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Why were you initially drawn to the foundations of math-
ematics and/or the philosophy of mathematics?

My route to the foundations and philosophy of mathematics was
somewhat circuitous. In youth I was attracted to physics, espe-
cially relativity theory and cosmology–I actually attended one of
Fred Hoyle’s lecture courses on the subject in Cambridge in the
early 1960s. (Parenthetically, I may mention that it was through
Hoyle’s lectures that I first heard the name Gödel, not of course
in connection with his discoveries in logic, of which I was then
wholly ignorant, but as the deviser of cosmological models con-
taining closed timelike lines.) While I was, I suppose, quite clever
at solving problems in mathematical physics and analysis — as I
still joke, I could raise and lower a tensor index with the best
of ’em! — after a while I began to realize that I had no genuine
understanding of what I was actually doing. In particular, I was
not even sure what a tensor really was. At the risk of joining the
fabled centipede whose effort to understand its mode of locomo-
tion reduced it to complete immobility, I decided to turn away
from physics, my first love, and concentrate on pure mathemat-
ics. While mathematics lacked, in my eyes, the romantic appeal
of cosmology, it had the compensating merit that its concepts
and methods could, in principle at least, be fully presented to the
understanding. My flight to mathematics was fuelled by my dis-
covery of John Kelley’s classic work General Topology. Its unique
combination of mathematical elegance and dry wit, together with
its extraordinary collection of exercises, stimulating but never op-
pressive, made a big impact on me. In particular, I was intrigued
by the series of exercises on Boolean algebras (rings, but no mat-
ter) which I attempted to work through. Kelley also furnished my
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first introduction to set theory. Reading Kelley led me to study
Gödel’s monograph, The Consistency of the Axiom of Choice and
the Generalized Continuum Hypothesis. The first two-thirds of
this mathematical tour-de-force, in which Gödel presents his ax-
iom system for set theory and develops its essential properties,
seemed reasonably clear. But, despite my best efforts, I was un-
able to fathom the final part of the work, its grand finale, so to
speak, in which, accompanied by an inaudible clash of cymbals,
the consistency of the GCH is established. A good few years were
to pass before I felt I truly understood what was going on.
Another influence was Bourbaki’s Éléments de Mathématique.

On first coming across some volumes of this monumental work in
Blackwell’s bookshop I was excited to find that it was intended to
be a complete, systematic account of abstract mathematics, pre-
cisely the kind of mathematics to which I had already been con-
verted by Kelley’s General Topology. The oeuvre Bourbachique in-
cluded not only Topologie Génerale, but Algèbre, Thèorie des En-
sembles, Espaces Vectoriels Topologiques, Algèbre Commutatif–
magical titles in my eyes. I bought as many volumes as I could
afford, often in obsolete — and so cheaper — editions (the whole
enterprise seemed to be undergoing constant revision), and com-
menced to work my way through the collections of challenging ex-
ercises at the end of each section. I toiled mightily, in particular,
to formulate solutions to the exercises on ordered sets in Chap-
ter 3 of the Thèorie des Ensembles. It was from these that I first
learned about ordinals, which Bourbaki presents in the original
Cantorian manner as order types of well-ordered sets.
Kelley, Bourbaki, Gödel: it was through their influence that I

