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1. The Origins of the Real Number Concept. 

 

The concept of number has undergone a long evolution, leading to the emergence of 

several types of “number”. The fundamental numbers are, of course, the natural or whole 

numbers 1, 2, 3, ... associated with the process, temporal in nature, of counting. Counting 

is applied to discrete collections of well-distinguished objects such as flocks of sheep, piles 

of stones, etc. Discrete collections are not always exactly divisible into numerically equal 

parts of a prescribed size. Thus, for example, a flock of 31 sheep, not being divisible into 

an exact number of pairs or triplets, cannot be exactly “counted by twos”, or “counted by 

threes”. Once the unit, in this case “individual sheep” is fixed, it cannot be arbitrarily 

changed and used to provide an exact count of the flock.  This “rigidity of the unit” is a 

characteristic feature of the use of natural numbers in counting discrete collections. In 

this sense counting is absolute.  

 

Natural numbers can be compared. The basic standard of comparison of numbers is, of 

course, greater (>) and less (<).  A subtler standard of comparison is proportionality or ratio.  

Intuitively, given two numbers m <  n, the ratio or proportion m : n represents the relative 

size of m to n. In cases where m divides n exactly, m: n can be regarded as a natural 

number, the number of times m divides n. For example 4 : 24 may be identified with the 

number 6. But when m is not a divisor of n, the ratio m: n cannot be represented by a 

natural number in this way. Such ratios cane to be known as fractions, and later as  rational 

numbers. 

 

Such is the case for counting. In the case of measuring, additional problems arise from the 

fact that measuring is concerned not with discrete collections ultimately composed of 

distinct indivisible “atoms”, but with  infinitely divisible, continuous entities, in a word, with 

continua. In the case of discrete collections, like flocks of sheep, we are automatically 

provided with a natural “intrinsic” unit for counting purposes, so generating a natural 

number.  Frege’s brilliant idea of identifying the unit with a property or concept is 
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illuminating here. In the case of a flock of 31 sheep, the number “31” is based , according 

to Frege, on the “concept-unit” “individual sheep”. The “rigidity of the unit” in this case 

is illustrated by the fact that changing the concept-unit to “pair of sheep” renders it 

incapable of associating a natural number with the flock. Now because of the unlimited 

divisibility of continua, no such intrinsic units are, or can be provided. In measuring the 

length of a straight line, for example, we say that it is so many inches, or centimetres, 

long. Apart from the fact that these inches or centimetres represent lengths of straight 

lines, their lengths are entirely arbitrary “units”, not determined in any further way by  

the extent of the given line. Measurement arises from a comparison of the length of the 

given line with the length of the linear unit, inch or centimeter as it may be. Measurement 

is thus relative: in measuring the length of a straight line an additional straight line must 

be specified as a unit of measurement.  This fact further complicates the issue of defining 

the “ratio” of the lengths of straight lines, and divisible magnitudes generally. In the case 

of discrete collections, ratios are given directly in terms of the numbers of units 

constituting the collections: thus the ratio of a collection of 31 sheep to 68 sheep is 31: 68. 

But in the case of divisible magnitudes such as straight lines, it is not always immediately 

clear how the “ratio” between them should be defined. Of course, the are straightforward 

cases in the divisible case such as the following: suppose we are given a straight line L 

and we construct two straight lines L and L by laying down the given line L 31 and 68 

times, respectively. Then the ratio of (the lengths of) L to L is 31: 68. In effect, the 

situation has been reduced to the discrete case by taking (the length of) L as a common 

unit. But when the lines L  and  L are arbitrary, what guarantee is there that they are 

commensurable, that is, can a line L be found to play the role of common unit of measure 

for L and  L so enabling the ratio or proportion to be presented numerically?  Let us call 

this the problem of commensurability. 

 

Certain ancient cultures such as the Egyptians and Babylonians handled ratios in a 

pragmatic manner. Treating them as “fractions”, which later became known as rational 

numbers, they formulated rules of calculation for them analogous to, if more complicated 
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than, the familiar rules of calculation for natural numbers. While we do not know 

whether they regarded fractions as being true “numbers”, for all practical purposes they 

treated them as such. And it seems likely that they treated the issue of commensurability, 

when it arose in practice, in a rough-and -ready way.  

 

As far as we know, in antiquity only the mathematicians of the Greek school were 

exercised by the problem of commensurability, which had naturally arisen in their 

development of geometry - itself, as its name shows, a by-product of the practice of 

measurement. The Greek mathematicians had a strict conception of number- arithmos, 

defined by Euclid as a   " multitude composed of units. – which resisted expansion to 

embrace proportions, ratios, or fractions. They accordingly regarded numerical 

proportions or ratios– that is, proportions or ratios between numbers - as being quite 

distinct from numbers themselves. By 500 B.C.E. they, more precisely the Pythagorean  

School, had developed a theory of numerical proportions. 

 

It was a fundamental principle of the Pythagoreans that the world is explicable in terms 

of properties of, and relations between, whole numbers—that number, in fact, forms the 

very essence of the real. In geometry this doctrine led to the sweeping aside of the 

problem of commensurability by the affirmation of universal commensurability. In 

particular, given any pair of lines, they took it for granted that is possible to choose a unit 

of length sufficiently small so as to enable the proportion of the lengths of the lines to be 

presented as a numerical ratio. 

 

It must then have come as a great shock to the Pythagoreans to find, as they did, that 

universal commensurability cannot be upheld. This followed upon the shattering 

discovery, probably made by the later Pythagoreans before 410 B.C., that ratios of whole 

numbers do not suffice to enable the diagonal of a square or a pentagon to be compared 

in length with its side. They showed that these line segments are incommensurable, that is, 

it is not possible to choose a unit of length sufficiently small so as to enable both lines to 
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be measured by an integral number of the chosen units. Pythagorean philosophy was 

dealt a devastating blow by this discovery. Their geometry, too, was affected, since the 

demonstrations of certain basic propositions employed the principle of universal 

commensurability.  

 

The discovery of incommensurability (which can be seen as an early instance of a failure 

to reduce the continuous to the discrete) had made it impossible for proportions between 

continuous magnitudes to be generally representable as numerical proportions. The 

response was to detach the general concept of proportion from the idea of numerical 

proportion and provide it with an axiomatic development independent both of numerical 

proportion and of commensurability. This is the theory presented in Book V of Euclid’s 

Elements.  The commentator Proclus attributes the general theory of proportion to 

Eudoxus of Cnidus (c.400–350 B.C.E.)  

 

In Eudoxus’s theory, we are given a collection of similar magnitudes, e.g. line segments, or 

planes , or volumes, or angles, etc., which can be compared in size, together with the 

notion of ratio of similar magnitudes satisfying certain postulates, of which the following, 

expressed in modern terms, are the most important: 

 

P1. Given any two similar magnitudes, there is an integral multiple of the one which 

exceeds the other. 

 

This postulate, which is also known as Archimedes’ principle, has the effect of excluding 

infinitely small or infinitely large quantities. 

 

The second postulate is in effect a definition of equality for ratios: 
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P2. The ratio A:B of two magnitudes A, B is equal to the ratio C:D of two other magnitudes 

C, D if, and only if, for any natural numbers m,n,  mA is greater than, equal to, or less than 

nB according as mC is greater than, equal to, or less than nD.  

 

This postulate covers both the cases when A and B are commensurable, and when they 

are incommensurable. In the former case, numbers p, q can be found to satisfy pA = qB. It  

follows that pC = qD and it is then easily shown that the remaining conditions of the 

definition are satisfied. In this case equality between the ratios  A: B and C:D is established 

in a finite number of steps, so the ratios are numerical, and correspond to rational numbers.  

 

In the case of incommensurable A and B, the content of P2 has been interpreted by historians 

of mathematics as an anticipation of the concept of irrational number, and so, by extension, 

of the general concept of real number. There is indeed a strikingly close relationship (Fine 

1917) between the idea of the ratio of two incommensurables suggested in P2 and that of 

an irrational number as defined by Dedekind in the 19th century (discussed in the next 

section). The key element in P2  is the fact that when A and B are incommensurable the 

definition of the ratio A : B demands comparing mA and nB for all pairs (m, n) of all natural 

numbers m and n, and thus, implicitly at least, the assembling of these pairs into two 

separate classes, the class  {(m, n): mA > nB} and the class {(m, n): mA < nB}.  This 

separation of pairs of numbers into two classes is, remarkably, identical with the 

Dedekind cut defining the irrational number which expresses the ratio A : B.  It follows 

that the collection of ratios, commensurable and incommensurable, as defined in Euclid 

Book V, is actually a subset of the set  of real numbers as defined by Dedekind. For this 

subset to be identifiable with the whole of it is necessary to postulate, as Dedekind (and 

Cantor) did, the existence of a one-to-one correspondence between real numbers and 

points on a line. This amounts, in the present case, to the assertion that for every 

Dedekind cut there exists a pair of magnitudes A and B which will yield this cut in the 

manner just described.  
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This is not, of course. to claim that Eudoxus or Euclid  had literally “anticipated” 

Dedekiind’s definition of irrational or real number. As already observed, they would 

have rejected the very idea that a numerical ratio could be identified as an actual number. 

They avoid the fraction and the irrational by basing the theory of proportion upon the 

equality of ratios instead of ratio itself. Nevertheless, there is no question that the basis of 

Dedekind’s sound definition of the concept of real number millennia later was implicit in 

notions familiar to Eudoxus and Euclid.  

 

Had incommensurability never been discovered, there would have been no necessity to 

extend the number system beyond the rational numbers. 

 

It was only very much later that fractions (along with negative numbers and 0, which, 

together with the natural numbers, constitute the integers) came to be regarded as genuine 

numbers. This essentially came about in the 16th and 17th centuries through an expansion 

of the Greek concept of number as discrete collections of units to numbers conceived as 

measuring arbitrary quantities such as geometric magnitudes. Numbers came to be 

associated with points on a (continuous) line. In particular the positive rationals (i.e. those 

of the form m/n with m and n positive integers) appear to the right of the origin 0 and the 

negative rationals (i.e those of the form p/q with p negative and q positive) to the left of 0.  

 

 

                                                            …    –2  - –  1  –½   0     ½    1     2 …    

                                                           •    •    •   •    •    •    •   •   •      
 

 

Regarding the rationals as points on a line enables the line to be divided as finely as one 

pleases.  For example, to represent all rationals of the form m/109 as points on the line, we 

divide the interval (0, 1) of the line between 0 and 1 into a billion equal pieces; similarly 

for all other intervals (1, 2), (2, 3),... and the points of subdivision then correspond to 

3
2

3
2
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fractions of the form m/109. Since the denominator of these fractions can be made 

arbitrarily large, 1010, 10100, or whatever, thereby producing subdivisions of unlimited 

fineness, it would be natural to suppose that in this way one would capture as points of 

subdivision all the points on the line—in other words, that every point is represented by 

a rational number. Now it is certainly true that rational numbers suffice for all practical 

purposes of measuring; indeed, the Pythagorean doctrine of universal commensurability 

essentially elevated this practical fact to a general principle. Moreover, the rational points 

are dense on the line in the sense that they may be found in any interval (a, b), however 

small, with rational endpoints a < b  - we have only to observe that the rational number 

(a + b)/2 lies between a and b. It may be inferred from this fact that each such interval 

contains infinitely many rational points. For if the interval (a, b) contained only finitely 

many, n say, then we could mark them off as shown, below and then any interval between 

two adjacent points would be free of rational points, contradicting what we have already 

established.  

 

                   •                                                                                  • 

                   a                                                                                  b 

 

All this would seem to lend support to the idea that every point on the line is represented 

by a rational number. But, of course, the Pythagorean discovery of the 

incommensurability of the side and diagonal of a square shows that this idea is incorrect. 

If we take two perpendicular lines OP and PQ of length 1 and use compasses to mark out 

on the line l a line OR of the same length as OQ then the incommensurability of OP and 

OQ, and hence also OR, just means that R  is  not a rational point. In fact, if we designate  

 

                                                       Q 

                                                                 

                                    O                  P         R                           l 
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the “number” associated with the point R, then we have, by the Pythagorean theorem,     

r2 = 12 + 12 = 2, so that, replacing r by the customary symbol 2, we conclude that no 

rational number is equal to 2, or that 2 is irrational. Here the term “irrational” is to be 

understood in the sense of “that which cannot be expressed as a ratio” as opposed to its 

more usual (but related) meaning “contrary to reason”.     

The fact that not every point on the line corresponds to a rational number means that, if  

the correspondence between points on a continuous line and “numbers” is to be 

maintained, the system of rational numbers has to be enlarged still further. It was 

essentially this observation, first made by the Dutch mathematician  Simon Stevin (1548-

1620), that led to the development of the system of real numbers. In his L’Arithmétique of 

1585 Stevin explicitly introduces the idea of extending the discrete arithmetic of the 

Greeks to a continuous arithmetic. Stevin thinks of numbers as measures, and measures 

of continuous magnitudes are by their very nature continuous:  

as well as to continuous water corresponds a continuous wetness, so to a continuous 

magnitude corresponds a continuous number. 

 The term ” continuous number” would accordingly have been more apposite than the 

term “real number“. But history decreed otherwise.  The term “real number” was 

introduced in the 17th century by Descartes to distinguish them from what had come to 

be termed imaginary” numbers—that is, square roots of negative numbers (such as               

i = –1) arising formally as roots to algebraic equations. These latter were regarded as 

fictitious, the mere product of imagination.  In this respect the term “imaginary”is to be 

contrasted with the term “irrational”. 

 

Stevin’s most important innovation was the decimal representation of real numbers, which 

appears (although not of course in modern notation) in his 1585 work De Thiende (“the 
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art of tenths”). This still today provides the most familiar way of presenting the 

continuum arithmetically. 

 

In a major departure from the rational numbers which are given simply by pairs of 

integers, under the decimal representation each real number takes the form of an infinite 

sequence of integers 

 

m. n0 n1 n2 …. 

 

A real number presented in this way is then a rational number precisely when it is 

periodic, i.e., displays a repeating pattern indefinitely after a certain stage. For example, 

 

6  = 6.6250000 …     = 0.428571 428571 ..... 

 

It follows that just a finite amount of information is needed to represent a rational number 

as a decimal fraction.   

 

Any nonperiodic decimal must then represent an irrational number; it is easy to furnish 

examples of these, for instance the following decimal containing an increasing number of 

zeros: 

 

0.101001000100001000001.... 

 

Surprisingly, perhaps, no simple rule of this kind exists for constructing the decimal 

representation of familiar irrational numbers such as 2. 

 

The system of real numbers can be formally defined to be the set of all finite or infinite 

(positive or negative) decimals: considered geometrically the real numbers constitute the 

geometric continuum or real line. The operations of addition and multiplication can be 

5
8

3
7
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naturally extended to the real numbers so that, like the rational numbers, they constitute 

a field, which we shall denote by the symbol .  Thus the real numbers resemble the 

rational numbers insofar as they are subject to the same operational laws. On the other 

hand, if we regard the integers as the basic ingredients from which the other numbers are 

constructed, then, as pointed out above, while each rational number can be defined in 

terms of just two integers, in general a real number requires infinitely many integers to 

define it. The fact that infinite processes play an essential role in the construction of the 

real numbers places them in sharp contrast with the rationals.  

 

The definition of real numbers as infinite decimals is not entirely satisfactory since, for 

one thing, there is no compelling mathematical reason to choose the number 10 as a base 

for them. Moreover, the real numbers are supposed to correspond exactly to points on a 

line: but how do we know that every such point corresponds to a real number thus 

defined as a decimal? To establish this it is necessary to show that there are no “gaps” in 

our set of real numbers, and to define with precision what is to be understood by this 

assertion. This was carried out in the latter half of the nineteenth century and resulted in 

the modern theory of real numbers. 

 

The Vexed Issue of Infinitesimals.  Closely associated with the concept of an infinitely 

divisible continuum is that of an infinitesimal. According to the Oxford English Dictionary 

the term infinitesimal was originally  

 

an ordinal, viz. the “infinitieth” in order; but, like other ordinals, also used to name fractions, 

thus infinitesimal part or infinitesimal came to mean unity divided by infinity ( 1


), and thus 

an infinitely small part or quantity. 

 

An infinitesimal magnitude has been, traditionally, somewhat hazily conceived as a 

continuum "viewed in the small", an “ultimate part” of a continuum. In something like 
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the same sense as a discrete entity is made up of its individual units, its “indivisibles”, 

so, it was maintained, a continuum is “composed” of infinitesimal magnitudes, its 

ultimate parts. (It is in this sense, for example, that mathematicians of the 17th century 

held that continuous curves are "composed" of infinitesimal straight lines.) Now the 

“coherence” of a continuum entails that each of its (connected) parts is also a continuum, 

and, accordingly, divisible. Since individual points are indivisible, it follows that no point 

can be part of a continuum. Points are, in fact, just locations in a continuum. Infinitesimal 

magnitudes, as parts of continua, cannot, of necessity, be points: they are, in a word, 

nonpunctiform.  

 

Magnitudes are normally taken as being extensive quantities, like mass or volume, which 

are defined over extended regions of space. By contrast, infinitesimal magnitudes have 

been conceived as intensive magnitudes resembling locally defined intensive quantities 

such as temperature or density. The effect of “distributing” or “integrating” an intensive 

quantity over an infinitesimal magnitude is to convert the former into an infinitesimal 

extensive quantity: thus temperature is transformed into infinitesimal heat and density 

into infinitesimal mass. When the continuum is the trace of a motion, the associated 

infinitesimal/intensive magnitudes have been identified as potential magnitudes—

entities which, while not possessing true magnitude themselves, embody a tendency to 

generate magnitude through motion, so manifesting “becoming” as opposed to “being”.  

 

An infinitesimal number has been conceived as a number so small that, while not 

coinciding with zero, is in some sense smaller than any finite positive number. An 

infinitesimal number is, so to speak, “greater than nothing but less than anything” (Pyle 

1997, p. 208). An infinitesimal numbers has been construed as a “number’ which fails to 

satisfy Archimedes’ Principle, that is, as a nonzero “number” a such that, for any integer n,  

n.a is  less than any finite nonzero number.  We have already pointed out that Eudoxus 

and Euclid explicitly exclude the existence of such “numbers”. 
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The concept of infinitesimal was beset by controversy from its beginnings. The idea 

makes an early appearance in the mathematics of the Greek atomist philosopher 

Democritus c. 450 B.C., only to be banished c. 350 B.C. by Eudoxus in what was to become 

official “Euclidean” mathematics. Taking the form of “indivisibles”, infinitesimals 

resurfaced in the 16th and 17th centuries and were systematically employed by Kepler, 

Galileo’s student Cavalieri, the Bernoulli clan, and a number of other mathematicians. In 

the guise of the delightfully named “linelets” and “timelets”, infinitesimals played an 

essential role in Barrow’s “method for finding tangents by calculation”, which appears in 

his Lectiones Geometricae of 1670. As “evanescent quantities” infinitesimals were 

instrumental (although later abandoned) in Newton's development of the calculus, and, 

as “inassignable quantities”, in Leibniz’s. The Marquis de l'Hôpital, who in 1696 

published the first treatise on the differential calculus (entitled Analyse des Infiniments 

Petits pour l'Intelligence des Lignes Courbes), invokes the concept in postulating that “a 

curved line may be regarded as being made up of infinitely small straight line segments,” 

and that “one can take as equal two quantities differing by an infinitely small quantity.” 

