0$.

Now each $b \in S$ is of the form

$$b = t^{\mathfrak{A}}(x_0, ..., x_{n-1})$$

for some $t \in T$ and some $x_0 < ... < x_{n-1} \in X$. Since

$$\{x_0,\ldots,x_{n-1}\}\in X^{[n]}\subseteq C_{i_n}$$
,

we have $i_n(t) = b$. Hence

$$b \in \bigcup_{n \in \omega} range(i_n)$$

and so

$$S \subseteq \bigcup_{n \in \omega} range(i_n)$$
.

Thus
$$|S| \leq \aleph_0 \cdot |T| = \aleph_0$$
.

We conclude with

Theorem 8. (Gaifman-Rowbottom). If a measurable cardinal exists, then $\mathbf{P}_{\omega} \cap L$ is countable, in particular, there are only countably many constructible real numbers.

Proof. Suppose given a measurable cardinal κ . Let $R = \mathbf{P}\omega \cap L$; then $R \subseteq L_{\kappa}$. Consider the structure $\mathfrak{A} = \langle L_{\kappa}, \in, R \rangle$. We have $|L_{\kappa}| = \kappa$, and $|R| \leq 2^{\aleph_0} < \kappa$. Hence, by Lemma 8, there is a structure $\mathfrak{B} = \langle B, \in, S \rangle$ such that $\mathfrak{B} \prec \mathfrak{A}$, $|B| = \kappa$ and $|S| \leq \aleph_0$. Then $\langle B, \in \rangle \equiv \langle L_{\kappa}, \in \rangle$, and so there is a unique ξ for which there is an isomorphism f of $\langle B, \in \rangle$ onto $\langle L_{\kappa}, \in \rangle$. Now we have

$$|\xi| = |L_{\xi}| = |B| = \kappa,$$

whence $\xi \geq \kappa$. But every ordinal of $\langle B, \in \rangle$ is an ordinal of $\langle L_{\kappa}, \in \rangle$ (the two structures being isomorphic), so the ordinals of the former have order type $\leq \kappa$. It follows that $\xi \leq \kappa$, so that $\xi = \kappa$, whence

$$f: \langle B, \in \rangle \cong \langle L_{\kappa}, \in \rangle.$$

Now let P be a unary predicate symbol; take $P^{\mathfrak{A}} = R$ and $P^{\mathfrak{B}} = S$. Since the formula $x \in \omega$ is absolute, we have

$$\mathfrak{A} \models \forall x [P(x) \leftrightarrow \forall y (y \in x \to y \in \omega)],$$

whence

$$\mathfrak{B} \vDash \forall x [P(x) \leftrightarrow \forall y (y \in x \to y \in \omega)].$$

Therefore, if $b \in b$, we have

$$b \in S \Leftrightarrow \mathfrak{B} \vDash \forall y(y \in b \to y \in \omega)]$$
$$\Leftrightarrow \langle L_{\kappa}, \in \rangle \vDash \forall y(y \in f(b) \to y \in \omega)]$$
$$\Leftrightarrow f(b) \in R.$$

Accordingly f carries S onto R, whence

$$|\mathbf{P}\omega \cap L| = |R| \le |S| \le \aleph_0$$

as required.