was led to the foundations of mathematics. My interest in philos-
ophy, on the other hand, derived from my being a voracious and
eclectic reader. As an undergraduate I recall reading Plato’s The
Last Days of Socrates, William James’s “Essays on Pragmatism”,
G. E. Moore’s philosophical essays, Hegel’s Philosophy of His-
tory, Descartes’ Discourse on Method, Spinoza’s Ethics (the state-
ments of the theorems at least, since I found the “proofs” unen-
lightening), Leibniz’s delphic Monadology, some Locke, Berkeley
and Hume, Schopenhauer’s Essays in Pessimism. And of course
Bertrand Russell’s breezily brilliant, if irresponsible, History of
Western Philosophy. My attempts to penetrate the profundities of
Kant’s Critique of Pure Reason were frustrated by the work’s ap-
parent indigestibility. (I was only to appreciate its depth and philo-
sophical importance many years later.) I greatly enjoyed Hans Re-
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ichenbach’s Philosophy of Space and Time. On Blackwell’s shelves
in Oxford I came across Norman Malcolm’sWittgenstein: A Mem-
oir. I was deeply moved by Malcolm’s portrayal of Wittgenstein,
in which he emerges as an intellectual ascetic of compelling moral
grandeur. Wittgenstein’s tiniest defiances of convention, for exam-
ple, his refusal to wear a tie at dinner in Trinity College, I found
admirable. Reading Malcolm’s memoir stimulated me to attempt
to read Wittgenstein’s philosophical works. I was intrigued by
the Tractatus Logico-Philosophicus, a masterpiece of sybilline re-
finement and compression in which Wittgenstein embarks on the
heroic effort of reducing philosophy to the expressible, but in the
end washes up on the shores of the ineffable. The conventionalism
of the later Wittgenstein’s Philosophical Investigations, I found
less appealing.
I was drawn quite early on to the foundations of mathemat-

ics, and to general philosophy, but my conscious interest in the
philosophy of mathematics per se was comparatively slow to crys-
tallize. This took place in three stages. First, as an undergraduate
I had developed an interest in set theory and the philosophy of
the infinite in general. Next, I was a product of the politically
supercharged 1960s, a time in which many young people, myself
included, began to think about the social and political implica-
tions of their own activity, which in my case was the practice
of mathematics (by this time mathematical logic). I became a
member of a group of like-minded gauchiste mathematical logi-
cians determined to terminate the funding of logic conferences by
military-imperialistic sources such as NATO. All of us, I think I
may safely say, believed that mathematics, while being. like art, a
beautiful sublimation of human activity, has, in the final analysis,
to be understood as the product of actual human beings living in
the world. Such stimuli led me (for better or worse) to see that
mathematics actually has a hidden content, which can actually
be argued about. This is the opposite of the unthinking Platon-
ism/realism to which I was, I guess, initially attracted as offering
the simplest account of mathematical truth, and which also pos-
sessed the additional advantage of avoiding what I then felt to be
a certain cynicism inherent in Formalism. (Still, as I have come
to learn, Formalism has the great merit of offering the weary ex-
Platonist a refuge.) But, like the child’s loss of belief in Santa
Claus, I came to regard the Platonistic account of mathematical
entities as a kind of fairy tale, and in any case as engendering
insuperable epistemological difficulties. I may parenthetically re-



16 3. John L. Bell

mark that I have since come to liken Platonism to a (necessary)
disease, which, like measles, must have been contracted in one’s
youth so as to confer an immunity in later life.
The third stage in the development of my interest in the philos-

ophy of mathematics came through my efforts to understand topos
theory. I was very struck by Bill Lawvere’s insight that a topos
is an objective presentation of the idea of variability, and that its
internal — intuitionistic — logic may be considered as a logic of vari-
ation. Later I went so far as to attempt to use the topos concept
as the basis for a “local” (as opposed to “absolute”) interpretation
of mathematical statements. I suggested that the unique absolute
universe of sets central to the orthodox set-theoretic account of the
foundations of mathematics should be replaced by a plurality of
local mathematical frameworks — elementary toposes — defined in
category-theoretic terms. Observing that such frameworks possess
sufficiently rich internal structure to enable mathematical con-
cepts and assertions to be interpreted within them, I maintained
that they can serve as local surrogates for the usual “absolute”
universe of sets. On this account mathematical concepts will in
general no longer possess absolute meaning, nor mathematical as-
sertions (e.g. the continuum hypothesis) absolute truth values, but
will instead possess such meanings or truth values only locally, i.e.,
relative to local frameworks. The absolute truth of set-theoretical
assertions would then, I held, give way to the subtler concept of in-
variance, that is, validity in all local frameworks. Thus, e.g., while
the theorems of constructive arithmetic turn out to possess the
property of invariance, the axiom of choice or the continuum hy-
pothesis do not, because they hold true in some local frameworks
but not others.
I still find this view attractive, but it is, after all, only one

among many possible accounts of mathematics. If I were pressed
to characterize my present attitude towards the foundations of
mathematics, I would use the word pluralistic: no unique founda-
tion, rather an interlocking ensemble of “foundations”.