 

However useful infinitesimals may have been in practice, they could scarcely withstand 

logical scrutiny. Derided by Berkeley in the 18th century as “ghosts of departed 

quantities”, in the 19th century execrated by Cantor as “cholera-bacilli” infecting 

mathematics, and in the 20th roundly condemned by Bertrand Russell as “unnecessary, 

erroneous, and self-contradictory”, the use of infinitesimals in the calculus and 

mathematical analysis was believed to have been finally supplanted by the limit concept 

which took rigorous and final form in the latter half of the 19th century. By the beginning 

of the 20th century, the concept of infinitesimal had become, in analysis at least, essentially 

an “unconcept”.  

 

Nevertheless, the proscription of infinitesimals did not succeed in extirpating them; they 

were, rather, driven further underground. Physicists and engineers, for example, never 

abandoned their use as a heuristic device for the derivation of correct results in the 
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application of the calculus to physical problems. Differential geometers of the stature of 

Lie and Cartan relied on their use in the formulation of concepts which would later be 

put on a “rigorous” footing. Even in mathematical analysis they survived in Du Bois-

Reymond’s “orders of infinity” And, in a mathematically rigorous sense, they lived on in 

the algebraists’ investigations of nonarchimedean fields (Ehrlich 2009). 

 

A new phase in the saga of infinitesimals has opened in the past few decades with the 

refounding on a solid basis of the concept of the infinitesimal in analysis and differential 

geometry. This has been achieved in two essentially different ways, Nonstandard Analysis 

and Smooth Infinitesimal Analysis. These will be discussed in the concluding sections of 

this survey.  
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2. The Cantor-Dedekind Theory of Real Numbers and the 

Arithmetization of the Continuum 

 

By the beginning of the 19th century the conception of real numbers as corresponding to 

points on a line, and so forming a continuum, was firmly established in mathematical 

practice.  But solid definitions of the concept of continuum, and indeed the concept of 

real number itself, were lacking. Mathematical arguments involving real numbers 

frequently made appeal to geometric - even spatiotemporal- intuition and the intuitive 

idea of continuity. (Respectability on the use of spatiotemporal intuition in mathematical 

arguments had been conferred by the central role such intuition played in Kant’s 

philosophy of mathematics. Kant had claimed that arithmetic and geometry were 

grounded in the intuition of time and space, respectively. The influence of Kant’s 

philosophy on mathematicians waned after the emergence of non-Euclidean of geometry 

early on in the 19th century.) In addition, the concept of infinitesimal, which had played 

such an important role in the development of the calculus over the previous two 

centuries, but whose logical foundations were worryingly shaky, had begun to come 

under scrutiny.  

 

Cauchy, Bolzano and Hamilton had all attempted to clarify the concepts of real number, 

but it was Karl Weierstrass (1815–97) who made the first systematic attack on the 

problem. He was determined to expel spatiotemporal intuition, and the infinitesimal, 

from the foundations of analysis. To instill complete logical rigour Weierstrass proposed 

to establish mathematical analysis on the basis of natural number alone - to “arithmetize” 

it. According to Hobson (1907, p. 22), “the term ‘arithmetization’ is used to denote the 

movement which has resulted in placing analysis on a basis free from the idea of 

measurable quantity, the fractional, negative, and irrational numbers being so defined 

that they depend ultimately upon the conception of integral number.” 
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In pursuit of this goal Weierstrass had first to formulate a rigorous “arithmetical” 

definition of real number. He did this by defining a (positive) real number to be a 

countable set of positive rational numbers for which the sum of any finite subset always 

remains below some preassigned bound, and then specifying the conditions under which 

two such “real numbers” are to be considered equal, or strictly less than, one another.  

 

Weierstrass was also concerned to make precise the concept of continuous function. The 

concept of function had by this time been greatly broadened: in 1837 Dirichlet suggested 

that a variable y should be regarded as a function of the independent variable x if a rule 

exists according to which, whenever a numerical value of x is given, a unique value of y 

is determined. (This idea was later to evolve into the set-theoretic definition of function 

as a set of ordered pairs.) Dirichlet’s definition of function as a correspondence from 

which all traces of continuity had been purged, made necessary Weierstrass’s  

independent definition of continuous function. 

 

Weierstrass formulated the familiar (, ) definition of continuous function: a function f(x) 

is continuous at a if for any  > 0 there is  > 0 such that |f(x) – f(a)| <     for all x with   

|x – a| < . He also proved his famous approximation theorem for continuous functions: any 

continuous function defined on a closed interval of real numbers can be uniformly 

approximated to by a sequence of polynomials. 

 

The notion of uniform continuity for functions was later introduced (in 1870) by Heine: a 

real valued function f is uniformly continuous if for any  > 0 there is  > 0 such that     

|f(x) – f(y)| <   for all x and y in the domain of f with |x – y| < . In 1872 Heine proved 

the important theorem that any continuous real-valued function defined on a closed 

bounded interval of real numbers is uniformly continuous. 

 

Following Weierstrass’s efforts, another attack on the problem of formulating rigorous 

definitions of continuity and the real numbers was mounted by Richard Dedekind 
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(1831–1916). We learn from the introductory remarls to Continuity and Irrational Numbers 

(1872), that Dedekind was inspired to embark on his investigations by his belief that, in 

presenting the differential calculus, “geometric intuition”, while “exceedingly useful 

from a didactic standpoint”, can “make no clam to being scientific”.  Accordingly he 

made “the fixed resolve to keep meditating on the question till I should find a purely 

arithmetic and perfectly rigorous foundation for the principles of infinitesimal analysis”. 

He went on to observe  

 

The statement is so frequently made that that the differential calculus deals with 

continuous magnitude, and yet an explanation of this continuity is nowhere given; even 

the most rigorous expositions of the differential calculus do not base their proofs upon 

continuity but, with more or less consciousness of the fact, they either appeal to geometric 

notions or those suggested by geometry, or upon theorems which are never established in 

a purely arithmetic manner. 

  

Dedekind considered the concept of number in general to be a part of logic, and not, as 

Kant had claimed, dependent on spatiotemporal intuition. In the Preface to his later book 

The Nature and Meaning of Numbers (1888) he says 

 

In speaking of arithmetic (algebra, analysis) as a part of logic I mean to imply that I 

consider the number-concept entirely independent of the notions or intuitions of space and 

time, that I consider it an immediate result from the laws of thought. 

 

In his investigations of continuity Dedekind focussed attention on the question: exactly 

what is it that distinguishes a continuous domain from a discontinuous one? He seems 

to have been the first to recognize that the property of density, possessed by the ordered 

set of rational numbers, is insufficient to guarantee continuity. In Continuity and Irrational 

Numbers he remarks that when the rational numbers are associated to points on a straight 

line, “there are infinitely many points [on the line] to which no rational number 
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corresponds” (Ewald 1999, p. 770 et seq.), so that the rational numbers manifest “a 

gappiness, incompleteness, discontinuity”, in contrast with the straight line’s “absence of 

gaps, completeness, continuity.” He goes on: 

 

In what then does this continuity consist? Everything must depend on the answer to this 

question, and only through it shall we obtain a scientific basis for the investigations of all 

continuous domains. By vague remarks upon the unbroken connection in the smallest parts 

obviously nothing is gained; the problem is to indicate a precise characteristic of continuity 

that can serve as the basis for valid deductions. For a long time I pondered over this in vain, 

but finally I found what I was seeking. This discovery will, perhaps, be differently estimated 

by different people; but I believe the majority will find its content quite trivial. It consists 

of the following. In the preceding Section attention was called to the fact that every point 

p of the straight line produces a separation of the same into two portions such that every 

point of one portion lies to the left of every point of the other. I find the essence of continuity 

in the converse, i.e., in the following principle: 

 

‘If all points of the straight line fall into two classes such that every point of the first class 

lies to the left of every point of the second class, then there exists one and only one point 

which produces this division of all points into two classes, this severing of the straight line 

into two portions.’ 

 

Dedekind regards this principle as being essentially indemonstrable; he ascribes to it, 

rather, the status of an axiom “by which we attribute to the line its continuity, by which 

we think continuity into the line.” It is not, Dedekind stresses, necessary for space to be 

continuous in this sense, for “many of its properties would remain the same even if it 

were discontinuous.” And in any case, he continues, 

 

if we knew for certain that space were discontinuous there would be nothing to prevent us 

... from filling up its gaps in thought and thus making it continuous; this filling up would 
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consist in a creation of new point-individuals and would have to be carried out in 

accordance with the above principle. 

 

The filling-up of gaps in the rational numbers through the “creation of new point-

individuals” is the key idea underlying Dedekind’s construction of the domain of real 

numbers. He first defines a cut to be a partition (A1, A2) of the rational numbers such that 

every member of A1 is less than every member of A2. After noting that each rational 

number corresponds, in an evident way, to a cut, he observes that infinitely many cuts 

fail to be engendered by rational numbers. The discontinuity or incompleteness of the 

domain of rational numbers consists precisely in this latter fact. That being the case, he 

continues,   

 

whenever we have a cut (A1, A2) produced by no rational number, we create a new number, 

an irrational number , which we regard as completely defined by this cut (A1, A2); we 

shall say that the number  corresponds to this cut, or that it produces this cut. From now 

on, therefore, to every definite cut there corresponds a definite rational or irrational 

number, and we regard two numbers as different or unequal if and only if they 

correspond to essentially different cuts.  

 

It is to be noted that Dedekind does not identify irrational numbers with cuts; rather, each 

irrational number is newly “created” by a mental act and remains quite distinct from its 

associated cut.  

 

Dedekind goes on to show how the domain of cuts, and thereby the associated domain 

of real numbers, can be ordered in such a way as to possess the property of continuity, 

viz. 
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if the system R of all real numbers divides into two classes A1, A2 such that every number 

a1 of the class A1 is less than every number a2 of the class A2, then there exists one and only 

one number  by which this separation is produced. 

 

Dedekind notes that this property of continuity is actually equivalent to two principles 

basic to the theory of limits; these he states as: 

 

If a magnitude grows continually but not beyond all limits it approaches a limiting value 

 

and 

 

if in the variation of a magnitude x we can, for every given positive magnitude , assign a 

corresponding interval within which x changes by less than , then x approaches a limiting 

value. 

 

Dedekind’s definition of real numbers as cuts was to become an essential part of the 

rigorous analysis of the continuum. 

 

The most visionary “arithmetizer” of all was Georg Cantor (1845–1918). Cantor’s analysis 

of the continuum in terms of infinite point sets led to his theory of transfinite numbers 

and to the eventual freeing of the concept of set from its geometric origins as a collection 

of points, so paving the way for the emergence of the concept of general abstract set 

central to today’s mathematics.  It is of interest to note that neither Dedekind nor Cantor 

too real numbers to be actual sets. This step was in fact first taken by Bertrand Russell in 

1903 in The Principles of Mathematics (Russell 1964). 

 

At about the same time that Dedekind published his researches into the nature of the 

continuous, Cantor formulated his theory of the real numbers. This was presented in the 

first section of a paper (Cantor 1872) on trigonometric series. Like Weierstrass and 
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Dedekind, Cantor aimed to formulate an adequate definition of the irrational numbers 

which avoided the presupposition of their prior existence, and he follows them in basing 

his definition on the rational numbers. Following Cauchy, Cantor calls a sequence a1, a2, 

..., an, ... of rational numbers a fundamental sequence (nowadays called a Cauchy sequence) if 

there exists an integer N such that, for any positive rational , |an+m – an| <  for all m and 

all n > N. Any sequence <an> satisfying this condition is said to have a definite limit b. 

Dedekind had taken irrational numbers to be “mental objects” associated with cuts, so, 

analogously, Cantor regards these definite limits as nothing more than formal symbols 

associated with fundamental sequences (Dauben 1979, p. 38). 

 

The domain B of such symbols may be considered an enlargement of the domain A of 

rational numbers, since each rational number r may be identified with the formal symbol 

associated with the fundamental sequence r, r, ..., r,... . Order relations and arithmetical 

operations are then defined on B: for example, given three such symbols b, b’, b’’ 

associated with the fundamental sequences <an>, <a’n>, <a’’n>, the inequality b < b’ is 

taken to signify that, for some  > 0 and N, an – a’n >  for all n > N, while the equality         

b + b’ = b’’ is taken to express the relation lim(an + a’n – a’’n) = 0.  

 

Having imposed an arithmetical structure on the domain B, Cantor is emboldened to 

refer to its elements as (real) numbers. Nevertheless, he still insists that these “numbers” 

have no existence except as representatives of fundamental sequences: in his theory, 

 

the numbers (above all lacking general objectivity in themselves) appear only as components of 

theorems which have objectivity, for example, the theorem that the corresponding sequence has the 

number as limit. (Dauben 1979, p. 39). 

  

Cantor next considers how real numbers are to be associated with points on the linear 

continuum. If a given point on the line lies at a distance from the origin O bearing a 

rational relation to the point at unit distance from that origin, then it can be represented 
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by an element of A. Otherwise, it can be approached by a sequence a1, a2, ..., an, ... of points 

each of which corresponds to an element of A. Moreover, the sequence <an> can be taken 

to be a fundamental sequence; Cantor writes: 

 

The distance of the point to be determined from the point O (the origin) is equal to b, where b is 

the number corresponding to the sequence (Dauben 1979, p. 40). 

 

In this way Cantor shows that each point on the line corresponds to a definite element of 

B. Conversely, each element of B should determine a definite point on the line. Realizing 

that the intuitive nature of the linear continuum precludes a rigorous proof of this 

property, Cantor simply assumes it as an axiom, just as Dedekind had done in regard to 

his principle of continuity: 

 

Also conversely, to every number there corresponds a definite point of the line, whose coordinate 

is equal to that number (Dauben 1979, p. 40). 

 

For Cantor, who began as a number-theorist, and throughout his career cleaved to the 

discrete, it was numbers, rather than geometric points, that possessed objective 

significance. Indeed, the isomorphism between the discrete numerical domain B and the 

linear continuum was regarded by Cantor essentially as a device for facilitating the 

manipulation of numbers. 

 

Cantor and Dedekind had offered different ways of “constructing” the arithmetical 

continuum of real numbers: the former, using Cauchy sequences of rational numbers, the 

latter, “cuts” in the rationals. Since each claimed that his system of real numbers 

corresponded exactly to the points on a geometric line, it would seem to follow that 

Cantor’s and Dedekind’s systems of real numbers were essentially “the same”, i.e. 

isomorphic. However, neither provided an explicit proof of this assertion. That the two 

systems are indeed isomorphic later came to be rigorously proved by showing that they 
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are both complete ordered fields and that any two complete ordered fields are isomorphic 

An ordered field is an algebraic field on which a linear ordering is defined which is 

compatible with the algebraic operations. Completeness is the condition that any bounded 

subset has a greatest lower bound and a least upper bound (McShane and Botts 1959, Ch. 

1). It can be shown that every complete ordered field has the Archimedean property: for any 

a, b > 0, there is a natural number n such that na > b. This is essentially the condition P1 

laid down in Eudoxus’ theory of proportions.  

 

Cantor’s arithmetization of the continuum had another important consequence. It had 

long been recognized that the sets of points of any pair of line segments, even if one of 

them is infinite in length, can be placed in one-one correspondence. This fact was taken 

to show that such sets of points have no well-defined “size”. But Cantor’s identification 

of the set of points on a linear continuum with a domain of numbers enabled the sizes of 

point sets to be compared in a definite way, using the well-grounded idea of one-one 

correspondence between sets of numbers. Thus in a letter to Dedekind written in 

November 1873 Cantor notes that the totality of natural numbers can be put into one-one 

correspondence with the totality of positive rational numbers, and, more generally, with 

the totality of finite sequences of natural numbers. It follows that these totalities have the 

same “size”; they are all denumerable. Cantor next raises the question of whether the 

natural numbers can be placed in one-one correspondence with the totality of all positive 

real numbers (Ewald 1999, p. 844). 

  

He quickly answers his own question in the negative. In letters to Dedekind written 

during December 1873. Cantor shows that, for any sequence of real numbers, one can 

define numbers in every interval that are not in the sequence. It follows in particular that 

the whole set of real numbers is nondenumerable. Another important consequence 

concerns the existence of transcendental numbers, that is, numbers which are not algebraic 

in the sense of being the root of an algebraic equation with rational coefficients. In 1844 

Liouville had established the transcendentality of any number of the form  
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where the ai are arbitrary integers from 0 to 9 (Kline 1972, p. 981). 
 
In his reply to Cantor’s letter of November 1873, Dedekind had observed that the set of 

algebraic numbers is denumerable; it followed from the nondenumerability of the real 

numbers that there must be many transcendental numbers (in fact nondenumerably many, 

although Cantor did not make this fact explicit until some time later). 

 

By this time Cantor had come to regard nondenumerability as a necessary condition for 

the continuity of a point set, for in a paper of 1874 he asserts: 

 

Moreover, the theorem...represents the reason why aggregates of real numbers which constitute a 

so-called continuum (say the totality of real numbers which are  0 and  ≤ 1), cannot be uniquely 

correlated with the aggregate (); thus I found the clear difference between a so-called continuum 

and an aggregate like the entirety of all real algebraic numbers (Dauben 1979, p. 53). 

 

 

Cantor next became concerned with the question of whether the points of spaces of 

different dimensions—for instance a line and a plane—can be put into one-one 

correspondence. In a letter to Dedekind of January 1874 he remarks:  

 

It still seems to me at the moment that the answer to this question is very difficult—although here 

too one is so impelled to say no that one would like to hold the proof to be almost superfluous 

(Ewald 1999, p. 850). 

 

Nevertheless, three years later Cantor, in a dramatic volte-face, established the existence 

of such correspondences between spaces of different dimensions. He showed, in fact, that 
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(the points of) a space of any dimension whatsoever can be put into one-one 

correspondence with (the points of) a line. This result so startled him that, in a letter to 

Dedekind of June 1877 he was moved to exclaim: Je le vois, mais je ne le crois pas (“I see it, 

but I don’t believe it.” (Ewald 1999, p. 860). 

 

Cantor’s discovery caused him to question the adequacy of the customary definition of 

the dimension of a continuum. For it had always been assumed that the determination of 

a point in an n-dimensional continuous manifold requires n independent coordinates, but 

now Cantor had shown that, in principle at least, the job could be done with just a single 

coordinate. For Cantor this fact was sufficient to justify the claim that 

 

... all philosophical or mathematical deductions that use that erroneous presupposition are 

inadmissible. Rather the difference that obtains between structures of different dimension-

number must be sought in quite other terms than in the number of independent coordinates—the 

number that was hitherto held to be characteristic (Ewald 1999, p. 860). 

 

 

In his reply to Cantor, Dedekind conceded the correctness of Cantor’s result, but balked 

at Cantor’s radical inferences therefrom. Dedekind maintained that the dimension-

number of a continuous manifold was its “first and most important invariant” and 

emphasized the issue of continuity:  

 

For all authors have clearly made the tacit, completely natural presupposition that in a new 

determination of the points of a continuous manifold by new coordinates, these coordinates should 

also (in general) be continuous functions of the old coordinates, so that whatever appears as 

continuously connected under the first set of coordinates remains continuously connected under 

the second (Ewald 1999, p. 863). 
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Dedekind also noted the extreme discontinuity of the correspondence Cantor had set up 

between higher dimensional spaces and the line: 

 

... it seems to me that in your present proof the initial correspondence between the points of the -

interval (whose coordinates are all irrational) and the points of the unit interval (also with 

irrational coordinates) is, in a certain sense (smallness of the alteration), as continuous as possible; 

but to fill up the gaps, you are compelled to admit, a frightful, dizzying discontinuity in the 

correspondence, which dissolves everything to atoms, so that every continuously connected part 

of the one domain appears in its image as thoroughly decomposed and discontinuous (Ewald 1999, 

pp. 863 -4). 