What examples from your work (or the work of others)
illustrate the use of mathematics for philosophy?

There are, of course, numerous examples illustrating the use of
mathematics for philosophy. “Negative” examples include the Py-
thagorean discovery of incommensurable magnitudes, Zeno’s para-
doxes, and the Gödel incompleteness theorem, each of which served
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to refute a certain philosophical doctrine. “Positive” examples in-
clude the Pythagorean discovery of the arithmetical basis for har-
mony, their invention of figurate numbers, Euclidean geometry,
the infinitesimal calculus, Riemannian geometry, set theory, prob-
ability theory, relativity theory, quantum theory, and the theory
of computation, all of which have been important influences in
shaping philosophical views.
One can find other, more specific, examples of such influence in

the 19th and 20th centuries. Frege’s work on the foundations of
arithmetic (and Bolzano’s before him) is now held to have con-
tained the seeds of what was later to flower into analytic phi-
losophy. Russell’s philosophical views were profoundly influenced
by his work in mathematical logic. Brouwer’s philosophy of in-
tuitionism was first and foremost a philosophy of mathematics.
Well-known is the impact Tarski’s theory of truth had on Pop-
per’s philosophical outlook, serving, as it did in the latter’s eyes,
to revive the correspondence theory of truth.
Another important source of interaction between mathematics

and philosophy arises from the opposition between the continuous
and the discrete. Synechism, the doctrine that the world is ulti-
mately continuous, has been defended by the majority of philoso-
phers in the past, including Aristotle, Descartes, and Kant. (Leib-
niz seems to wavered, ending up with his strange hybrid doctrine
of monadism.) Atomism, the doctrine that the world is ultimately
particulate, was for a long time considered a maverick position.
Now however, owing primarily to work in physics and chemistry,
and lately also to the emergence of computing machines, it appears
to be gaining the upper hand. (The movement to reduce mathe-
matics to set theory initiated in the 19th century can already be
seen as a victory for a form of atomism.) Synechism and atomism,
along with the various syntheses of the two that have emerged
in the history of thought, are have been developed primarily in
mathematical terms.
I believe that a significant potential influence of mathematics on

philosophy may be seen in category theory. Category theory arose
as a general apparatus for dealing with mathematical structures
and their mutual relations and transformations. From a philosoph-
ical standpoint, a category may be viewed as an explicit presen-
tation of a form or concept. The objects of a category are the in-
stances of the associated form and its morphisms or arrows of are
the transformations between these instances which in some speci-
fied sense "preserve" this form. Functors between categories may
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then be considered as embodiments of morphological variation–
change of form. Category theory is beginning to be seen as an
appropriate language for describing not just mathematics, but the
world, in structuralist terms, in terms of form. On this account
there is no unique category (or topos) representing the objective
world, but a number of different categories each embodying an
idealization of a significant feature of the world. For instance, the
topos of sets embodies the idea of discreteness, the smooth topos
that of continuity and differentiability, and the effective topos that
of computability. Each topos possesses properties not shared by
the others: in the topos of sets the axiom of choice (and hence
classical logic) holds; in the smooth topos the real line is inde-
composable; and in the effective topos the space of countable se-
quences of natural numbers is enumerable. Each of these features
can be seen as a necessary consequence of the particular form of
idealization involved.
After these spectacular instances of the impact of mathematics

on philosophy, it comes as something of an anticlimax to mention,
as suggested, some of my own modest contributions to that area.
The first of these was essentially a contribution to philosophy of
science. As an ex-aspiring-physicist I had long been intrigued by
quantum theory, with its mysterious superpositions of states and
incompatible measurements; and as a logician my curiosity was
piqued by the so-called quantum logic, whose characteristic fea-
ture is that its algebra of propositions is not a Boolean or Heyting
algebra, but a certain kind of nondistributive lattice–an ortho-
lattice. All of these facts can be, and are, formally derived from
the standard Hilbert space formalism of quantum theory. I be-
came interested in the problem of formulating some simple prin-
ciples, free of the technicalities of the theory of Hilbert spaces,
from which one could derive the anomalous features of quantum
theory, as well as the ortholattices underlying quantum logic. I
came up with two approaches. The first, essentially topological,
was based on the idea of using what I called a proximity space, a
set equipped with a symmetric reflexive relation “close to”. The
lattice of parts of such a space is an ortholattice. There is a nat-
ural way, which I called “manifestation”, similar to Paul Cohen’s
celebrated concept of set-theoretic forcing, of relating propositions
(actually attributes) to parts of the space. The propositions man-
ifested over the whole of every proximity space are (essentially)
the theses of quantum logic. Given two propositions P , Q, their
superposition can be identified with ¬¬(P ∨Q), and they are in-
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compatible if there is a proximity space with a part manifesting
P but not Q ∨ ¬Q,or vice-versa.
In my other approach to the problem, I showed how to construct

the ortholattices arising in quantum logic from what I saw as the
phenomenologically plausible idea of a collection of ensembles sub-
ject to passing or failing various “tests”. A collection of ensembles
forms a certain kind of preorderd set with an additional relation
I called an orthospace: I showed that the complete ortholattices,
in particular those of quantum theory, arise as canonical comple-
tions of orthospaces in much the same way as arbitrary complete
lattices arise as canonical completions of partially ordered sets.
I also showed that the canonical completion of an orthospace of
ensembles may be identified with the lattice of properties of the
ensembles, thereby showing exactly why ortholattices arise in the
analysis of “tests” or experimental propositions. I went on to ax-
iomatize the concept of “test” itself in terms of the more primi-
tive notion of “filters” acting on ensembles. “Passing” an ensemble
through a filter s produces the subensemble of entities that have
“passed” the test corresponding to s.Two filters s and t can be jux-
taposed to produce the compound filter st, but in general st 6= ts.
When this latter is that case, the two tests corresponding to s and
t are, like position and momentum measurements in quantum the-
ory, not simultaneously performable, that is, incompatible. When
(and only when) st 6= ts, the juxtaposition of s and t corresponds
to their logical conjunction. In this setting, it is the noncommu-
tativity or incompatibility of filters or “tests” that gives rise to
“quantum logic”.
A philosophical problem that had long intrigued me was: why

is traditional logic bivalent, that is, why is it assumed that there
just two truth values rather than some other number? What is
it about the number 2 that gives it this special position in logic?
Wittgenstein seems to take the fact for granted when (in his Notes
on Logic) he says that propositions have two “poles”. It is of-
ten claimed that bivalent logic is the “logic of realism”, that is,
logic in which propositions are construed as referring to indepen-
dently existing objects, in contrast with “anti-realist” logics such
as intuitionistic logic (I don’t agree that intutionistic logic has
to be thought of as anti-realist–but let that pass). However, this
begs the question, since the thought immediately arises: what is it
about the realm of independently existing objects that confers bi-
valence on propositions referred to it? Why shouldn’t the number
of objective truth values be, say, 3, like the number of spatial di-
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mensions? Wittgenstein recognized the possibility of this question
arising but simply dismissed it.
One way that occurred to me of explaining the role of the num-

ber 2 in logic is by moving from individual propositions to sets of
propositions, or theories. Frege had suggested that the bivalence
of the logic of concepts arises from their having sharp boundaries :
one can determine with exactitude, for such a concept, when an
object falls under it , or when it does not. In other words, a con-
cept’s possession of a sharp boundary means that the theory of
the concept is complete with in regard to atomic propositions. It is
then natural to extend this prescription to arbitrary propositions.
So, metaphorically, we may say that (the concept determined by) a
theory has sharp boundaries if it is complete, that is, if any propo-
sition in the theory’s vocabulary is provable or refutable from the
theory. But it is well known that, for any complete theory T (in
propositional intuitionistic or classical logic), it is possible to as-
sign the two truth values 0, 1 to propositions in such a way as
to respect the logical operations, and also to assign precisely the
propositions in T the value 1. And conversely, if such a bivalent
assignment exists, the theory is complete. That is, the number
2 is simply the numerical representative of completeness, or the
possession of “sharp boundaries”.
The major logical consequence of bivalence (although not equiv-