 

Dedekind avows his belief that no one-one correspondence between spaces of different 

dimensions can be continuous: 

 

If it is possible to establish a reciprocal, one-to-one, and complete correspondence between the 

points of a continuous manifold A of a dimensions and the points of a continuous manifold B of b 

dimensions, then this correspondence itself, if a and b are unequal, is necessarily utterly 

discontinuous (Ewald 1999, p. 863). 

 

In his reply to Dedekind of July 1877 Cantor clarifies his remarks concerning the 

dimension of a continuous manifold: 

 

...I unintentionally gave the appearance of wishing by my proof to oppose altogether the concept 

of a -fold extended continuous manifold, whereas all my efforts have rather been intended to 

clarify it and to put it on the correct footing. When I said: “Now it seems to me that all 

philosophical and mathematical deductions which use that erroneous presupposition—” I meant 

by this presupposition not “the determinateness of the dimension-number” but rather the 

determinates of the independent coordinates, whose number is assumed by certain authors to be in 

all circumstances equal to the number of dimensions. But if one takes the concept of coordinate 
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generally, with no presuppositions about the nature of the intermediate functions, then the 

number of independent, one-to-one, complete coordinates, as I showed, can be set to any number 

(Ewald 1999, p. 863). 

 

Nevertheless he agrees with Dedekind that if “we require that the correspondence be 

continuous, then only structures with the same number of dimensions can be related to 

each other one-to-one.” (Ewald 1999, p. 863). In that case, an invariant can be found in the 

number of independent coordinates, “which ought to lead to a definition of the 

dimension-number of a continuous structure” (Ewald 1999, p. 863). 

   

The problem is to correlate that dimension-number, a perfectly definite mathematical 

object, with something as elusive as an arbitrary continuous correspondence. Cantor 

writes: 

 

However, I do not yet know how difficult this path (to the concept of dimension-number) 

will prove, because I do not know whether one is able to limit the concept of continuous 

correspondence in general. But everything in this direction seems to me to depend on 

the possibility of such a limiting. 

 

I believe I see a further difficulty in the fact that this path will probably fail if the structure 

ceases to be thoroughly continuous; but even in this case one wants to have something 

corresponding to the dimension-number—all the more so, given how difficult it is to prove 

that the manifolds that occur in nature are thoroughly continuous (Ewald 1999, p. 863). 

 

In rendering the continuous discrete, and thereby admitting arbitrary correspondences 

“of [a] frightful, dizzying discontinuity” between geometric objects “dissolved to atoms”, 

Cantor grasps at the same time that he has rendered the intuitive concept of spatial 

dimension a hostage to fortune.  
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In 1878 Cantor published a fuller account of his ideas (Cantor 1878).  Here he explicitly 

introduces the concept of the power  (Mächtigkeit). of a set of points: two sets are said to be 

of equal power if there exists a one-one correspondence between them. Cantor presents 

demonstrations of the denumerability of the rationals and the algebraic numbers, 

remarking that “the sequence of positive whole numbers constitutes...the least of all 

powers which occur among infinite aggregates.” ( Dauben 1979, p. 59). 

 

The central theme of Cantor’s 1878 paper is the study of the powers of continuous n-

dimensional spaces. He raises the issue of invariance of dimension and its connection 

with continuity: 

 

Apart from making the assumption, most are silent about how it follows from the course of this 

research that the correspondence between the elements of the space and the system of values x1, x2, 

..., xn is a continuous one, so that any infinitely small change of the system x1, x2, ..., xn 

corresponds to an infinitely small change of the corresponding element, and conversely, to every 

infinitely small change of the element a similar change in the coordinates corresponds. It may be 

left undecided whether these assumptions are to be considered as sufficient, or whether they are to 

be extended by more specialized conditions in order to consider the intended conceptual 

construction of n-dimensional continuous spaces as one ensured against any contradictions, sound 

in itself (Dauben 1979, p. 60). 

 

 

The remarkable result obtained when one no longer insists on continuity in the 

correspondence between the spatial elements and the system of coordinates is described 

by Cantor in the following terms: 

 

As our research will show, it is even possible to determine uniquely and completely the elements 

of an n-dimensional continuous space by a single real coordinate t. If no assumptions are made 

about the kind of correspondence, it then follows that the number of independent, continuous, real 
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coordinates which are used for the unique and complete determination of the elements of an n-

dimensional continuous space can be brought to any arbitrary number, and thus is not to be 

regarded as a unique feature of the space (Dauben 1979, p. 60). 

 

Cantor shows how this result can be deduced from the existence of a one-one 

correspondence between the set of reals and the set of irrationals, and then, by means of 

an involved argument, constructs such a correspondence.  

 

 Cantor seems to have become convinced by this time that the essential nature of a 

continuum was fully reflected in the properties of sets of points—a conviction which was 

later to give birth to abstract set theory. In particular a continuum’s key properties, Cantor 

believed, resided in the range of powers of its subsets of points. Since the power of a 

continuum of any number of dimensions is the same as that of a linear continuum, the 

essential properties of arbitrary continua were thereby reduced to those of a line. In his 

investigations of the linear continuum Cantor had found its infinite subsets to possess 

just two powers, that of the natural numbers and that of the linear continuum itself. This 

led him to the conviction that these were the only possible powers of such subsets—a 

thesis later to be enunciated as the continuum hypothesis.  The question of the truth or 

falsity of the continuum hypothesis was to become one of the most celebrated problems 

of set theory. In the 20th century its independence of the axioms of set theory was 

established by Kurt Gödel and Paul Cohen.  

 

The problem of establishing the invariance of dimension of spaces under continuous 

correspondences remained a pressing issue. Soon after the publication of Cantor’s 1878 

paper, a number of mathematicians, for example Lüroth, Thomae, Jürgens and Netto 

attempted proofs, but all of these suffered from shortcomings which did not escape notice 

(Dauben 1979, pp. 70-72). In 1879 Cantor himself published a proof which seems to have 

passed muster at the time, but which also contained flaws that were not detected for 

another twenty years (Dauben 1979, pp. 72-76). 
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Satisfied that he had resolved the question of invariance of dimension, Cantor returned 

to his investigation of the properties of subsets of the linear continuum. The results of his 

labours are presented in six masterly papers published during 1879–84, Über unendliche 

lineare Punktmannigfaltigkeiten (“On infinite, linear point manifolds”). Remarkable in their 

richness of ideas, these papers contain the first accounts of Cantor’s revolutionary theory 

of infinite sets and its application to the classification of subsets of the linear continuum. 

In the third and fifth of these are to be found Cantor’s observations on the nature of the 

continuum.  

 

In the third article, that of 1882, which is concerned with multidimensional spaces, Cantor 

applies his result on the nondenumerability of the continuum to prove the startling result 

that continuous motion is possible in discontinuous spaces. To be precise, he shows that, 

if M is any countable dense subset of the Euclidean plane R2, (for example the set of points 

with both coordinates algebraic real numbers), then any pair of points of the 

discontinuous space A = R2 – M can be joined by a continuous arc lying entirely within 

A1. In fact, Cantor claims even more: 

 

After all, with the same resources, it would be possible to connect the points...by a continuously 

running line given by a unique analytic rule and completely contained within the domain A.  

 

(Spaces like A are today called arcwise connected.) Cantor points out that the belief in the 

continuity of space is traditionally based on the evidence of continuous motion, but now 

it has been shown that continuous motion is possible even in discontinuous spaces. That 

being the case, the presumed continuity of space is no more than a hypothesis. Indeed, it 

cannot necessarily be assumed that physical space contains every point given by three 

real number coordinates. This assumption, he urges, 

 

 
. 
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...must be regarded as a free act of our constructive mental activity. The hypothesis of the 

continuity of space is therefore nothing but the assumption, arbitrary in itself, of the complete, 

one-to-one correspondence between the 3-dimensional purely arithmetic continuum (x, y, z) and 

the space underlying the world of phenomena. (Dauben 1979, pp. 72-76). 

 

These facts, so much at variance with received views, confirmed for Cantor once again 

that geometric intuition was a poor guide to the understanding of the continuum. For 

such understanding to be attained reliance must instead be placed on arithmetical 

analysis.  

 

In the fifth paper in the series, the Grundlagen of 1883, is to be found a forthright 

declaration of Cantor’s philosophical principles, which leads on to an extensive 

discussion of the concept of the continuum. Cantor distinguishes between the 

intrasubjective or immanent reality and transsubjective or transient reality of concepts or 

ideas. The first type of reality, he says, is ascribable to a concept which may be regarded  

 

as actual in so far as, on the basis of definitions, [it] is well distinguished from other parts 

of our thought and stand[s] to them in determinate relationships, and thus modifies the 

substance of our mind in a determinate way (Ewald 1999, p. 895). 

 

The second type, transient or transsubjective reality, is ascribable to a concept when it 

can, or must, be taken  

 

as an expression or copy of the events and relationships in the external world which 

confronts the intellect.  

 

Cantor now presents the principal tenet of his philosophy, to wit, that the two sorts of 

reality he has identified invariably occur together,  
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in the sense that a concept designated in the first respect as existent always also possesses, 

in certain, even infinitely many ways, a transient reality.  

 

Cantor’s thesis is tantamount to the principle that correct thinking is, in its essence, a 

reflection of the order of Nature (or, perhaps, vice-versa.  In a footnote Cantor places his 

thesis in the context of the history of philosophy. He claims that “it agrees essentially both 

with the principles of the Platonic system and with an essential tendency of the 

Spinozistic system” and that it can be found also in Leibniz’s philosophy. But philosophy 

since that time has come, in Cantor’s eyes, to deviate from this cardinal principle: 

 

Only since the growth of modern empiricism, sensualism, and scepticism, as well as of the 

Kantian criticism that grows out of them, have people believed that the source of knowledge 

and certainty is to be found in the senses or in the so-called pure form of intuition of the 

world of appearances, and that they must confine themselves to these. But in my opinion 

these elements do not furnish us with any secure knowledge. For this can be obtained only 

from concepts and ideas that are stimulated by external experience and are essentially 

formed by inner induction and deduction as something that, as it were, was already in us 

and is merely awakened and brought to consciousness. 

 

This linkage between the immanent and transient reality of mathematical concepts—the 

fact that correct mathematical thinking reflects objective reality—has, in Cantor’s view, 

the important consequence that 

 

mathematics, in the development of its ideas has only to take account of the immanent 

reality of its concepts and has absolutely no obligation to examine their transient reality. 

 

It follows that  
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mathematics in its development is entirely free  and is only bound in the self-evident respect 

that its concepts must both be consistent with each other and also stand in exact 

relationships, ordered by definitions, to those concepts which have previously been 

introduced and are already at hand and established. In particular, in the introduction of 

new numbers it is only obliged to give definitions of them which will bestow such a 

determinacy and, in certain circumstances, such a relationship to older numbers that they 

can in any given instance be precisely distinguished.  

 

For these reasons Cantor bestows his blessing on rational, irrational, and complex 

numbers, which “one must regard as being every bit as existent as the finite positive 

integers”; even Kummer’s introduction of “ideal” numbers into number theory meets 

with his approval. But not infinitesimal numbers, as we shall see.  

 

Cantor begins his examination of the continuum with a tart summary of the controversies 

that have traditionally surrounded the notion: 

 

The concept of the ‘continuum’ has not only played an important role everywhere in the 

development of the sciences but has also evoked the greatest differences of opinion and event 

vehement quarrels. This lies perhaps in the fact that, because the exact and complete 

definition of the concept has not been bequeathed to the dissentients, the underlying idea 

has taken on different meanings; but it must also be (and this seems to me the most 

probable) that the idea of the continuum had not been thought out by the Greeks (who may 

have been the first to conceive it) with the clarity and completeness which would have been 

required to exclude the possibility of different opinions among their posterity. Thus we see 

that Leucippus, Democritus, and Aristotle consider the continuum as a composite which 

consists ex partibus sine fine divisilibus, but Epicurus and Lucretius construct it out 

of their atoms considered as finite things. Out of this a great quarrel arose among the 

philosophers, of whom some followed Aristotle, others Epicurus; still others, in order to 

remain aloof from this quarrel, declared with Thomas Aquinas that the continuum 
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consisted neither of infinitely many nor of a finite number of parts, but of absolutely no 

parts. This last opinion seems to me to contain less an explanation of the facts than a tacit 

confession that one has not got to the bottom of the matter and prefers to get genteely out 

of its way. Here we see the medieval-scholastic origin of a point of view which we still 

find represented today, in which the continuum is thought to be an unanalysable concept, 

or, as others express themselves, a pure a priori intuition which is scarcely susceptible to 

a determination through concepts. Every arithmetical attempt at determination of this 

mysterium is looked on as a forbidden encroachment and repulsed with due vigour. Timid 

natures thereby get the impression that with the ‘continuum’ it is not a matter of a 

mathematically logical concept but rather of religious dogma (Ewald 1999, p. 903). 

 

It is not Cantor’s intention to “conjure up these controversial questions again”. Rather, he 

is concerned to “develop the concept of the continuum as soberly and briefly as possible, 

and only with regard to the mathematical theory of sets”. This opens the way, he believes, 

to the formulation of an exact concept of the continuum—nothing less than a 

demystification of the mysterium. Cantor points out that the idea of the continuum has 

heretofore merely been presupposed by mathematicians concerned with the analysis of 

continuous functions and the like and has “not been subjected to any more thorough 

inspection.”  

 

Cantor next repudiates any use of temporal intuition in an exact determination of the 

continuum: 

 

...I must explain that in my opinion to bring in the concept of time or the intuition of 

time in discussing the much more fundamental and more general concept of the continuum 

is not the correct way to proceed; time is in my opinion a representation, and its clear 

explanation presupposes the concept of continuity upon which it depends and without 

whose assistance it cannot be conceived either objectively (as a substance) or subjectively 

(as the form of an a priori intuition), but is nothing other than a helping and linking 
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concept, through which one ascertains the relation between various different motions that 

occur in nature and are perceived by us. Such a thing as objective or absolute time never 

occurs in nature, and therefore time cannot be regarded as the measure of motion; far rather 

motion as the measure of time—were it not that time, even in the modest role of a 

subjective necessary a priori form of intuition, has not been able to produce any fruitful, 

incontestable success, although since Kant the time for this has not been lacking.  

  

These strictures apply, pari passu, to spatial intuition: 

 

It is likewise my conviction that with the so-called form of intuition of space one cannot 

even begin to acquire knowledge of the continuum. For only with the help of a conceptually 

already completed continuum do space and the structure thought into it receive that 

content with which they can become the object, not merely of aesthetic contemplation or 

philosophical cleverness or imprecise comparisons, but of sober and exact mathematical 

investigations. 

 

Cantor now embarks on the formulation of a precise arithmetical definition of a 

continuum. Making reference to the definition of real number he has already provided 

(i.e., in terms of fundamental sequences), he introduces the n-dimensional arithmetical 

space Gn as the set of all n-tuples of real numbers (x1|x2| ...|xn), calling each such an 

arithmetical point of Gn. The distance between two such points is given by  

  

 . 

 

Cantor defines an arithmetical point-set in Gn to be any “aggregate of points of the points 

of the space Gn that is given in a lawlike way”.  

 

After remarking that he has previously shown that all spaces Gn have the same power as 

the set of real numbers in the interval (0, 1), and reiterating his conviction that any infinite 

2 2 2

1 1 2 2( ) ( ) ...( )n nx x x x x x  − + − + −
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point set has either the power of the set of natural numbers or that of (0, 1) -  the 

continuum hypothesis - Cantor turns to the definition of the general concept of a 

continuum within Gn.. For this he employs the concept of derivative or derived set of a point 

set introduced in his 1872 paper on trigonometric series. Cantor had defined the derived 

set of a point set P to be the set of limit points of P, where a limit point of P is a point of P 

with infinitely many points of P arbitrarily close to it. A point set is called perfect if it 

coincides with its derived set (in the terminology of general topology, a set is perfect if it 

is closed and has no isolated points). Cantor observes that this condition does not suffice 

to characterize a continuum, since perfect sets can be constructed in the linear continuum 

which are dense in no interval, however small: as an example of such a set he offers the 

set consisting of all real numbers in (0 , 1) whose ternary expansion does not contain a 

“1”. This set later became known as the Cantor ternary set or the Cantor discontinuum. 

 

Accordingly, an additional condition is needed to define a continuum. Cantor supplies 

this by introducing the concept of a connected set. A point set T is connected in Cantor’s 

sense if for any pair of its points t, t’ and any arbitrarily small number  there is a finite 

sequence of points t1, t2, ..., tn of T for which the distances  are all less than 

. Cantor now observes: 

 

all the geometric point-continua known to us fall under this concept of connected point-

set, as it easy to see; I believe that in these two predicates ‘perfect” and ‘connected’ I have 

discovered the necessary and sufficient properties of a point-continuum. I therefore define 

a point-continuum inside Gn as a perfect-connected set. Here ‘perfect’ and ‘connected’ 

are not merely words but completely general predicates of the continuum; they have been 

conceptually characterized in the sharpest way by the foregoing definitions (Ewald 1999, 

p. 906). 

 

Cantor points out the shortcomings of previous definitions of continuum such as those 

of Bolzano and Dedekind, and in a note dilates on the merits of his own definition: 

1 1 2 2 3, , ,..., ntt t t t t t t 
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Observe that this definition of a continuum is free from every reference to that which is 

called the dimension of a continuous structure; the definition includes also continua that 

are composed of connected pieces of different dimensions, such as lines, surfaces, solids, 

etc....I know very well that the word ‘continuum’ has previously not had a precise meaning 

in mathematics; so my definition will be judged by some as too narrow, by others as too 

broad. I trust that that I have succeeded in finding a proper mean between the two. 

In my opinion, a continuum can only be a perfect and connected structure. So, for 

example, a straight line segment lacking one or both of its end-points, or a disc whose 

boundary is excluded, are not complete continua; I call such point-sets semi-continua. 

 

It will be seen that Cantor has advanced beyond his predecessors in formulating what is 

in essence a topological definition of continuum, one that, while still dependent on metric 

notions, does not involve an order relation. It is interesting to compare Cantor’s definition 

with that given in modern general topology.  There we find a continuum defined as a 

compact connected subset of a topological space. Now within any bounded region of 

Euclidean space it can be shown that Cantor’s continua coincide with continua in the 

sense of the modern definition. While Cantor lacked the definition of compactness, his 

requirement that continua be “complete” (which led to his rejecting as continua such 

noncompact sets as open intervals or discs) is not far away from the idea. 

 

Cantor’s analysis of infinite point sets had led him to introduce transfinite numbers 

(Hallett 1984) and he had come to accept their objective existence as being beyond doubt. 

But throughout his mathematical career he maintained an unwavering, even dogmatic 

opposition to infinitesimals, attacking the efforts of mathematicians such as du Bois-

Reymond and Veronese to formulate rigorous theories of actual infinitesimals. As far as 

Cantor was concerned, the infinitesimal was beyond the realm of the possible; 

infiinitesimals were no more than “castles in the air, or rather just nonsense”, to be classed 

“with circular squares and square circles”( Fisher 1981). His abhorrence of infinitesimals 
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went so deep as to move him to outright vilification, branding them as “cholera-bacilli of 

mathematics” (Dauben 1979, p. 233). 

 

Cantor believed that the theory of transfinite numbers could be employed to explode the 

concept of infinitesimal once and for all. Cantor’s specific aim was to refute all attempts 

at introducing infinitesimals through the abandoning of the Archimedean principle—i.e. 

the assertion that for any positive real numbers a < b, there is a sufficiently large natural 

number n such that  na > b. (Domains in which this principle fails to hold are called 

nonarchimedean). In a paper of 1887, Cantor attempted to demonstrate that the 

Archimedean property was a necessary consequence of the “concept of linear quantity” 

and “certain theorems of transfinite number theory”, so that the linear continuum could 

contain no infinitesimals. He concludes that “the so-called Archimedean axiom is not an 

axiom at all, but a theorem which follows with logical necessity from the concept of linear 

quantity ( Fisher 1981). Cantor’s argument (in amended form) seems to have convinced a 

number of influential mathematicians, including Peano and Russell, of the untenability 

of infinitesimals. 

 

Cantor’s argument relied on the claim that the product of a positive infinitesimal, should 

such exist, with one of his transfinite numbers could never b finite. But since a proof of 

this claim was not supplied, Cantor’s alleged demonstration that infinitesimals are 

impossible must be regarded as inconclusive ( Fisher 1981).  In any case consistent 

theories of infinitesimals were later constructed ( see sections 5 and 6 below). 

 

Cantor’s rejection of infinitesimals stemmed from his conviction that his own theory of 

transfinite ordinal and cardinal numbers exhausted the realm of the numerable, so that 

no further generalization of the concept of number, in particular any which embraced 

infinitesimals, was admissible.  For Cantor, transfinite numbers were grounded in 

transient reality, while infinitesimals and similar chimeras (in his estimation) could not be 

accorded such a status. Recall Cantor’s assertion: 
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In particular, in the introduction of new numbers it is only obliged to give definitions of 

them which will bestow such a determinacy and, in certain circumstances, such a 

relationship to older numbers that they can in any given instance be precisely 

distinguished. 

 

Accordingly Cantor could not, or would not, grant the infinitesimal an immanent reality 

which was compatible with “older” numbers—among which he of course included his 

transfinite numbers— for had he done so he would perforce have had, in accordance with 

his own principles, to grant the infinitesimal transient reality. This seems to be the reason 

for Cantor’s determination to demonstrate the inconsistency of the infinitesimal with his 

concept of transfinite number.  

 

It has to be said (Fisher 1981) that concerning infinitesimals Cantor displayed a dogmatic 

attitude, arguing, in effect, that the admission of infinitesimals was self-contradictory. 

While Cantor’s intolerant attitude towards the infinitesimal is not, strictly speaking, 

inconsistent with the “freedom” of mathematics he proclaimed, it does seem to reflect his 

deep-seated conviction (Dauben 1979, pp. 288–91) that his transfinite set theory was the 

product of “divine inspiration”, so that anything in conflict with it must be 

anathematized.  
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3. Dissenting Voices: Divergent Conceptions of the Continuum in 

the 19th and Early 20th Centuries 

 

 

Despite the remarkable success of Weierstrass, Dedekind and Cantor in constructing the 

continuum from arithmetical materials, a number of thinkers of the late 19th and early 

20th centuries remained opposed, in varying degrees, to the idea of explicating the 

continuum concept entirely in discrete terms, whether arithmetical or set-theoretic. These 

include the mathematicians du Bois-Reymond, Poincaré, Brouwer and Weyl, and the 

philosophers Brentano and Peirce.   

 

 

Paul du Bois-Reymond (1831–1889), against whose theory of infinities and infinitesimals 

Cantor fought so hard, was a prominent mathematician of the later 19th century who 

made significant contributions to real analysis, differential equations, mathematical 

physics and the foundations of mathematics. While accepting many of the methods of the 

Dedekind-Cantor school, and indeed embracing the idea of the actual infinite, he rejected 

its associated philosophy of the continuum on the grounds that it was committed to the 

reduction of the continuous to the discrete. In 1882 he writes: 

 

The conception of space as static and unchanging can never generate the notion of a sharply 

defined, uniform line from a series of points however dense, for, after all, points are devoid of size, 

and hence no matter how dense a series of points may be, it can never become an interval, which 

must always be regarded as the sum of intervals between points (Ehrlich 1994, p. x). 

 

Du Bois-Reymond took a somewhat mystical view of the continuum, asserting that its 

true nature, being beyond the limits of human cognition, would forever elude the 

understanding of mathematicians. This echoes his older brother Emile’s famous 

ignorabimus decaration in 1880 concerning "world riddles," certain of which, such as the 
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ultimate nature of matter and force, and the origin of sensations, would always elude 

explanation. 

 

Nevertheless, Du Bois-Reymond’s view of the continuum as a mysterium did not prevent 

him from developing his own theory of the mathematical continuum, a continuum of 

functions, during the 1870s and 80s. This was introduced in an article of 1870-1 as the 

calculus of infinities. Here du Bois-Reymond considers “functions ordered according to the 

limit of their quotients” (this, and all subsequent quotations of Du Bois-Reymond are 

tahen from Fisher 1981 ). 

. 

The orderings of functions, in du Bois-Reymond’s notation,  

 

f(x)   (x),  f(x)  (x), f(x)  (x), 

 

are defined respectively by  

 

 

 

Thus, for example, ex   x  log(x), xp  x for any p > 1, while cxr  xr  for any c and r.  When          

f(x)   (x),  , f(x) is said to have an “infinity greater than (x)”; when f(x)  (x), f(x) may 

be thought of (although du Bois-Reymond does not say this explicitly) as being 

infinitesimal in comparison with (x). Du Bois-Reymond considers sequences of 

functions linearly ordered under   or . Such “scales of infinity” can be caused to become 

arbitrarily complex by the continued interpolation of new such sequences between terms. 

Du Bois-Reymond draws an analogy with the ordered set of real numbers: 

 

Just as between two functions two functions as close with respect to their infinities as one may 

want, one can imagine an infinity of others forming a kind of passage from the first function to the 

second, one can compare the sequence F [a scale of infinity] to the sequence of real numbers, in 

lim ( )/ ( ) ,  lim ( )/ ( ) is finite and 0,  lim ( )/ ( ) 0.
x x x

f x x f x x f x x
→ → →

 =     =
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which one can also pass from one number to a number very little different from it by an infinity of 

other ones. 

 

While du Bois-Reymond uses the term “infinities” in connection with his classification of 

functions, he does not at this point speak of infinite numbers or actual infinities. But in 

an article of  1875 he drops his reservations on the matter, and boldly begins by asserting: 

 

I decided to publish this continuation of my research on functions becoming infinite in German 

after I overcame my aversion to using the word ‘infinite (unendlich)’ as a substantive, like 

the French their ‘infini’. I even flatter myself that, by this ‘infinite (unendlich)’, I have 

enriched our mathematical vocabulary in a noteworthy way. 

 

He goes on to say: 

 

In earlier articles I have distinguished the different infinities of functions by their different 

magnitudes so that they form a domain of quantities (the infinitary) with the stipulation that 

the infinity of (x) is to be regarded as larger than that of (x) or equal to it...according as the 

quotient (x)/(x) is infinite or finite. Thus in the infinitary domain of quantities the quotient 

enters in place of the difference in the ordinary domain of numbers. Between the two domains 

there are many analogies... I can add further that the most complete symmetry exists between 

functions becoming zero and becoming infinity, in such a way that everywhere the positive 

numbers correspond in the most striking way to becoming infinity, the negative numbers to 

becoming zero, zero to remaining finite. Instead of numbers as fixed signs in the domain of 

numbers, one has in the infinitary domain of quantities an unlimited number of simple 

functions; the exponential functions, the powers, the logarithmic functions, that likewise form 

fixed points of comparisons, and between whose arbitrarily close infinities a limitless number 

of infinities different from each other can be inserted. 
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In a paper of 1877 du Bois-Reymond compares his system of “infinities” and that of 

“ordinary” numbers. He introduces the concept of “numerical continuity”, an idea which 

he suggests underlies the introduction of irrational numbers. To illustrate the idea, du 

Bois-Reymond offers as a metaphor the distribution of the stars on a great circle in the 

sky. The readily identified brighter stars he compares to rational numbers with small 

numerators and denominators. Use of telescopes reveals the presence of new stars in any 

region, however small, but patches of darkness are always found between them. And 

then 

 

our imagination, or speculation, peoples this as it were asymptotically uniform nothingness 

which always remains, with matter whose radiation or our observation can no longer make 

accessible. In our thought, we may believe there is no end, and we admit no empty spot in the 

sky. 

 

This is analogous to the generation of rational and irrational numbers: 

 

Thus through more precise consideration the rational numbers always approach more closely 

to one another, yet in our minds gaps are always left between them, which mathematical 

speculation then fills with the irrationals. 

 

According to du Bois-Reymond this is essentially the way in which “numerical 

continuity” has arisen. He sees mathematical intuition as assigning equal authenticity to 

geometric and numerical quantity, but the attainment of complete equality between the 

two can only be attained through the use of the limit concept in introducing the 

irrationals. And the insertion of the irrationals between the rationals is an extension of 

the primitive concept of number to an equally primitive, but more comprehensive, 

concept of continuous quantity. That being the case, the comparison between numerical 

and geometric quantities may conceal further subtleties.  
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One such subtlety is brought to light in connection with continuous families of curves. 

When these are allowed to increase with growing rapidity their approximative behaviour 

is quite different from that associated with ordinary spatial continuity. Du Bois-Reymond 

writes: 

 

If we think of two different quickly increasing functions, then all the transitions from one to 

the other are spatially conceivable and present in our minds. We cannot conceive anywhere a 

gap between two curves increasing to infinity or in the neighbourhood of one such curve, which 

could not be filled with curves; on the contrary, each curve is accompanied by curves which 

proceed arbitrarily close to it, to infinity. 

 

Now, unlike the points on a line segment, the curves which run between two such curves 

do not form a “simple infinity”, that is, they do not depend on just a single parameter. 

Du Bois-Reymond shows that this infinity is “unlimited” in the sense that it is not n-fold 

for any finite n. He continues: 

 

...just as in the ordinary domain of quantities we can only express quantities numerically 

exactly by means of rational numbers, since the other numbers are not actual numbers but 

only limits of such numbers: so we can only express infinities with well-defined functions, of 

which we only have at our disposal up to now those belonging to the family of logarithms, 

powers, exponential functions. 

 

Du Bois-Reymond next notes the difference between the approximative behaviour of real 

numbers and that of “infinities” associated with functions. While one can approximate a 

number, say ½, by many sequences in such a way that any number, however close to ½, 

will fall between two members of any such sequence, the situation is quite different for 

the functions associated with infinities. For example, consider the sequence of functions 

 

 . 
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The exponents of the members of this sequence approach 1, but it is not hard to establish 

the existence of functions whose infinities fall between all of the infinities of the members 

of this sequence and the function x to which the sequence converges in an appropriate 

sense. For example, is readily shown to be such a function.  

 

Du Bois-Reymond next proceeds to demonstrate the generality of this phenomenon: 

 

One cannot approximate a given infinity (x) with any sequence of functions p(x),  p =1, 2, 

... in such a way that one could not always specify a function (x) which satisfies for arbitrarily 

large values of p (x)  (x)  p(x).  

 

He continues: 

 

Now the fact that we can with no conceivable sequence of functions approach without limit a 

given infinity, certainly has something strange about it. For it would be ... completely counter 

to our intuition to suppose that there is necessarily a gap, for example around the line y = x. 

We can always fill this gap in our thoughts with curves which accompany the line y = x to 

infinity.  

 

However, he finds here 

 

no irreconcilable conflict of the results of different forms of thought, but only one of the idea of 

a perhaps not very familiar but still not inaccessible spatial behaviour.  

 

For du Bois-Reymond this only indicates the presence of “a gap between in the analogy 

between ordinary and infinitary quantities”, the manifestation of “a behaviour peculiar 

to the infinitary domain”.  

 

log log
log log  1

x
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In his book Die allgemeine Functionentheorie of 1882 du Bois-Reymond presents his views 

on the nature and existence of infinitesimals. He begins by stating that in the analysis of 

“continuous mathematical quantities”, one begins with a “geometric quantity” and tries 

to relate other quantities to it. So the finite decimals are assigned correlates on a segment, 

that is, “points”. This correlation between finite decimals and points is then extended to 

infinite decimals by a limit process. But the totality of such points can never form a 

complete segment, since 

 

points are just dimensionless, and therefore an arbitrarily dense sequence of points can never 

become a distance. 

 

Here we see once again a rejection of the idea that the continuous is reducible to the 

discrete. Consequently, a geometric segment must contain something other than finite 

and infinite decimals. These “others”, according to du Bois-Reymond, are infinitesimal 

segments: there are infinitely many of these in any line segment, however short.  

 

Du Bois-Reymond provides just a few rules of calculation for infinitesimal segments, 

reminiscent of those used by 17th and 18th mathematicians. To wit: 

 

A finite number of infinitely small segments joined to one another do not form a finite segment, 

but again an infinitely small segment ... no upper bound can be specified either for the finite 

or for the infinitely small. 

 

I say two finite segments are equal when there is no finite difference between them ... Two 

finite quantities whose difference is infinitely small are equal to one another ... A finite 

quantity does not change if an infinitely small quantity is added to it or taken away from it.  
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While we may be incapable of forming a mental image of the relation of the infinitesimal 

to the finite, according to du Bois-Reymond we can visualize the infinitesimal in itself, 

and when we do so we find that it behaves just like the finite: 

 

The infinitely small is a mathematical quantity and has all its properties in common with the 

finite.  

 

Du Bois-Reymond took a dim view of some mathematicians’ conception of infinitesimals 

as being ordinary magnitudes continually in a state of flux towards zero, remarking 

sarcastically 

 

As long as the book is closed there is perfect repose, but as soon as I open it there commences 

a race of all the magnitudes which are provided with the letter d towards the zero limit. 

(Ehrlich 1994, pp. 9-10.) 

 

The admission of the infinitesimal in relation to the finite opens the way to the 

infinitesimal in relation to the infinitesimal (so entailing, reciprocally, the presence of the 

infinitely large): 

 

In this way, there arises a series of types of quantities, whose successive relation always is that 

a finite number of quantities of one kind never yields a quantity of the preceding kinds.  

 

Such quantities accordingly form a nonarchimedean domain. Moreover, 

 

If within one and the same of these types of quantities, the properties of ordinary mathematical 

quantities hold, hence the same types of calculation as in the finite, then the comparison of the 

different types of quantities with each other is the object of the so-called infinitary calculus. 

This calculus reckons with the relations of the infinitely large or infinitely small from type to 

type, and these types show connections with each other that do not fall under the ordinary 
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concept of equality. The passages of one type into another do not show, for example, the 

continuity of change of mathematical quantities, although no jump changes result.  

 

Du Bois-Reymond concludes his musings on the infinitesimal with the observation that 

there is an imbalance between belief in the infinitely large and belief in the infinitely 

small. A majority of educated people, he says, will admit an “infinite” (i.e., actual infinite) 

in space and time, and not just an “unboundedly large” (i.e., potential infinite). But only 

with difficulty will they accept the infinitely small, despite the fact that it has the same 

“right to existence” as the infinitely large.  In sum,  

 

A belief in the infinitely small does not triumph easily. Yet when one thinks boldly and freely, 

the initial mistrust will soon mellow into a pleasant certainty.... Were the sight of the starry 

sky lacking to mankind; had the race arisen and developed troglodytically in enclosed spaces; 

had its scholars, instead of wandering through the distant places of the universe telescopically, 

only looked for the smallest constituents of form and so were used in their thoughts to 

advancing into the boundless in the direction of the unmeasurably small: who would doubt 

that then the infinitely small would take the same place in our system of concepts that the 

infinitely large does now? Moreover, hasn’t the attempt in mechanics to go back down to the 

smallest active elements long ago introduced into science the atom, the embodiment of the 

infinitely small? And don’t as always skilful attempts to make it superfluous for physics face 

with certainty the same fate as Lagrange’s battle against the differential?  

 

Du Bois-Reymond was, indeed, a doughty champion of the infinitesimal.  

 

In his later years the Austrian philosopher Franz Brentano (1838-1917) became 

preoccupied with the nature of the continuous. Much of Brentano’s philosophy has its 

starting-point in Aristotelian doctrine, and his conception of the continuum constitutes 

no exception. Aristotle’s theory of the continuum, it will be recalled, rests upon the 

assumption that all change is continuous and that continuous variation of quality, of 
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quantity and of position are inherent features of perception and intuition. Aristotle 

considered it self-evident that a continuum cannot consist of points. Any pair of 

unextended points, he observes, are such that they either touch or are totally separated: 

in the first case, they yield just a single unextended point, in the second, there is a definite 

gap between the points. Aristotle held that any continuum—a continuous path, say, or a 

temporal duration, or a motion—may be divided ad infinitum into other continua but not 

into what might be called “discreta”—parts that cannot themselves be further 

subdivided. Accordingly, paths may be divided into shorter paths, but not into 

unextended points; durations into briefer durations but not into unextended instants; 

motions into smaller motions but not into unextended “stations”. Nevertheless, this does 

not prevent a continuous line from being divided at a point constituting the common 

border of the line segments it divides. But such points are, according to Aristotle, just 

boundaries, and not to be regarded as actual parts of the continuum from which they 

spring. If two continua have a common boundary, that common border unites them into 

a single continuum. Such boundaries exist only potentially, since they come into being 

when they are, so to speak, marked out as connecting parts of a continuum; and the parts 

in their turn are similarly dependent as parts upon the existence of the continuum.   

 

In its fundamentals Brentano’s account of the continuous is akin to Aristotle’s. Brentano 

regards continuity as something given in perception, primordial in nature, rather than a 

mathematical construction. He held that the idea of the continuous is a fundamental 

notion abstracted from sensible intuition: 

 

Thus I affirm that... the concept of the continuous is acquired not through combinations of marks 

taken from different intuitions and experiences, but through abstraction from unitary 

intuitions...Every single one of our intuitions—both those of outer perception as also their 

accompaniments in inner perception, and therefore also those of memory—bring to appearance 

what is continuous (Brentano 1988, p. 6). 
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Brentano suggests that the continuous is brought to appearance by sensible intuition in 

three stages. First, sensation presents us with objects having parts that coincide. From 

such objects the concept of boundary is abstracted in turn, and then one grasps that these 

objects actually contain coincident boundaries. Finally, it becomes clear that this is all that 

is required in order to understand the concept of a continuum.  

 

Continuity is manifested in sensation in a variety of ways. In visual sensation, we are 

presented with extension, something possessing length and breadth, and hence with 

something such that between any two of its parts, provided these are separated, there is 

a third part. Every sensation possesses a certain qualitative continuity in that the object 

presented in the sensation could have a given manifested quality (colour, for example) in 

a greater or less degree, and between any two degrees of that quality lies still another 

degree of that quality. Finally, each sensation manifests temporal continuity: this is most 

evident when we perceive something as moving or at rest. 