alent to it) is the law of excluded middle: the assertion, for any
proposition P , of the disjunction P ∨¬P.This is of course the log-
ical principle which whose affirmation distinguishes classical from
intuitionistic logic. Like bivalence the law of excluded middle has
been taken to be characteristic of logic in which propositions are
construed as referring to independently existing objects. I found
that, if one starts with intuitionistic predicate logic, and extends
it to include Hilbert’s ε-terms (these are essentially objects named
by the use of the indefinite article: a such-and-such), then the law
of excluded middle becomes provable. That is, the law of excluded
middle is, after all, derivable from what can reasonably be con-
strued as an ontological principle.
I also found myself attracted by the recent revival of interest in

Frege’s attempt to derive arithmetic from logic, in particular to
the central mathematical result, now known as Frege’s Theorem,
implicit in his Grundlagen. Stated in set-theoretic terms, Frege’s
Theorem reads: for any set E, if there exists a map ν from the
power set of E to E satisfying the condition

∀XY [ν(X) = ν(Y )⇔ there is a bijection between X and Y ],
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then E has a subset which is the domain of a model of Peano’s
axioms for the natural numbers. My first piece of work on Frege’s
theorem was to observe that it can be proved by the same means as
Zermelo used to derive the well-ordering theorem from the axiom
of choice. I then became interested in the question of whether
Frege’s theorem can be proved constructively. I found that this was
indeed the case, providing a constructive proof of a “best possible”
version of Frege’s theorem in which the premise is weakened so as
to require only that the map ν be defined on the family of finite
subsets of the set E. I also showed that that the postulation of such
a structure (E, ν) — a Frege structure — is constructively equivalent
to the postulation of a model of Peano’s axioms.

What is the proper role of philosophy of mathematics in re-
lation to logic, foundations of mathematics, the traditional
core areas of mathematics, and science?

I think that the philosophy of mathematics should, and in fact
does, play a dialectical role in relation to its sister disciplines,
guiding them and, reciprocally, responding to their internal de-
velopment. Let me attempt to illustrate what I mean. Cantor’s
philosophy of the infinite (and his associated, if lesser-known,
championship of the reduction of the continuous to the discrete)
played a major part in his development of set theory, which, as
is well-known, came to permeate mathematics. Partly in reaction
to the unrestricted use of Cantorian set theory in mathematics,
Brouwer formulated his philosophy of intuitionism which in its
turn radically influenced his mathematical practice and that of
his immediate followers, a practice which was to prove seminal
for constructive and computational mathematics. In its turn the
latter is generating its own philosophy... And so it goes.

What do you consider the most neglected topics and/or
contributions in late 20th century philosophy of mathemat-
ics?

In my view contemporary philosophers of mathematics (or at least
those who can be described as “mainstream”) have paid far too
much attention to set theory, ignoring the philosophical import of
other major developments in mathematics such as category the-
ory, type theory, and constructive mathematics. The impressive—
and they are impressive — achievements of set theory in advancing
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mathematical knowledge have, perhaps, (mis)led these philoso-
phers into thinking that, as far as philosophy is concerned, math-
ematics just is set theory. (This is the same “mistake” I believe
Russell made when he claimed that mathematics just is logic,
only in his case the “mistake” had the positive — if, with hind-
sight, accidental — consequence of leading to type theory.) But in
truth set theory represents only one side of an opposition — that
between the continuous and the discrete — which is still stimu-
lating the growth of mathematics. With the introduction of set
theory, mathematics was reduced to pure discreteness (in the eyes
of certain philosophers) and those aspects of continuity incom-
patible with discreteness (e.g. infinitesimals and indecomposable
continua) were driven out. With the emergence of category theory,
type theory and constructive mathematics, set theory, while still
dominant, can now be seen as no more than one among a num-
ber of ways of depicting the mathematical universe. I believe that
it would benefit philosophers of mathematics to become aware of
this fact.
Another topic which I think has been, on the whole, neglected