 

Brentano recognizes that continua have qualities which cause them to possess 

multiplicity—a continuum may manifest continuity in several ways simultaneously. This 

led him to classify continua into primary and secondary: a secondary continuum being one 

whose manifestation is dependent upon another continuum. Here is Brentano himself on 

the matter:  

  

Imagine, for example, a coloured surface. Its colour is something from which the geometer 

abstracts. For him there comes into consideration only the constantly changing manifold of spatial 

differences. But the colour, too, appears extended with the spatial surface, whether it manifests no 

specific colour-differences of its own—as in the case of a red colour which fills out a surface 

uniformly—or whether it varies in its colouring—perhaps in the manner of a rectangle which 

begins on one side with red and ends on the other side with blue, progressing uniformly through 

all colour-differences from violet to pure blue in between. In both cases we have to do with a 

multiple continuum, and it is the spatial continuum which appears thereby as primary, the colour-
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continuum as secondary. A similar double continuum can also be established in the case of a 

motion from place to place or of a rest, in which case it is a temporal continuum as such that is 

primary, the temporally constant or varying place that is the secondary continuum. Even when 

one considers a boundary of a mathematical body as such, for example a curved or straight line, a 

double continuity can be distinguished. The one presents itself in the totality of the differences of 

place that are given in the line, which always grows uniformly, whether in the case of straight, 

bent, or curved lines, and is that which determines the length of the line. The other resides in the 

direction of the line, and is either constant or alternating, and may vary continuously, or now 

more strongly, now less. It is constant in the case of the straight line, changing in the case of the 

broken line, and continuously varying in every line that is more or less curved. The direction-

continuum here is to be compared with the colour-continuum discussed earlier and with the 

continuum of place in the case of rest or motion of a corporeal point in time. In the double 

continuum that presents itself to us in the line it is this continuum of directions that is to be 

referred to as the secondary, the manifold of differences of place as such as the primary continuum 

(Brentano 1988, p. 21f). 

 

It is worth mentioning that Brentano’s distinction of primary and secondary continua can 

be neatly represented within category theory: to put it succinctly, a primary continuum is a 

domain, a secondary continuum a codomain. We form a category C —the category of 

continua—by taking continua as objects and correlations between continua as arrows. 

Then, given any arrow f:  A→ B in C, the domain A of f may be taken as a “primary” 

continuum and its codomain B as a “secondary” continuum. In Brentano’s example of a 

coloured surface, for instance, the primary continuum A is the given spatial surface, the 

secondary continuum B is the colour spectrum, and the correlation f assigns to each place 

in A its colour as a position in B. In the case of a corporeal point moving in space, the 

primary continuum A is an interval of time, the secondary continuum B a region of space, 

and the correlation f assigns to each instant in A the position in B occupied by the 

corporeal point. Finally, in the case of the varying direction of a curve the primary 

continuum A is the curve itself, the secondary continuum is the continuum of measures 
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of angles, and the correlation f assigns to each point on the curve the slope of the tangent 

there: thus f is nothing other than the first derivative of the function associated with the 

curve. 

 

For Brentano the essential feature of a continuum is its inherent capacity to engender 

boundaries, and the fact that such boundaries can be grasped as coincident. Boundaries 

themselves possess a quality which Brentano calls plerosis (“fullness”). Plerosis is the 

measure of the number of directions in which the given boundary actually bounds. Thus, 

for example, within a temporal continuum the endpoint of a past episode or the starting 

point of a future one bounds in a single direction, while the point marking the end of one 

episode and the beginning of another may be said to bound doubly. In the case of a spatial 

continuum there are numerous additional possibilities: here a boundary may bound in 

all the directions of which it is capable of bounding, or it may bound in only some of these 

directions. In the former case, the boundary is said to exist in full plerosis; in the latter, in 

partial plerosis. Brentano writes: 

 

…the spatial nature of a point differs according to whether it serves as a limit in all or only in 

some directions. Thus a point located inside a physical thing serves as a limit in all directions, but 

a point on a surface or an edge or a vertex serves as a limit in only some direction. And the point 

in a vertex will differ in accordance with the directions of the edges that meet at the vertex… I call 

these specific distinctions differences of plerosis. Like any manifold variation, plerosis admits of a 

more and a less. The plerosis of the centre of a cone is more complete than that of a point on its 

surface; the plerosis of a point on its surface is more complete than that of a point on its edge, or 

that of its vertex. Even the plerosis of the vertex is the more complete the less the cone is pointed. 

(Brentano 1988, p. xvii). 

 

Brentano believed that the concept of plerosis enabled sense to be made of the idea that 

a boundary possesses “parts”, even when the boundary lacks dimensions altogether, as 

in the case of a point. Thus, while the present or “now” is, according to Brentano, 
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temporally unextended and exists only as a boundary between past and future, it still 

possesses two “parts” or aspects: it is both the end of the past and the beginning of the 

future.  It is worth mentioning that for Brentano it was not just the “now” that existed 

only as a boundary; since, like Aristotle he held  that “existence” in the strict sense means 

“existence now”, it necessarily followed that existing things exist only as boundaries of 

what has existed or of what will exist, or both.  

 

Brentano ascribes particular importance to the fact that points in a continuum can coincide. 

On this matter he writes: 

 

Various other thorough studies could be made [on the continuum concept] such as a study of 

the impossibility of adjacent points and the possibility of coincident points, which have, despite 

their coincidence, distinctness and full relative independence. [This] has been and is 

misunderstood in many ways. It is commonly believed that if four different-coloured quadrants of 

a circular area touch each other at its centre, the centre belongs to only one of the coloured surfaces 

and must be that colour only. Galileo’s judgment on the matter was more correct; he expressed his 

interpretation by saying paradoxically that the centre of the circle has as many parts as its 

periphery. Here we will only give some indication of these studies by commenting that everything 

which arises in this connection follows from the point’s relativity as involves a continuum 

and the fact that it is essential for it to belong to a continuum. Just as the possibility of the 

coincidence of different points is connected with that fact, so is the existence of a point in diverse 

or more or less perfect plerosis. All of this is overlooked even today by those who understand the 

continuum to be an actual infinite multiplicity and who believe that we get the concept not by 

abstraction from spatial and temporal intuitions but from the combination of fractions between 

numbers, such as between 0 and 1 (Brentano 1974, p. 357). 

 

Brentano’s doctrines of plerosis and coincidence of points are well illustrated by applying 

them to the traditional philosophical problem of the initiation of motion: if a thing begins 

to move, is there a last moment of its being at rest or a first moment of its being in motion? 



54 

 

The usual objection to the claim that both moments exist is that, if they did, there would 

be a time between the two moments, and at that time the thing could be said neither to 

be at rest nor to be in motion—in violation of the law of excluded middle. Brentano’s 

response would be to say that both moments do exist, but that they coincide, so that there 

are no times between them; the violation of the law of excluded middle is thereby 

avoided. More exactly, Brentano would assert that the temporal boundary of the thing’s 

being at rest—the end of its being at rest—is the same as the temporal boundary of the 

thing’s being in motion—the beginning of its being in motion—, but the boundary is 

twofold in respect of its plerosis. The boundary is, in fact, in half plerosis at rest and in half 

plerosis in motion.  

 

Brentano took a dim view of the efforts of mathematicians to construct the continuum 

from numbers. His attitude varied from rejecting such attempts as inadequate to 

according them the status of “fictions”. In a letter to Husserl drafted in 1905, Brentano 

asserts that “I regard it as absurd to interpret a continuum as a set of points.” This is not 

surprising given his Aristotelian inclination to take mathematical and physical theories 

to be genuine descriptions of empirical phenomena rather than idealizations: in his view, 

if such theories were to be taken as literal descriptions of experience, they would amount 

to nothing better than “misrepresentations”. Indeed, Brentano writes: 

 

We must ask those who say that the continuum ultimately consists of points what they mean by a 

point. Many reply that a point is a cut which divides the continuum into two parts. The answer 

to this is that a cut cannot be called a thing and therefore cannot be a presentation in the strict and 

proper sense at all. We have, rather, only presentations of contiguous parts. … The spatial point 

cannot exist or be conceived of in isolation. It is just as necessary for it to belong to a spatial 

continuum as for the moment of time to belong to a temporal continuum (Brentano 1974, p. 354). 

 

Concerning Poincaré’s approach to the continuum (see below) Brentano has this to say: 
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Poincaré … follows extreme empiricists in the in the area of sensory psychology and therefore does 

not believe that there is granted to us an intuition of a continuous space. Poincaré’s entire mode 

of procedure reveals that he also denies that we are in possession of an intuition of a continuous 

time. We saw how first of all he inserted between 0 and 1 fractions having a whole number as 

numerator and a whole power of 2 as denominator. In similar fashion, he then inserted all proper 

fractions whose denominator is a whole power of 3, and then also all those whose denominators are 

powers of every other whole number. He obtained thereby a series containing all rational fractions 

which, as he said, already has a certain continuity about it. He then inserted  … a series of 

irrational fractions. To these one now adds the series of fractions involving transcendental ratios… 

. Poincaré was prepared to admit that this process will never come to an end… . But he believed 

that he could be satisfied with the insertions already made. And nothing is more self-evident than 

that we have here a confession that the attempt to obtain a true continuum in this way has broken 

down (Brentano 1988, p. 39). 

 

Dedekind’s account of the continuum does not fare much better (Brentano 1988, pp. 40-

41): 

 

Dedekind differs from Poincaré already in the fact that he does not wish to deny that we have 

an intuition of a continuum—he simply does not want to make any use thereof. … Dedekind’s 

and Poincaré’s constructions share in common that they fail to recognise the essential 

character of the continuum, namely that it allows the distinguishing of boundaries, which are 

nothing in themselves, but yet in conjunction make a contribution to the continuum. Dedekind 

believes that either the number ½ forms the beginning of the series ½ to 1, so that the series 0 

to ½ would thereby be spared a final member, i.e. an end point which would belong to it, or 

conversely. But this is not how things are in the case of a true continuum. Rather it is the case 

that, when one divides a line, every part has a starting point, but in half plerosis. … 

 

Here Brentano appears to be saying that when one divides a closed interval [a, b] at an 

intermediate point c, one necessarily obtains the closed intervals [a, c], [c, b], with the 
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common point c (in half plerosis). In that case, Brentano have probably have regarded a 

continuous line as indecomposable into disjoint intervals. 

 

He goes on: 

 

 If a red and a blue surface are in contact with each other then a red and a blue line coincide, each 

with different plerosis. And if a circular area is made up of three sectors, a red, a blue and a yellow, 

then the mid-point is a whole which consists to an equal extent of a red, a blue and a yellow part. 

According to Dedekind this point would belong to just one of the three colour-segments, and we 

should have to say that it could be separated from this while the segment in question remained 

otherwise unchanged. Indeed, the whole circular surface would then be conceivable as having been 

deprived of its mid-point, like Dedekind’s number-series from which only the number ½ has fallen 

away. One sees immediately that this is absurd if one keeps in mind that the true concept of the 

continuum is obtained through abstraction from an intuition, and thus also that the entire 

conception has missed its target.  

 

That Brentano considered “absurd” the idea of removing a single point from a continuum 

seems to indicate that his continuum has the same “syrupy” property as those of 

intuitionistic and smooth infinitesimal analysis: see sections 4 and 6 below.  

 

In conclusion,  

 

One sees that in this entire putative construction of the concept of what is continuous the goal has 

been entirely missed; for that which is above all else characteristic of a continuum, namely the idea 

of a boundary in the strict sense (to which belongs the possibility of a coincidence of boundaries), 

will be sought after entirely in vain. Thus also the attempt to have the concept of what is 

continuous spring forth out of the combination of individual marks distilled from intuition is to 

be rejected as entirely mistaken, and this implies further that what is continuous must be given to 
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us in individual intuition and must therefore have been extracted therefrom (Brentano 1988, pp. 

4f). 

 

Brentano’s analysis of the continuum centred on its phenomenological and qualitative 

aspects, which are by their very nature incapable of reduction to the discrete. Brentano’s 

rejection of the mathematicians’ attempts to construct it in discrete terms is thus hardly 

surprising. 

 

The American philosopher-mathematician Charles Sanders Peirce’s (1839–1914) view of 

the continuum was, in a sense, intermediate between that of Brentano and the 

arithmetizers. Like Brentano, he held that the cohesiveness of a continuum rules out the 

possibility of it being a mere collection of discrete individuals, or points, in the usual 

sense: 

 

The very word continuity implies that the instants of time or the points of a line are 

everywhere welded together.  

 

[The] continuum does not consist of indivisibles, or points, or instants, and does not contain 

any except insofar as its continuity is ruptured ( Peirce 1976, p. 925). 

 

 

And even before Brouwer (see below) Peirce seems to have been aware that a faithful 

account of the continuum will involve questioning the law of excluded middle: 

 

Now if we are to accept the common idea of continuity ... we must either say that a continuous 

line contains no points or ... that the principle of excluded middle does not hold of these points. 

The principle of excluded middle applies only to an individual ... but places being mere 

possibilities without actual existence are not individuals. ( Peirce 1976, p. xvi: the quotation 

is from a note written in 1903). 
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But Peirce also held that any continuum harbours an unboundedly large collection of 

points—in his colourful terminology, a supermultitudinous collection—what we would 

today call a proper class. Peirce maintained that if “enough” points were to be crowded 

together by carrying insertion of new points between old to its ultimate limit they 

would—through a logical “transformation of quantity into quality”—lose their individual 

identity and become fused into a true continuum.  Here are his observations on the 

matter: 

 

It is substantially proved by Euclid that there is but one assignable quantity which is the limit of 

a convergent series. That is, if there is an increasing convergent series, A say, and a decreasing 

convergent series, B say, of which every approximation exceeds every approximation of A, and if 

there is no rational quantity which is at once greater than every approximation of A and less than 

every approximation of B, then there is but one surd quantity so intermediate…There is one surd 

quantity and only one for each convergent series, calling two series the same if their 

approximations all agree after a sufficient number of terms, or if their difference approximates 

toward zero. But this is only to say that the multitude of surds equals the multitude of denumerable 

sets of rational numbers which is… the primipostnumeral  multitude.  [Peirce assumed what 

amounts to the generalized continuum hypothesis in supposing that each possible 

infinite set has one of the cardinalities 
0

0
2

0
,2 ,2 ,...




 . These he termed denumerable, 

primipostnumeral, secundipostnumeral, etc.] 

 

…We remark that there is plenty of room to insert a secundipostnumeral multitude of 

quantities between [a] convergent series and its limit. Any one of those quantities may 

likewise be separated from its neighbours, and we thus see that between it and its nearest 

neighbours there is ample room for a tertiopostnumeral multitude of other quantities, 

and so on through the whole denumerable series of postnumeral quantities.  
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But if we suppose that all such orders of systems of quantities have been inserted, there is 

no longer any room for inserting any more. For to do so we must select some quantity to 

be thus isolated in our representation. Now whatever one we take, there will always be 

quantities of higher order filling up the spaces on the two sides. 

 

We therefore see that such a supermultitudinous collection sticks together by logical 

necessity. Its constituent individuals are no longer distinct and independent subjects. They 

have no existence—no hypothetical existence—except in their relations to one another. 

They are not subjects, but phrases expressive of the properties of the continuum.  

 

…Supposing a line to be a supermultitudinous collection of points, … to sever a line in the 

middle is to disrupt the logical identity of the point there and make it two points. It is 

impossible to sever a continuum by separating the connections of the points, for the points 

only exist by virtue of those connections. The only way to sever a continuum is to burst it, 

that is, to convert what was one into two ( Peirce 1976, p. 95). 

 

There is some resemblance between Peirce’s conception of the continuum and John 

Conway’s system of surreal numbers (Ehrlich 1994a). Conway’s system may be 

characterized as being an -field for every ordinal , that is, a real-closed ordered field 

S which satisfies the condition that, for any pair of subsets X, Y for which every member 

of X is less than every member of Y, there is an element of S strictly between X and Y.  

 

In their Introduction to Peirce (1992), Ketner and Putnam characterize Peirce’s conception 

of the continuum as “a possibility of repeated division which can never be exhausted in 

any possible world, not even in a possible world in which one can complete 

[nondenumerably] infinite processes.”(This description would seem to apply equally 

well to Conway’s conception.) It is not hard to show that, between any pair of members 

of S there is a proper class of members of S—in Peirce’s terminology, a supermultitudinous 

collection. Nevertheless, S is still discrete: its elements, while supermultitudinous, remain 
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distinct and unfused (were it not for this fact, Conway would scarcely be justified in 

calling the members of S “numbers”).  On the face of it the discreteness of S would seem 

to imply that the presence of superabundant quantity in Peirce’s sense is not enough to 

ensure continuity. Of course, Brentano would have dismissed this idea altogether, in 

view of his critical attitude towards any construction of the continuum by repeated 

insertion of points. 

 

Peirce’s conception of the number continuum is also notable for the presence in it of an 

abundance of infinitesimals, a feature it shares with du Bois-Reymond’s nonarchimedean 

number systems. In defending infinitesimals, Peirce remarks that 

 

It is singular that nobody objects to as involving any contradiction, nor, since Cantor, 

are infinitely great quantities much objected to, but still the antique prejudice against 

infinitely small quantities remains ( Peirce 1976, p. 123). 

 

Peirce held the view that the conception of infinitesimal is suggested by introspection—

that the specious present is in fact an infinitesimal: 

 

It is difficult to explain the fact of memory and our apparently perceiving the flow of time, 

unless we suppose immediate consciousness to extend beyond a single instant. Yet if we make 

such a supposition we fall into grave difficulties, unless we suppose the time of which we are 

immediately conscious to be strictly infinitesimal (Peirce 1976, p. 124). 

 

We are conscious of the present time, which is an instant, if there be any such thing as an 

instant. But in the present we are conscious of the flow of time. There is no flow in an instant. 

Hence, the present is not an instant. (Peirce 1976, p. 925). 

 

Peirce also championed the retention of the infinitesimal concept in the foundations of 

the calculus, both because of what he saw as the efficiency of infinitesimal methods, and 

1−
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because he regarded infinitesimals as constituting the “glue” causing points on a 

continuous line to lose their individual identity. 

 

The idea of continuity played a central role in the thought of the great French 

mathematician Henri Poincaré (1854–1912). But sorting out his views on the continuum, 

concerning which he made numerous scattered remarks, is by no means an easy task. 

Indeed, there seems to be an inconsistency in his attitude towards the set-theoretical, or 

arithmetized, continuum. On the one hand, he rejected actual infinity and impredicative 

definition—both cornerstones of the Cantorian theory of sets which underpins the 

construction of the arithmetized continuum.  And yet in his mathematical work he 

employs variables ranging over all the points of an interval of the set-theoretical 

continuum, and he “accepts the standard account of the least upper bound, which is 

impredicative” (Folina 1992, p. xv). (Impredicativity is a form of circularity: a definition 

of a term is impredicative if it contains a reference to a totality to which the term under 

definition belongs. See, e.g., Fraenkel, Bar-Hillel and Levy 1973, pp. 193-200.) 

 

Beneath this apparent inconsistency lies his belief that what ultimately underpins 

mathematics, creating its linkage with objective reality, is intuition—that “intuition is 

what bridges the gap between symbol and reality” (Folina 1992, p. 113).   

 

 His view of the continuum, in particular, is informed by this credo. For Poincaré the 

continuum and the range of points on it is grasped in intuition in something like the 

Kantian sense, and yet the continuum cannot be treated as a completed mathematical 

object, as a “mere set.” (Folina 1992, p. xvi).   

 

Of the arithmetical continuum  Poincaré remarks: 

 

The continuum so conceived is only a collection of individuals ranged in a certain order, infinite 

to one another, it is true, but exterior to one another. This is not the ordinary conception, wherein 
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is supposed between the elements of the continuum a sort of intimate bond which makes of them a 

whole, where the point does not exist before the line, but the line before the point. Of the celebrated 

formula “the continuum is unity in multiplicity”, only the multiplicity remains, the unity has 

disappeared. The analysts are none the less right in defining the continuum as they do, for they 

always reason on just this as soon as they pique themselves on their rigor. But this is enough to 

apprise us that the veritable mathematical continuum is a very different thing from that of the 

physicists and the metaphysicians. (Poincaré 1946, pp. 43-44). 

 

But despite Poincaré’s apparent acceptance of the arithmetic definition of the continuum, 

he questions the fact that (as with Dedekind and Cantor’s formulations) the (irrational) 

numbers so produced are mere symbols, detached from their origins in intuition: 

 

But to be content with this [fact] would be to forget too far the origin of these symbols; it remains 

to explain how we have been led to attribute to them a sort of concrete existence, and, besides, does 

not the difficulty begin even for the fractional numbers themselves? Should we have the notion of 

these numbers if we had not known a matter that we conceive as infinitely divisible, that is to say, 

a continuum?  (Poincaré 1946, pp. 45-46). 

 

That being the case, Poincaré asks whether the notion of the mathematical continuum is 

“simply drawn from experience.” To this he responds in the negative, for the reason that 

our sensations, the “raw data of experience”, cannot be brought under an acceptable  

scheme of measurement: 

 

It has been observed, for example, that a weight A of 10 grams and a weight B of 11 grams 

produce identical sensations, that the weight B is just as indistinguishable from a weight C of 

12 grams, but that the weight A is easily distinguished from the weight C. Thus the raw results 

of experience may be expressed by the following relations: 

 

A = B,  B = C,  A < C, 
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which may be regarded as the formula of the physical continuum.  

 

According to Poincaré it is the “intolerable discord with the principle of contradiction” 

of this formula which has forced the invention of the mathematical continuum. (Actually, 

the formula ceases to be contradictory if the identity relation = is replaced by a symmetric, 

reflexive, but nontransitive relation : here x  y is taken to assert that the sensations or 

perceptions x and y are indistinguishable.) The continuum is then obtained in two stages. 

First, formerly indistinguishable terms are distinguished and a new term, 

indistinguishable from both, inserted between them. Repeating this procedure 

indefinitely gives rise to what Poincaré calls a first-order continuum, in essence the rational 

number line. A second stage now becomes necessary because two first-order continua, 

for example the diagonal of a square and its inscribed circle, need not intersect. This 

second stage, in which are added all possible “boundary” points between first-order 

continua leads to the second-order or mathematical continuum. Here is how Poincaré 

describes the process: 

 

But conceive of a straight line divided into two rays. Each of these rays will appear to our 

imagination as a band of a certain breadth; these bands moreover will encroach one on the 

other, since there must be no interval between them. The common part will appear to us as a 

point which will always remain when we try to imagine our bands narrower and narrower, so 

that we admit as an intuitive truth that if a straight line is cut into two rays their common 

boundary is a point; we recognize here the conception of Dedekind, in which an 

incommensurable number was regarded as the common boundary of two classes of rational 

numbers.  

 

Such is the origin of the continuum of second order, which is the mathematical continuum so 

called. 
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Poincaré goes on to discuss continua of higher dimensions. To obtain these he considers 

aggregates of sensations. As with single sensations, any given pair of these aggregates may 

or may not be distinguishable. He remarks that, while these aggregates, which he terms 

elements, are analogous to mathematical points, they are not in fact quite the same thing, 

for 

 

we cannot say that our element is without extension, since we cannot distinguish it from 

neighbouring elements and it is thus surrounded by a sort of haze. If the astronomical 

comparison may be allowed, our ‘elements’ would be like nebulae, whereas the 

mathematical points would be like stars (Poincaré 1946, p. 49). 

 

This leads to a definition of a physical continuum: 

 

a system of elements will form a continuum if we can pass from any one of them to any other, 

by a series of consecutive elements such that each is indistinguishable from the preceding. This 

linear series is to the line of the mathematician what an isolated element was to the point.  

 

Poincaré defines a cut in a physical continuum C to be a set of elements removed from it 

“which for an instant we shall regard as no longer belonging to this continuum.” Such a 

cut may happen to subdivide C into several distinct continua, in which case C will contain 

two distinct elements A and B that must be regarded as belonging to two distinct 

continua. This becomes necessary  

  

because it will be impossible to find a linear series of consecutive elements of C, each of these 

elements indistinguishable from the preceding, the first being A and the last B, without one 

of the elements of this series being indistinguishable from one of the elements of the 

cut.  
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On the other hand, it may happen that the cut fails to subdivide the continuum C, in 

which case it becomes necessary to determine precisely which cuts will subdivide it. 

Poincaré calls a continuum one-dimensional if it can be subdivided by a cut which reduces 

to a finite number of elements all distinguishable from one another (and so forming 

neither a continuum nor several continua). When C can be subdivided only by cuts which 

are themselves continua, C is said to possess several dimensions: 

 

If cuts which are continua of one dimension suffice, we shall say that C has two dimensions; 

if cuts of two dimensions suffice, we shall say that C has three dimensions, and so on. 

 

Thus is defined the concept of a multidimensional physical continuum, based on “the 

very simple fact that two aggregates of sensations are distinguishable or 

indistinguishable.” 

 

Unlike Cantor, Poincaré accepted the infinitesimal, even if he did not regard all of the 

concept’s manifestations as useful. This emerges from his answer to the question: “Is the 

creative power of the mind exhausted by the creation of the mathematical continuum?”. 

He responds: 

  

No; the works of Du Bois-Reymond demonstrate it in a striking way. We know the 

mathematicians distinguish between infinitesimals and that those of second order are 

infinitesimal not only in an absolute way, but also in relation to those of first order. It is not 

difficult to imagine infinitesimals of fractional and even irrational order, and thus we find 

again that scale of the mathematical continuum which has been dealt with in the preceding 

pages. 

 

Further, there are infinitesimals which are infinitely small in relation to those of the first order, 

and, on the contrary, infinitely great in relation to those of order 1 + , and that however small 
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 may be. Here, then, are new terms intercalated in our series ... I shall say that thus has been 

created a sort of continuum of the third order.  

 

It would be easy to go further, but that would be idle; one would only be imagining symbols 

without possible application, and no one would think of doing that. The continuum of the third 

order, to which the consideration of the different orders of infinitesimals leads, is itself not 

useful enough to have won citizenship, and geometers regard it as a mere curiosity. The mind 

uses its creative faculty only when experience requires it.  

 

Poincaré’s attitude towards the continuum resembles in certain respects that of the 

intuitionists (see below): while the continuum exists, and is knowable intuitively, it is not 

a “completed” set-theoretical object. It is geometric intuition, not set theory, upon which 

the totality of real numbers is ultimately grounded.  

 

 

The Dutch mathematician L. E. J. Brouwer (1881–1966) is best known as the founder of 

the philosophy of (neo)intuitionism. Brouwer’s highly idealist views on mathematics bore 

some resemblance to Kant’s. For Brouwer, mathematical concepts are admissible only if 

they are adequately grounded in intuition, mathematical theories are significant only if 

they concern entities which are constructed out of something given immediately in 

intuition, and mathematical demonstration is a form of construction in intuition. 

Brouwer’s insistence that mathematical proof be constructive in this sense required the 

jettisoning of certain received principles of classical logic, notably the law of excluded 

middle: the assertion that, for any proposition p, either p or not p. Brouwer maintained, in 

fact, that the applicability of the law of excluded middle to mathematics 

 

was caused historically by the fact that, first, classical logic was abstracted from the mathematics 

of the subsets of a definite finite set, that, secondly, an a priori existence independent of 
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mathematics was ascribed to the logic, and that, finally, on the basis of this supposed apriority it 

was unjustifiably applied to the mathematics of infinite sets (Kneebone  1963,p. 246). 

 

Brouwer held that much of modern mathematics is based on an illicit extension of 

procedures valid only in the restricted domain of the finite. He therefore embarked on 

the radical course of jettisoning virtually all of the mathematics of his day—in particular 

the set-theoretical construction of the continuum—and starting anew, using only 

concepts and modes of inference that could be given clear intuitive justification. In the 

process it would become clear precisely what are the logical laws that intuitive, or 

constructive, mathematical reasoning actually obeys, making possible a comparison of 

the resulting intuitionistic, or constructive logic with classical logic.  This is not to say that 

Brouwer was primarily interested in logic, far from it: indeed, his distaste for 

formalization caused him to be quite dismissive of subsequent codifications of 

intuitionistic logic. 

 

While admitting that the emergence of noneuclidean geometry had discredited Kant’s 

view of space, Brouwer maintained, in opposition to the logicists (whom he called 

“formalists”) that arithmetic, and so all mathematics, must derive from temporal intuition. 

In his own words:  

 

Neointuitionism considers the falling apart of moments of life into qualitatively different parts, to 

be reunited only while remaining separated by time, as the fundamental phenomenon of the human 

intellect, passing by abstracting from its emotional content into the fundamental phenomenon of 

mathematical thinking, the intuition of the bare two-oneness. This intuition of two-oneness, the 

basal intuition of mathematics, creates not only the numbers one and two, but also all finite ordinal 

numbers, inasmuch as one of the elements of the two-oneness may be thought of as a new two-

oneness, which process may be repeated indefinitely; this gives rise still further to the smallest 

infinite ordinal  . Finally this basal intuition of mathematics, in which the connected and the 

separate, the continuous and the discrete are united, gives rise immediately to the intuition of the 
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linear continuum, i.e., of the “between”, which is not exhaustible by the interposition of new units 

and which can therefore never be thought of as a mere collection of units. In this way the apriority 

of time does not only qualify the properties of arithmetic as synthetic a priori judgments, but it 

does the same for those of geometry, and not only for elementary two- and three-dimensional 

geometry, but for non-euclidean and n-dimensional geometries as well. For since Descartes we 

have learned to reduce all these geometries to arithmetic by means of coordinates. (Benacerraf and 

Putnam 1977, p. 80). 

 

Brouwer maintained that it is the awakening of awareness of the temporal continuum in 

the subject, an event termed by him “The Primordial Happening” or “The Primordial 

Intuition of Time”, that engenders the fundamental concepts and methods of 

mathematics. In “Mathematics, Science and Language” (1929), he describes how the 

notion of number—the discrete—emerges from the awareness of the continuous: 

 

Mathematical Attention as an act of the will serves the instinct for self-preservation of individual 

man; it comes into being in two phases; time awareness and causal attention. The first phase is 

nothing but the fundamental intellectual phenomenon of the falling apart of a moment of life into 

two qualitatively different things of which one is experienced as giving away to the other and yet 

is retained by an act of memory. At the same time this split moment of life is separated from the 

Ego and moved into a world of its own, the world of perception. Temporal twoity, born from this 

time awareness, or the two-membered sequence of time phenomena, can itself again be taken as one 

of the elements of a new twoity, so creating temporal threeity, and so on. In this way, by means of 

the self-unfolding of the fundamental phenomenon of the intellect, a time sequence of 

phenomena is created of arbitrary multiplicity (Mancosu 1998, p.45) 
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Brouwer took the elucidation of the continuum as his raison d'être. In his early thought he 

rejected out of hand the set-theoretic account of the continuum in terms of discrete points 

as put forward by Cantor and Dedekind, asserting that 

 

…The continuum as a whole [is] given to us by intuition; a construction for it, an action which 

would create from the mathematical intuition ‘all’ its points as individuals, is inconceivable and 

impossible. (Mancosu 1998, p.45) 

 

Later Brouwer was to modify this doctrine. In his mature thought, he radically 

transformed the concept of point, endowing points with sufficient fluidity to enable them 

to serve as generators of a “true” continuum. This fluidity was achieved by admitting as 

“points”, not only fully defined discrete numbers such as , , e, and the like—which 

have, so to speak, already achieved “being”—but also “numbers” which are in a 

perpetual state of becoming in that their the entries in their decimal (or dyadic) 

expansions are the result of free acts of choice by a subject operating throughout an 

indefinitely extended time. The resulting choice sequences cannot be conceived as finished, 

completed objects: at any moment only an initial segment of each is known (Fraenkel, 

Bar-Hillel and Levy (1973), pp. 255-261). In this way Brouwer obtained the mathematical 

continuum in a way compatible with his belief in the primordial intuition of time—that 

is, as an unfinished, indeed unfinishable entity in a perpetual state of growth, a “medium 

of free development”. In this conception, the mathematical continuum is indeed 

“constructed”, not, however, by initially shattering, as did Cantor and Dedekind, an 

intuitive continuum into isolated points, but rather by assembling it from a complex of 

continually changing overlapping parts.   

 

The mathematical continuum as conceived by Brouwer displays a number of features 

that seem bizarre to the classical eye. For example, in the Brouwerian continuum the 

usual law of comparability, namely that for any real numbers a, b either a < b or a = b or  

a > b, fails. Even more fundamental is the failure of the law of excluded middle le in the 

2
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form that for any real numbers a, b, either a = b or a  b. The failure of these seemingly 

unquestionable principles in turn vitiates the proofs of a number of basic results of 

classical analysis, for example the Bolzano-Weierstrass theorem, as well as the theorems 

of monotone convergence, intermediate value, least upper bound, and maximum value 

for continuous functions. The failure of these important results of classical analysis in 

caused most mathematicians of the day to shun intuitionistic, and even constructive 

mathematics. It was not until the 1960s that adequate constructive versions were worked 

out (see section 4 below). 

 

While the Brouwerian continuum may possess a number of negative features from the 

standpoint of the classical mathematician, it has the merit of corresponding more closely 

to the continuum of intuition than does its classical counterpart. Hermann Weyl pointed 

out a number of respects in which this is so: 

 

In accordance with intuition, Brouwer sees the essential character of the continuum, not in the 

relation between element and set, but in that between part and whole. The continuum falls under 

the notion of the ‘extensive whole’, which Husserl characterizes as that “which permits a 

dismemberment of such a kind that the pieces are by their very nature of the same lowest species 

as is determined by the undivided whole (Weyl 1949, p. 52). 

 

Far from being bizarre, the failure of the law of excluded middle for points in the 

intuitionistic continuum is seen by Weyl as “fitting in well with the character of the 

intuitive continuum”: 

 

For there the separateness of two places, upon moving them toward each other, slowly and in vague 

gradations passes over into indiscernibility. In a continuum, according to Brouwer, there can be 

only continuous functions. The continuum is not composed of parts (Weyl 1949, p. 54). 

For Brouwer had indeed shown, in 1924, that every function defined on a closed interval 

of the continuum as he conceived it is uniformly continuous. Now one might be inclined 
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to regard this claim as impossible: is not a counterexample provided by, for example, the 

function f given by f(0) = 0,  f(x) = |x|/x otherwise? No, because from the intuitionistic 

standpoint, this function is not everywhere defined on the interval  [–1, 1], being 

undefined at those arguments x for which it is unknown whether x = 0 or x  0. 

 

As a consequence, the intuitionistic continuum is indecomposable or cohesive, that is, it 

cannot be split into two nonempty disjoint parts in any way whatsoever.  In contrast with a 

discrete entity, the cohesive Brouwerian continuum cannot be composed of its parts.  

 

Hermann Weyl (1885–1955), one of most important and versatile mathematicians of the 

20th century, devoted a great deal of thought to the nature of the continuum. In his 

Philosophy of Mathematics and Natural Science he reflects on what he calls the “inwardly 

infinite” nature of a continuum: 

 

The essential character of the continuum is clearly described in this fragment of Anaxagoras: 

“Among the small there is no smallest, but always something smaller. For what is cannot cease to 

be no matter how small it is being subdivided.” The continuum is not composed of discrete 

elements which are “separated from one another as though chopped off by a hatchet.” Space is 

infinite not only in the sense that it never comes to an end; but at every place it is, so to speak, 

inwardly infinite, inasmuch as a point can only be fixed as step-by-step by a process of subdivision 

which progresses ad infinitum. This is in contrast with the resting and complete existence that 

intuition ascribes to space. The “open” character is communicated by the continuous space and 

the continuously graded qualities to the things of the external world. A real thing can never be 

given adequately, its “inner horizon” is unfolded by an infinitely continued process of ever new 

and more exact experiences; it is, as emphasized by Husserl, a limiting idea in the Kantian sense. 

For this reason it is impossible to posit the real thing as existing, closed and complete in itself. The 

continuum problem thus drives one to epistemological idealism. Leibniz, among others, testifies 

that it was the search for a way out of the “labyrinth of the continuum” which first suggested to 

him the conception of space and time as orders of phenomena (Weyl 1949,  p. 41). 
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Weyl identifies three attempts in the history of thought “to conceive of the continuum as 

Being in itself”. These are, respectively, atomism, the infinitely small, and set theory. In 

Weyl’s view, despite atomism’s brilliant success in unravelling the structure of matter, it 

had failed in that regard as to space, time, and mathematical extension because it “never 

achieved sufficient contact with reality.” As for the infinitely small, it was not so much 

supplanted as rendered superfluous by the limit concept. Weyl saw the limit concept as 

providing the necessary link between the microcosm of the infinitely small and the realm 

of macroscopic objects.  Without that link, the fact that the microcosm is governed by 

“elementary laws” making for ease of calculation, would remain entirely useless in 

drawing conclusions about the macrocosm (but in this connection see the remarks on the 

Constancy Principle in section 6). 

   

In the case of set theory Weyl saw the danger in employing it a basis for explicating the 

continuum as lying in the fact that set theory bestows a finished, completed  character on  

“the places in the continuum, i.e. to the possible sequences or sets of natural numbers.”  

In Weyl’s view this was a double error, for neither the aggregate of sets of natural 

numbers, nor (in general) individual such sets can be considered finished entities.  Rather 

the continuum should be considered as an essentially incompletable “field of constructive 

possibilities” To suppose otherwise is to risk running up against set-theoretic paradoxes 

such as Russell’s.  

       

During the period 1918–1921 Weyl wrestled with the problem of providing the 

continuum with an exact mathematical formulation free of objectionable set-theoretic 

assumptions. As he saw it in 1918, there is an unbridgeable gap between intuitively given 

continua (e.g. those of space, time and motion) on the one hand, and the discrete exact 

concepts of mathematics (e.g. that of real number) on the other.  For Weyl the presence 

of this gap meant that the construction of the mathematical continuum could not simply 
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be “read off” from intuition. Rather, he believed at this time that the mathematical 

continuum must be treated as if it were an element of  the realm immediately accessible 

to intuition,   and so, in the end, justified in the same way as a physical theory. In Weyl’s 

view, it was not enough that the mathematical theory of the continuum be consistent; it 

must also be reasonable. 

 

Das Kontinuum (1918) embodies Weyl’s attempt at formulating a theory of the continuum 

which satisfies the first, and, as far as possible, the second, of these requirements. In the 

following passages from this work he acknowledges the difficulty of the task: 

 

... the conceptual world of mathematics is so foreign to what the intuitive continuum presents 

to us that the demand for coincidence between the two must be dismissed as absurd. 