by contemporary philosophers of mathematics (there are, admit-
tedly, exceptions) is the applicability of mathematics. Mathemat-
ics is perhaps unique in being at once art and science. As an
art, it is free to develop aesthetically pleasing internal practices
of its own, practices which are capable of reduction to simpler,
but equally beautiful practices which can then function as rules.
(The art with which it is natural to compare mathematics in this
regard is music, in which the simple rules governing the diatonic
scale came to serve as the “foundation” for musical composition.)
But mathematics is also a science; it serves to describe the nat-
ural world — in the terms of idealist philosophy, a transcendent
world — a world that exists independently of it. The correlation
between the internal practice of mathematics and the properties
of the natural world is remarkable and seems to demand some
kind of explanation. Galileo’s explanation was that mathematics
was the language of “the book of nature”; but with the rise of
quantum theory and other esoteric physical theories, couched in
exotic mathematical terms, physicists have become less comfort-
able with this explanation. It seems almost a miracle, for example,
that the mathematics of Hilbert space, invented for an entirely dif-
ferent purpose, serves perfectly to represent the mechanics of the
microworld. (This and other such “coincidences” led the physi-
cist Eugene Wigner to entitle a famous paper “The Unreason-
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able Effectiveness of Mathematics”.) I believe that philosophers
of mathematics should enlarge their program of explicating the
internal workings of mathematics to embrace the connection be-
tween mathematics and the outer world.

What are the most important open problems in the phi-
losophy of mathematics and what are the prospects for
progress?

Here are some problems in the philosophy of mathematics which
to me possess significance, and are unquestionably still “open”.

To explicate the applicability of mathematics

I have discussed this in the previous section.

To understand how the brain/mind generates mathemat-
ical concepts

This seems to me a problem as perplexing and intriguing as that
of how the brain “generates” consciousness. A most interesting
attempt to grapple with this problem has been made by the lin-
guist George Lakoff and the psychologist Rafael Nuñez. In their
book Where Mathematics Comes From, they fashion a sophis-
ticated naturalistic explanation of the origins of mathematics.
They advance the thesis that mathematics is not the product of
some mysterious synergy between the mind and some putative
empyrean world. They contend that mathematics, in all its rich-
ness and elaboration, emerges through the natural interaction of
the cognitive processes common to us all with our experience of
living in the actual world. We are from birth equipped with cer-
tain rudimentary mathematical abilities, for instance, the ability
to distinguish objects, that of grasping and comparing the size
of small pluralities instantly, and that of adding and subtract-
ing small whole numbers. It is Lakoff’s and Nuñez’s contention
that mathematics has emerged from our modest initial cognitive
endowments through the brain/mind’s distillation of conceptual
metaphors from its/our experience of the external world, e.g. that
arising from bodily movement, physical force, and spatial orienta-
tion. In terms reminiscent of category theory, Lakoff and Nuñez
define a metaphor as a correlation or mapping grasped by the mind
between two conceptual domains, the first of which, the source
domain, is relatively concrete and familiar, and the second, the
target domain, is of a more abstract character. Like morphisms in
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a category, these correlations must preserve structure. Thus, for
example, in the metaphorical correlation between, say, heaps of
stones (the source domain) and numbers (the target domain), our
grasp of the fact that the combination of two piles of stones each
of a given size always results in another pile of stones of a certain
related size is projected onto the domain of numbers as the oper-
ation of addition. According to Lakoff and Nuñez’, metaphorical
correspondences such as this are the fons et origo of mathemati-
cal thought. While their claim is, of course, unprovable in a literal
sense, I like it both for what I see as its essential plausibility and
for the fact that it addresses a problem that has always nagged
me.

To explicate the relationship between the continuous and
the discrete–in particular, to explain how, continuity
emerges from a discrete world

I have already touched on this problem — the significance of which
extends far beyond the philosophy of mathematics — in a number
of places above.
Here let me mention what seems to me an important special

case of the problem: how is the continuity of perception (that of
vision, for example) engendered by a discrete system of receptors?
Actual perceptual fields can be modelled by proximity spaces. A
proximity space is a set S equipped with a proximity relation,
that is, a symmetric reflexive binary relation ≈. Here we think
of S as a field of perception, its points as locations in it, and
the relation ≈ as representing indiscernibility of locations, so that
x ≈ y means that x and y are “too close” to one another to be
perceptually distinguished. Let us call a proximity space (S,≈)
continuous if for any x, y ∈ S there exist z1, ..., zn such that
x ≈ z1, z1 ≈ z2, ..., zn−1 ≈ zn, zn ≈ y. Continuity in this sense
means that any two points can be joined by a finite sequence of
points, each of which is indistinguishable from its immediate pre-
decessor. If d is a metric on S such that the metric space (S, d)
is connected, then every proximity structure determined by d is
continuous. When S is a perceptual field such as that of vision,
the fact that it does not fall into separate parts means that it is
connected as a metric space with the inherent metric. Accordingly
every proximity structure on S determined by that metric is con-
tinuous. Note that this continuity emerges even when S i s itself
an assemblage of discrete “points”. In this way continuity of per-
ception could be produced by an discrete system of receptors.
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To explicate the role of computability in mathematics

How, in particular, does the computational structure of a math-
ematical result reflect its content? What is the relationship be-
tween the content of a mathematical theorem and the length or
complexity of its proof? In the case of spectacular recent math-
ematical achievements such as the proofs of the Fermat theorem
and the Poincaré conjecture, the comprehensibility of the propo-
sition proved and the complexity of its proof would seem to be in
inverse relationship. This is to be contrasted, with, say, category
theory, in which propositions and their proofs are virtually on an
equal footing as regards intelligibility.

To characterize how mathematics as a formal/symbolic
practice differs from a practice such as fiction

Of course both are language-based (despite Brouwer’s contrary
claim that mathematics is a “languageless activity”). But more
particularly, mathematics resembles fiction in its systematic in-
troduction of concepts such as numbers, circles, sets, etc. which
are then reified, that is, treated as if they possessed independent
existence–this is as true of constructive as of classical mathemat-
ics, by the way. In fiction, characters and events are treated, in
accordance with Coleridge’s “willing suspension of disbelief”, as
if they were real. Now one important difference between classical
mathematics and the practice of fiction is that the reified concepts
of the former, but not the latter, are treated as if their proper-
ties were fully determinate. For instance, it is accepted (I would
surmise) by the majority of mathematicians that it is objectively
determined whether the number 1010

10

+ 3 is prime or not–even
if, as is likely, we shall never know the answer. But in the case of
fiction the case is otherwise. Scholars may debate Shakespeare’s
identity, but the question of whether Hamlet’s breeches was, say,
green, lacks determinacy, indeed borders on the absurd, since no
scrutiny of Shakespeare’s play could reveal their colour. Here the
play is indeed the thing!
By contrast, the manner in which reified objects are treated

both in constructive and in structuralist/axiomatic mathematics
(category theory, for example) bears a closer resemblance to fic-
tion. Constructive mathematicians acknowledge that the concepts
and devices of mathematics are invented or constructed, even if
under such (objective) constraints as to make it seem plausible
later to describe them as the products of discovery. While in con-
structive mathematics finite objects such as individual natural
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numbers are treated as if their (finitistic) properties were fully de-
terminate, (potentially) infinite objects such as the set of natural
numbers, numerical functions, and individual real numbers are
treated in a manner similar to fictional characters in that their
properties are taken to be open to further determinations. The
same can be said of structuralist mathematics. Just as Sherlock
Holmes or Philip Marlowe have been the protagonists of numer-
ous sequels to those works in which they made their debuts, so
in structuralist mathematics there are a number of different ways
of spelling out the properties of, for example, the real number
system–“sequels”, as it were, to its original conception. Models
have been constructed in which every function on the real num-
bers is continuous, and also models in which every such function is
computable. Like the practice of fiction, structuralist mathematics
is pluralistic. I think the analogies–and the differences–between
mathematics and fiction deserve further investigation.
Let me conclude by saying that I believe the ultimate purpose of

the philosophy of mathematics is to demystify mathematics while
at the same time celebrating it.