 

... the continuity given to us immediately by intuition (in the flow of time and of motion) has 

yet to be grasped mathematically as a totality of discrete “stages” in accordance with that part 

of its content which can be conceptualized in an exact way. 

 

Exact time- or space-points are not the ultimate, underlying atomic elements of the duration 

or extension given to us in experience. On the contrary, only reason, which thoroughly 

penetrates what is experientially given, is able to grasp these exact ideas. And only in the 

arithmetico-analytic concept of the real number belonging to the purely formal sphere do these 

ideas crystallize into full definiteness.  

 

When our experience has turned into a real process in a real world and our phenomenal time 

has spread itself out over this world and assumed a cosmic dimension, we are not satisfied with 

replacing the continuum by the exact concept of the real number, in spite of the essential and 

undeniable inexactness arising from what is given.  
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However much he may have wished it, in Das Kontinuum Weyl did not aim to provide a 

mathematical formulation of the continuum as it is presented to intuition, which, as the 

quotations above show, he regarded as an impossibility (at that time at least). Rather, his 

goal was first to achieve consistency by putting the arithmetical notion of real number on a 

firm logical basis, and then to show that the resulting theory is reasonable by employing it 

as the foundation for a plausible account of continuous process in the objective physical 

world. 

 

Weyl had come to believe that mathematical analysis at the beginning of the 20th century 

would not bear logical scrutiny, for its essential concepts and procedures involved 

vicious circles to such an extent that, as he says, “every cell (so to speak) of this mighty 

organism is permeated by contradiction.” In Das Kontinuum he tries to overcome this by 

providing analysis with a predicative formulation—not, as Russell and Whitehead had 

attempted in their Principia Mathematica, by introducing a hierarchy of logically ramified 

types, which Weyl seems to have regarded as too complicated—but rather by confining 

the basic principle of set formation to formulas whose bound variables range over just 

the initial given entities (numbers). Thus he restricts analysis to what can be done in terms 

of natural numbers with the aid of three basic logical operations, together with the 

operation of substitution and the process of “iteration”, i.e., primitive recursion. Weyl 

recognized that the effect of this restriction would be to render unprovable many of the 

central results of classical analysis—e.g., Dirichlet’s principle that any bounded set of real 

numbers has a least upper bound—but he was prepared to accept this as part of the price 

that must be paid for the security of mathematics.  

 

In section 6 of Das Kontinuum Weyl presents his conclusions as to the relationship 

between the intuitive and mathematical continua. He poses the question: Does the 

mathematical framework he has erected provide an adequate representation of physical 

or temporal continuity as it is actually experienced? He begins his investigation by noting 

that, according to his theory, if one asks whether a given function is continuous, the 
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answer is not fixed once and for all, but is, rather, dependent on the extent of the domain 

of real numbers which have been defined up to the point at which the question is posed. 

Thus the continuity of a function must always remain provisional; the possibility always 

exists that a function deemed continuous now may, with the emergence of “new” real 

numbers, turn out to be discontinuous in the future.  

 

To reveal the discrepancy between this formal account of continuity based on real 

numbers and the properties of an intuitively given continuum, Weyl next considers the 

experience of seeing a pencil lying on a table before him throughout a certain time 

interval. The position of the pencil during this interval may be taken as a function of the 

time, and Weyl takes it as a fact of observation that during the time interval in question 

this function is continuous and that its values fall within a definite range. And so, he says, 

 

This observation entitles me to assert that during a certain period this pencil was on the table; 

and even if my right to do so is not absolute, it is nevertheless reasonable and well-grounded. 

It is obviously absurd to suppose that this right can be undermined by “an expansion of our 

principles of definition”—as if new moments of time, overlooked by my intuition could be 

added to this interval, moments in which the pencil was, perhaps, in the vicinity of Sirius or 

who knows where. If the temporal continuum can be represented by a variable which “ranges 

over” the real numbers, then it appears to be determined thereby how narrowly or widely we 

must understand the concept “real number” and the decision about this must not be entrusted 

to logical deliberations over principles of definition and the like. 

 

To drive the point home, Weyl focuses attention on the fundamental continuum of 

immediately given phenomenal time, that is, as he characterizes it, 

 

... to that constant form of my experiences of consciousness by virtue of which they appear to 

me to flow by successively. (By “experiences” I mean what I experience, exactly as I experience 
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it. I do not mean real psychical or even physical processes which occur in a definite psychic-

somatic individual, belong to a real world, and, perhaps, correspond to the direct experiences.) 

 

 In order to correlate mathematical concepts with phenomenal time in this sense Weyl 

grants the possibility of introducing a rigidly punctate “now” and of identifying and 

exhibiting the resulting temporal points. On the collection of these temporal points is 

defined the relation of earlier than as well as a congruence relation of equality of temporal 

intervals, the basic constituents of a simple mathematical theory of time. Now Weyl 

observes that the discrepancy between phenomenal time and the concept of real number 

would vanish if the following pair of conditions could be shown to be satisfied: 

 

1. The immediate expression of the intuitive finding that during a certain period I saw the 

pencil lying there were construed in such a way that the phrase “during a certain period” was 

replaced by “in every temporal point which falls within a certain time span OE. [Weyl goes 

on to say parenthetically here that he admits “that this no longer reproduces what is 

intuitively present, but one will have to let it pass, if it is really legitimate to dissolve a 

period into temporal points.”] 

 

2. If P is a temporal point, then the domain of rational numbers to which l belongs if 

and only if there is a time point L earlier than P such that OL = l.OE can be constructed 

arithmetically in pure number theory on the basis of  our principles of definition, and is 

therefore a real number in our sense. 

 

Condition 2 means that, if we take the time span OE as a unit, then each temporal point 

P is correlated with a definite real number. In an addendum Weyl also stipulates the 

converse. 

 

But can temporal intuition itself provide evidence for the truth or falsity of these two 

conditions?  Weyl thinks not. In fact, he states unequivocally that 
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... everything we are demanding here is obvious nonsense: to these questions, the intuition 

of time provides no answer—just as a man makes no reply to questions which clearly are 

addressed to him by mistake and, therefore, are unintelligible when addressed to him. 

 

The grounds for this assertion are by no means immediately evident, but one gathers 

from the passages following it that Weyl regards the experienced continuous flow of 

phenomenal time as constituting an insuperable barrier to the whole enterprise of 

representing this continuum in terms of individual points, and even to the 

characterization of “individual temporal point” itself. As he says, 

 

The view of a flow consisting of points and, therefore, also dissolving into points turns out to 

be mistaken: precisely what eludes us is the nature of the continuity, the flowing from point 

to point; in other words, the secret of how the continually enduring present can continually 

slip away into the receding past. Each one of us, at every moment, directly experiences the true 

character of this temporal continuity. But, because of the genuine primitiveness of phenomenal 

time, we cannot put our experiences into words. So we shall content ourselves with the 

following description. What I am conscious of is for me both a being-now and, in its essence, 

something which, with its temporal position, slips away. In this way there arises the persisting 

factual extent, something ever new which endures and changes in consciousness.  

 

Weyl sums up what he thinks can be affirmed about “objectively presented time”—by 

which I take it is meant “phenomenal time described in an objective manner”—in the 

following two assertions, which he claims apply equally, mutatis mutandis, to every 

intuitively given continuum, in particular, to the continuum of spatial extension: 

  

1. An individual point in it is non-independent, i.e., is pure nothingness when taken by itself, 

and exists only as a “point of transition” (which, of course, can in no way be understood 

mathematically); 
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2. it is due to the essence of time (and not to contingent imperfections in   our medium) that a 

fixed temporal point cannot be exhibited in any way, that always only an approximate, never 

an exact determination is possible.  

 

The fact that single points in a true continuum “cannot be exhibited” arises, Weyl 

continues, from the fact that they are not genuine individuals and so cannot be 

characterized by their properties. In the physical world they are never defined absolutely, 

but only in terms of a coordinate system, which, in an arresting metaphor, Weyl describes 

as “the unavoidable residue of the eradication of the ego.” This metaphor, which Weyl 

was to employ more than once (Weyl 1950, p. 8 and 1949, p. 123) reflects the continuing 

influence of Husserlian phenomenological doctrine: in this case, the thesis that the 

existent is given in the first instance as the contents of a consciousness.  

 

By 1919 Weyl had come to embrace Brouwer’s views on the intuitive continuum. The 

latter’s influence looms large in Weyl’s next paper on the subject, On the New Foundational 

Crisis of Mathematics, written in 1920. Here Weyl identifies two distinct views of the 

continuum: “atomistic” or “discrete”; and “continuous”. In the first of these the 

continuum is composed of individual real numbers which are well-defined and can be 

sharply distinguished. Weyl describes his earlier attempt at reconstructing analysis in 

Das Kontinuum as atomistic in this sense: 

 

Existential questions concerning real numbers only become meaningful if we analyze the 

concept of real number in this extensionally determining and delimiting manner. Through 

this conceptual restriction, an ensemble of individual points is, so to speak, picked out from 

the fluid paste of the continuum. The continuum is broken up into isolated elements, and the 

flowing-into-each other of its parts is replaced by certain conceptual relations between these 

elements, based on the “larger-smaller” relationship. This is why I speak of the atomistic 

conception of the continuum (Weyl 1998, p. 91). 
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Weyl now repudiated atomistic theories of the continuum, including that of Das 

Kontinuum. He writes: 

 

In traditional analysis, the continuum appeared as the set of its points; it was considered 

merely as a special case of the basic logical relationship of element and set. Who would not 

have already noticed that, up to now, there was no place in mathematics for the equally 

fundamental relationship of part and whole? The fact, however, that it has parts, is a 

fundamental property of the continuum; and so (in harmony with intuition, so drastically 

offended against by today’s “atomism”) this relationship is taken as the mathematical basis for 

the continuum by Brouwer’s theory. This is the real reason why the method used in delimiting 

subcontinua and in forming continuous functions starts out from intervals and not points 

as the primary elements of construction. Admittedly a set also has parts. Yet what 

distinguishes the parts of sets in the realm of the “divisible” is the existence of “elements” in 

the set-theoretical sense, that is, the existence of parts that themselves do not contain any 

further parts. And indeed, every part contains at least one “element”. In contrast, it is 

inherent in the nature of the continuum that every part of it can be further divided without 

limitation. The concept of a point must be seen as an idea of a limit, “point” is the idea of a 

limit of a division extending in infinitum. To represent the continuous connection of the 

points, traditional analysis, given its shattering of the continuum into isolated points, had to 

have recourse to the concept of a neighbourhood. Yet, because the concept of continuous 

function remained mathematically sterile in the resulting generality, it became necessary to 

introduce the possibility of “triangulation” as a restrictive condition (Weyl 1998, p. 115). 

 

Like Brentano, Weyl knew that to “shatter a continuum into isolated points” would be to 

eradicate the very feature which characterizes a continuum—the fact that its cohesiveness 

is inherited by every one of its (connected) parts.   

 

 Weyl welcomed Brouwer’s construction of the continuum by means of sequences 
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generated by free acts of choice, thus identifying it as a “medium of free Becoming” which 

“does not dissolve into a set of real numbers as finished entities”.  Weyl felt that 

Brouwer’s intuitionistic approach had brought him closer than anyone else to bridging 

that “unbridgeable chasm” between the intuitive and mathematical continua. In 

particular, he found compelling the fact that the Brouwerian continuum is not the union 

of two disjoint nonempty parts—that it is indecomposable or cohesive.  “A genuine 

continuum,” Weyl says, “cannot be divided into separate fragments.” In 1921 Weyl 

observed: 

 

...if we pick out a specific point, say, x = 0, on the number line C (i.e., on the variable range of 

a real variable x), then one cannot, under any circumstance, claim either coincides with it or 

is disjoint from it. The point x = 0 thus does not at all split the continuum C into two parts        

C –: x < 0 and C +: x > 0, in the sense that C would consist of the union of C –, C + and the one 

point 0 ... If this appears offensive to present-day mathematicians with their atomistic thought 

habits, it was in earlier times a self-evident view held by everyone: Within a continuum, one 

can very well generate subcontinua by introducing boundaries; yet it is irrational to claim 

that the total continuum is made up of the boundaries and the subcontinua. The point is, a 

genuine continuum is something connected in itself, and it cannot be divided into separate 

fragments; this conflicts with its nature (Weyl 1921, p. 111). 

 

In later publications he expresses this more colourfully by quoting Anaxagoras to the 

effect that a continuum “defies the chopping off of its parts with a hatchet.” 

 

There being only minor differences between Weyl’s and Brouwer’s accounts of the 

continuum, Weyl abandoned his earlier attempt at the reconstruction of analysis and 

“joined Brouwer.”  At the same time, however, Weyl recognized that the resulting gain 

in intuitive clarity had been bought at a considerable price: 
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Mathematics with Brouwer gains its highest intuitive clarity. He succeeds in developing the 

beginnings of analysis in a natural manner, all the time preserving the contact with intuition 

much more closely than had been done before. It cannot be denied, however, that in advancing 

to higher and more general theories the inapplicability of the simple laws of classical logic 

eventually results in an almost unbearable awkwardness. And the mathematician watches 

with pain the greater part of his towering edifice which he believed to be built of concrete blocks 

dissolve into mist before his eyes (Weyl 1949, p. 54). 

 

Although he later practiced intuitionistic mathematics very rarely, Weyl remained an 

admirer of intuitionism. And the “riddle of the continuum” retained its fascination for 

him: ;as is attested to by the observation he made one of his last papers, Axiomatic and 

Constructive Procedures in Mathematics, written in 1954, 

 

...  the constructive transition to the continuum of real numbers is a serious affair... and I am 

bold enough to say that not even to this day are the logical issues involved in that constructive 

concept completely clarified and settled  (Weyl 1985, p. 17). 
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4. The Continuum in Constructive and Intuitionistic Mathematics 

 

As we have observed, Brouwer maintained that mathematical activity is a form of 

construction in intuition. If the philosophically loaded term "in intuition" is removed, we 

are left simply with the term "construction", a much more concrete term on whose 

meaning mathematicians have achieved some measure of agreement. This leads to the 

idea of constructive mathematics. 

 

The central principle of constructive mathematics is that a problem is to be regarded as 

solved only if an explicit solution can, in principle at least, be produced. Thus, for 

example, “There is an x such that P(x)” means that, in principle at least, we can explicitly 

produce an x such that P(x). If the solution to the problem involves parameters, we must 

be able to present the solution explicitly by means of some algorithm or rule when give 

values of the parameters. That is, “for every x there is a y such that P(x, y) means that, we 

possess an explicit method of determining, for any given x, a y for which P(x, y).  

 

The practice of constructive mathematics requires, as Brouwer recognized, the 

abandoning of certain laws of classical logic. In constructive mathematical reasoning an 

existential statement can be considered affirmed only when an instance is produced, and a 

disjunction can be considered affirmed only when an explicit one of the disjuncts is demonstrated. 

Consequently, neither the classical law of excluded middle nor the law of strong reductio 

ad absurdum can be constructively admissible. Hermann Weyl said of nonconstructive 

existence proofs that “they inform the world that a treasure exists without disclosing its 

location.” 

 

Consider the existential statement there exists an odd perfect number (i.e., an odd number 

equal to the sum of its proper divisors) which we shall write as  nP(n). Its contradictory 
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is the statement  n¬P(n). Classically, the law of excluded middle then allows us to affirm 

the disjunction 

 

                                           nP(n)   n¬P(n)                                 (1) 

 

Constructively, however, in order to affirm this disjunction we must either be in a position 

to affirm the first disjunct nP(n), i.e., to possess, or have the means of obtaining, an odd 

perfect number, or to affirm the second disjunct n¬P(n), i.e. to possess a demonstration 

that no odd number is perfect. Since at the present time mathematicians have neither of 

these, the disjunction (1), and a fortiori the law of excluded middle is not constructively 

admissible.   

 

The logical principles underlying constructive reasoning have been codified into what is 

known as constructiive or intuitionistic logic. Roughly speaking, 

constructive/intuitionistic logic is the body of arguments of classical logic which can be 

established without the use, explicitly or implicitly, of the law of excluded middle. 

Intuitionistic logic guides how one should reason in constructive mathematics.  But how 

are mathematical objects to be given, or, as we shall say, specified, in constructive 

mathematics? To begin with, everybody knows what it means to specify an integer. For 

example, 7 104 is specified, while the number n defined to be 0 if an odd perfect number 

exists, and 1 if an odd perfect number does not exist, is not specified. The number of 

primes less than, say, 101000000 is specified, in the sense intended here, since we could, in 

principle at least, calculate this number. Constructive mathematics as we shall understand 

it is not concerned with questions of feasibility, nor in particular with what can actually 

be computed in real time by actual computers. 

  

In constructive real analysis (Bishop and Bridges 1985) a rational number may be defined as 

a pair of integers (a, b) without a common divisor (where b > 0 and a may be positive or 

negative, or a is 0 and b is 1). The usual arithmetic operations on the rationals, together 
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with the operation of taking the absolute value, are then easily supplied with explicit 

definitions. Accordingly it is clear what it means to specify a rational number.            

 

In constructive mathematics, a problem is counted as solved only if an explicit solution 

can, in principle at least, be produced. Thus, for example, “There is an x such that P(x)” 

means that, in principle at least, we can explicitly produce an x such that P(x). If the 

solution to the problem involves parameters, we must be able to present the solution 

explicitly by means of some algorithm or rule when given values of the parameters. That 

is, “for every x there is a y such that P(x, y) means that, we possess an explicit method of 

determining, for any given x, a y for which P(x, y). This leads us to examine what it means 

for a mathematical object to be explicitly given. 

 

To begin with, everybody knows what it means to give an integer explicitly. For example, 

7 104 is given explicitly, while the number n defined to be 0 if an odd perfect number 

exists, and 1 if an odd perfect number does not exist, is not given explicitly. The number 

of primes less than, say, 101000000 is given explicitly, in the sense intended here, since we 

could, in principle at least, calculate this number. Constructive mathematics as we shall 

understand it is not concerned with questions of feasibility, nor in particular with what 

can actually be computed in real time by actual computers. Rational numbers may be 

defined as pairs of integers (a, b) without a common divisor (where b > 0 and a may be 

positive or negative, or a is 0 and b is 1). The usual arithmetic operations on the rationals, 

together with the operation of taking the absolute value, are then easily supplied with 

explicit definitions. Accordingly it is clear what it means to give a rational number 

explicitly.  

 

To specify exactly what is meant by giving a real number explicitly is not quite so simple. 

For a real number is by its nature an infinite object, but one normally regards only finite 

objects as capable of being given explicitly. This difficulty may be overcome by 

stipulating that, to be given a real number, we must be given a (finite) rule or explicit 


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procedure for calculating it to any desired degree of accuracy. Intuitively speaking, to be 

given a real number r is to be given a method of computing, for each positive integer n, a 

rational number rn such that  

 

|r – rn| < . 

 

These rn will then obey the law  

|rm – rn|  . 

 

So, given any numbers k, p, we have, setting n = 2k, 

 

|rn+p – rn|     = .  

 

One is thus led to define a (constructive) real number to be a sequence of rationals (rn) = 

r1, r2, … such that, for any k, a number n can be found such that 

 

|rn+p – rn|  .2 

 

Here we understand that to be given a sequence we must be in possession of a rule or 

explicit method for generating its members. Each rational number  may be regarded as 

a real number by identifying it with the real number (, , …). The set of all real numbers 

– the constructive real line or the constructive continuum - will be denoted, as usual, by . 

Now of course, for any “given” real number there are a variety of ways of giving explicit 

approximating sequences for it. Thus it is necessary to define an equivalence relation, 

 
2 It will be observed that in defining a constructive real number in this way we are following Cantor’s, rather than Dedekind’s characterization. 
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“equality on the reals”. The correct definition here is: r = s if and only if for any k, a 

number n can be found so that  

|rn+p – sn+p|   for all p. 

 

When we say that two real numbers are equal we shall mean that they are equivalent in 

this sense, and so write simply “=” for “=”. To assert the inequality r  s of two real 

numbers r, s is to assert that the equality r = s leads to a contradiction. Inequality in this 

sense is constructively weak. In constructive mathematics a stronger notion of inequality, 

that of apartness, is normally used instead. We say that r and s are apart, or distinguishable, 

written r # s, if n and k can actually be found so that |rn+p – sn+p| >  for all p. Clearly       

r # s implies r  s, but the converse cannot be affirmed constructively. (In fact the converse 

is equivalent to Markov’s Principle, which asserts that, if, for each n, xn = 0 or 1, and if it is 

contradictory that xn = 0 for all n, then there exists n for which xn = 1. This thesis is 

accepted by some, but not all schools of constructivism.) 

 

 Is it constructively the case that for any real numbers x and y, we have x = y   x  y? The 

answer is no. For if this assertion were constructively true, then, in particular, we would 

have a method of deciding whether, for any given rational number r, whether r = 2 or 

not. But at present no such method is known—it is not known, in fact, whether 2 is 

rational or irrational. We can, of course, calculate 2 to as many decimal places as we 

please, and if in actuality it is unequal to a given rational number r, we shall discover this 

fact after a sufficient amount of calculation. If, however, 2 is equal to r, even several 

centuries of computation cannot make this fact certain; we can be sure only that is very 

close to r. We have no method which will tell us, in finite time, whether 2 exactly 

coincides with r or not. This situation may be summarized by saying that equality on the 

reals is not decidable. (By contrast, equality on the integers or rational numbers is 

decidable.) Observe that this does not mean (x = y  x  y). We have not actually derived 

1

k

1

k
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a contradiction from the assumption  x = y  x  y; we have only given an example showing 

its implausibility. It is natural to ask whether it can actually be refuted. For this it would 

be necessary to make some assumption concerning the real numbers which contradicts 

classical mathematics. Certain schools of constructive mathematics are willing to make 

such assumptions; but the majority of constructivists confine themselves to methods 

which are also classically correct.   

 

Despite the fact that constructive equality of real numbers is not a decidable relation, it is 

balanced in the sense of satisfying the law of double negation (r  s)  r = s. In fact, we can 

prove the stronger assertion that (r # s)  r = s. For, given k, we may choose n so that 

|rn+p – rn|   and |sn+p – sn|   for all p. If |rn – sn|  , then we would have        

|rn+p – sn+p|   for all p, which entails r  s. If (r # s), it follows that |rn – sn| < and          

|rn+p – sn+p|   for every p. Since for every k we can find n so that this inequality holds 

for every p, it follows that r = s.  (From the facts that (r # s)  r = s it follows easily that 

r  s   (r # s)). 

 

One should not, however, conclude from the stability of equality that the law of double 

negation A → A is generally affirmable. That it is not can be seen from the following 

example. Write the decimal expansion of  and below the decimal expansion  = 0.333…, 

terminating it as soon as a sequence of digits 0123456789 has appeared in . Then if the 9 

of the first sequence 0123456789 in  is the kth digit after the decimal point,  = . 

Now suppose that  were not rational; then  =  would be impossible and no 

sequence 0123456789 could appear in , so that = , which is also impossible. Thus the 

assumption that  is not rational leads to a contradiction; yet we are not warranted to 

assert that r is rational, for this would mean that we could calculate integers m and n for 
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which  = . But this evidently requires that we can produce a sequence 0123456789 in 

 or demonstrate that no such sequence can appear, and at present we can do neither. 

 

 

Order on the constructive real line. The order relation on the reals is given constructively 

by stipulating that r < s is to mean that we have an explicit lower bound on the distance 

between r and s. That is, 

 

r < s     n and k can be found so that sn+p  – rn+p > 1/k for all p. 

 

It can readily be shown that, for any real numbers x, y such that x < y, there is a rational 

number  such that x <  < y. 

 

We observe that r # s  r < s  s < r. The implication from right to left is clear. Conversely, 

suppose that r # s. Find n and k so that |rn+p – sn+p| >  for every p, and determine m > n 

so that                       |rm – rm+p| < and |sm – sm+p| < for every p. Either   rm – sm > 

or sm – rm > ; in the first case rm+p – sm+p >  for every p, whence s < r; similarly, in the 

second case, we obtain r < s. 

 

We define r  s to mean that s < r is false. Notice that r  s is not the same as r < s or r = s: 

in the case of the real number  defined above, for instance, clearly   ; but we do not 

know whether  < or  = . Still, it is true that r  s  s  r  r = s.  For the premise is 
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the negation of r < s  s < r, which, by the above, is equivalent to r # s. But we have 

already seen that this last implies r = s. 

 

There are several common properties of the order relation on real numbers which hold 

classically but which cannot be established constructively. Consider, for example, the 

trichotomy law x < y  x = y  y < x. Suppose we had a method enabling us to decide 

which of the three alternatives holds. Applying it to the case y = 0, x = 2 – r for rational 

r would yield an algorithm for determining whether  2 = r or not, which we have already 

observed is an open problem. One can also demonstrate the failure of the trichotomy law 

(as well as other classical laws) by the use of “fugitive sequences”. Here one picks an 

unsolved problem of the form nP(n), where P is a decidable property of integers—for 

example, Goldbach’s conjecture that every even number  4 is the sum of two odd primes. 

Now one defines a sequence—a “fugitive” sequence—of integers (nk) by nk = 0  if 2k is the 

sum of two primes and nk =1 otherwise. Let r be the real number defined by rk = 0 if nk = 

0 for all j  k, and rk = 1/m otherwise, where m is the least positive integer such that nm = 

1. It is then easy to check that r  0 and r = 0 if and only if Goldbach’s conjecture holds. 

Accordingly the correctness of the trichotomy law would imply that we could resolve 

Goldbach’s conjecture. Of course, Goldbach’s conjecture might be resolved in the future, 

in which case we would merely choose another unsolved problem of a similar form to 

define our fugitive sequence. 

 

A similar argument shows that the law r  s  s  r also fails constructively: define the 

real number s by sk = 0 if nk = 0 for all j  k; sk = 1/m if m is the least positive integer such 

that nm = 1, and m is even; sk = –1/m if m is the least positive integer such that nm = 1, and 

m is odd. Then s  0 (resp. 0  s) would mean that there is no number of the form 2 2k                     
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(resp. 2 (2k + 1)) which is not the sum of two primes. Since neither claim is at present 

known to be correct, we cannot assert the disjunction s  0  0  s.  

 

In constructive analysis there is a convenient substitute for trichotomy known as the 

comparison principle. This is the assertion 

 

r < t   r < s  s < t. 

 

Its validity can be established in a manner similar to the foregoing. 

 

 

Albebraic operations on the constructive reals. The fundamental operations +, –, , –1 and 

 are defined for real numbers as one would expect, viz. 

 

• r + s is the sequence (rn + sn) 

• r – s is the sequence (rn – sn) 

•  or rs is the sequence (rnsn) 

• if r # 0, r–1 is the sequence (tn), where tn = rn–1 if tn  0 and tn = 0 if rn = 0 

• |r| is the sequence (|rn|) 

 

It is then easily shown that rs # 0  r # 0  s # 0. For if r # 0  s # 0, we can find k and n 

such that |rn+p|>  and |sn+p|>  for every p, so that |rn+psn+p|>  for every p, and rs 

# 0. Conversely, if rs # 0, then we can find k and n so that  

 

|rn+psn+p|> ,  |rn+p – rn|< 1, |sn+p – sn|< 1 

 

for every p. It follows that 
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|rn+p| > (|sn|+1) and |sn+p| > (|rn|+1) 

 

for every p, whence r # 0  s # 0. 

         

But it is not constructively true that, if rs = 0, then r = 0 or s = 0! To see this, use the 

following prescription to define two real numbers r and s. If in the first n decimals of  

no sequence 0123456789 occurs, put rn = sn = 2–n; if a sequence of this kind does occur in 

the first n decimals, suppose the 9 in the first such sequence is the kth digit. If k is odd, put 

rn = 2–k, sn = 2–n; if k is even, put rn = 2–n, sn = 2–k. Then we are unable to decide whether        

r = 0 or s = 0. But rs = 0. For in the first case above rn sn = 2–2n; in the second rn sn = 2–k–n. In 

either case |rn sn |<  for n > m, so that rs = 0.  

 

Convergence of sequences and completeness of the constructive reals. As usual, a 

sequence (an) of real numbers is said to converge to a real number b, or to have limit s if, 

given any natural number k, a natural number n can be found so that for every natural 

number p, 

 

|b – an+p| < 2–k. 

 

As in classical analysis, a constructive necessary and condition that a sequence (an) of real 

numbers be convergent is that it be a Cauchy sequence, that is, if, given any given any 

natural number k, a natural number n can be found so that for every natural number p, 

 

|an+p – an| < 2–k. 
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However, some classical theorems concerning convergent sequences are no longer valid 

constructively. For example, a bounded momotone sequence need no longer be 

convergent. A simple counterexample is provided by the sequence (an) defined as follows: 

an  = 1– 2–n if among the first n digits in the decimal expansion of  no sequence 0123456789 

occurs, while an  = 2 – 2–n if among these n digits such a sequence does occur. Since it is 

not known whether the limit of this sequence, if it exists, is 1 or 2, we cannot claim that 

that this limit exists as a well defined real number.  

 

In classical analysis  is complete in the sense that every nonempty set of real numbers 

that is bounded above has a supremum. As it stands, this assertion is constructively 

incorrect. For consider the set A of members {x1, x2, …} of any fugitive sequence of 0s and 

1s. Clearly A is bounded above, and its supremum would be either 0 or 1. If we knew 

which, we would also know whether xn  = 0 for all n, and the sequence would no longer 

be fugitive. 

 

Nevertheless, the completeness of  can be salvaged by defining suprema and infima 

somewhat more delicately than is customary in classical mathematics. A nonempty set A 

of real numbers is bounded above if there exists a real number b, called an upper bound for 

A, such that x  b for all    x  A. A real number b is called a supremum, or least upper bound, 

of A if it is an upper bound for A and if for each  > 0 there exists x  A with x >    b – . 

We say that A is bounded below if there exists a real number b, called a lower bound for A, 

such that b  x for all x  A. A real number b is called an infimum, or greatest lower bound, 

of A if it is a lower bound for A and if for each  > 0 there exists x  A with x < b + . The 

supremum (respectively, infimum) of A, is unique if it exists and is written sup A 

(respectively, inf A). 

 

Let us prove the constructive least upper bound principle. 
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Theorem. Let A be a nonempty set of real numbers that is bounded above. Then sup A 

exists if and only if for all x, y   with x <  y, either y is an upper bound for A or there 

exists a  A with   x < a. 

 

Proof. If sup A exists and x < y, then either sup A < y or x < sup A; in the latter case we 

can find  a  A with sup A – (sup A – x) < a, and hence x < a. Thus the stated condition is 

necessary.  

 

Conversely, suppose the stated condition holds. Let a1 be an element of A and choose an 

upper bound b1 for A with b1 > a1. We construct recursively a sequence (an) in A and (bn) 

of upper bounds for A such that, for each n  0, 

(i)  an  an+1  bn+1  bn 

and 

(ii) bn+1 – an+1  ¾ (bn – an). 

Having found a1, …, an and b1, …, bn, if an + ¾(bn – an) is an upper bound for A, put                             

bn+1 = an + ¾(bn – an) and an+1 = an ; while if there exists a  A with a > an + ¾(bn – an), we 

set   an+1 = a  and bn+1 = bn. This completes the recursive construction.  

 

From (i) and (ii) we have  

0  bn – an  (¾)n–1(b1 – a1). 

It follows that the sequences (an) and (bn) converge to a common limit l with an  l  bn for 

n  1. Since each bn is an upper bound for A, so is l. On the other hand, given  > 0, we can 

choose n so that l  an > l – , where an  A. Hence l = sup A.  

 

An analogous result for infima can be stated and proved in a similar way.                 
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Functions on the constructive reals. Considered constructively, a function from  to  is 

a rule F which enables us, when given a real number x, to compute another real number 

F(x) in such a way that, if x = y, then F(x) = F(y). It is easy to check that every polynomial 

is a function in this sense, and that various power series and integrals, for example those 

defining tan x and ex, also determine functions.  Viewed constructively, some classically 

defined “functions” on  can no longer be considered to be defined on the whole of . 

Consider, for example, the “blip” function B defined by B(x) = 0 if x  0 and B(0) = 0. Here 

the domain of the function is {x: x = 0  x  0}. But we have seen that we cannot assert 

dom(B) = . Accordingly, the blip function is not well defined as a function from  to . 

Of course, classically, B is the simplest discontinuous function defined on . The fact that 

the simplest possible discontinuous function fails to be defined on the whole of  gives 

grounds for the suspicion that no function defined on  can be discontinuous; in other 

words, that, constructively speaking, all functions defined on  are continuous (as remarked 

in the previous secrion, this was a central tenet of intuitionism’s founder, Brouwer). The 

claim is plausible. For if a function F is well-defined on all reals x, it must be possible to 

compute the value for all rules x determining real numbers, that is, determining their 

sequences of rational approximations x1, x2, … . Now F(x) must be computed to accuracy 

 in a finite number of steps—the number of steps depending on . This means that only 

finitely many approximations can be used, i.e., F(x) can be computed to within  only 

when x is known within  for some . Thus F should indeed be continuous. In fact all 

known examples of constructive functions defined on  are continuous. Constructively, 

a real-valued function f is continuous if for each   > 0 we can find a specific    > 0 such 

that |f(x) – f(y)|   whenever |x – y|<  . If all functions on  are continuous, then a 

subset A of  may fail to be genuinely complemented: that is, there may be no subset B of 

 disjoint from A such that  = A  B.To see this, we first suppose that A, B are disjoint 
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subsets of  and that there is a point     a  A which can be approached arbitrarily closely 

by points of B (or vice-versa). Then, assuming all functions on  are continuous, it cannot 

be the case that  = A  B. For if so, we may define the function f on  by f(x) = 0 if x  

A, f(x) = 1 if x  B. Then for all   > 0 there is  b  B for which |b – a|< , but |f(b) – f(a)|= 

1. Thus f fails to be continuous at a, and we conclude that   A  B. Now if we take A to 

be any finite set of real numbers, any union of open or closed intervals, or the set  of 

rational numbers, then in each case the set B of points “outside” A satisfies the above 

condition. Accordingly, for each such subset A,  is not “decomposable” into A and the 

set of points “outside” A, in the sense that these two sets of points together do not exhaust 

.  This fact indicates that the constructive continuum is a great deal more “cohesive” 

than its classical counterpart. For classically, the continuum is merely connected in the 

sense that it is not (nontrivially) decomposable into two open (or closed) subsets. 

Constructively, however,  is indecomposable into subsets which are neither open nor 

closed. In this sense the constructive real line can be brought close to the ideal of a true 

continuum. 

Certain well-known theorems of classical analysis concerning continuous functions fail  

in constructive analysis. One such is the theorem of the maximum: a uniformly continuous 

function on a closed interval assumes its maximum at some point. For consider, as  Figure 

1 below, a function f : [0,1] →  with two relative maxima, one at x =  and the other atx 

=  and of approximately the same value. Now arrange things so that = 1 and   

= 1 + t, where t is some small parameter. If we could tell where f assumes its absolute 

maximum, clearly we could also determine whether     t  0 or t  0, which, as we have 

seen, is not, in general, possible. Nevertheless, it can be shown that from f we can in fact 

ccalculate the maximum value itself, so that at least one can assert the existence of that 

maximum, even if one can’t tell exactly where it is assumed. 
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Another classical result that fails to hold constructively in its usual form is the well-

known intermediate value theorem. This is the assertion that, for any continuous function f 

from the unit interval [0, 1] to , such that f(0) = –1 and f(1) = 1, there exists a real number 

a  [0,1] for which f(a) = 0. To see that this fails constructively, consider the function f 

depicted in Figure 2 above: here f is piecewise linear, taking the value  t  (a small 

parameter) between x =  and x = .  If the intermediate value theorem held, we could 

determine a for which f(a) = 0. Then either a <  or a > ; in the former case t  0; in the 

latter t  0. Thus we would be able to decide whether t   0 or t   0; but we have seen that 

this is not constructively possible in general.  
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Nevertheless, it can be shown that, constructively, the intermediate value theorem is 

“almost” true in the sense that 

 

f  > 0 a (|f(a)| < ) 

 

and also in the sense that, if we write P(f) for  

 

b a<b c (a < c < b  f(c)  0), 

 

then 

 

f [P(f) → x (f(x) = 0)]. 

 

This example illustrates how a single classical theorem “refracts” into several 

constructive theorems. 

 

 

Axiomatizing the constructive reals. The constructive reals can be furnished with an 

axiomatic description (Bridges 1999). We begin by assuming the existence of a set R with  

 

• a binary relation > (greater than) 

• a corresponding apartness relation # defined by x # y      x > y or y > x 

• a unary operation x  –x    

• binary operations (x, y)  x + y  (addition) and (x, y)  xy  (multiplication) 

• distinguished elements 0 (zero) and 1 (one) with 0  1 

• a unary operation x  x–1 on the set of elements  0.  

 

The elements of R are called real numbers. A real number x is positive if x > 0 and negative 

if –x > 0. The relation  ≥  (greater than or equal to) is defined by 
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x ≥ y     z(y > z  x > z). 

 

The relations < and ≤ are defined in the usual way; x is nonnegative if 0 ≤ x. 

        

The sets N of natural numbers, N+ of positive integers, Z of integers and Q of rational 

numbers are identified with the usual subsets of R; for instance N+ is identified with the 

set of elements of R of the form .  

 

These relations and operations are subject to the following three groups of axioms, which, 

taken together, form the system CA of axioms for constructive analysis, or the constructive 

real numbers. 

 

Field Axioms 

 

x + y = y + x   (x + y) + z = x + y + z)    0 + x = x    x + (–x) = 0   xy = yx 

 

(xy)z = x(yz)     1x = x       x # 0   →  xx–1 = 1      x(y + z) = xy + xz 

 

Order Axioms 

 

(x ≥ y  y ≥ x)  x = y. 

 

 (x > y  y > x)    x > y → z(x > z  z > y)   (x # y) → x = y    

 

x > y → z(x + z > y + z)    (x > 0  y > 0) → xy > 0. 

 

1 1 1+ +    +
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Notice that from the fourth of the order axioms it follows that (x  y) → x = y ,  that is, 

the equality relation is balanced. (Here and in the sequel x  y is an abbreviation for         

(x=  y)). 

 

The final two axioms introduce special properties of > and ≥. In the second of these the 

notions bounded above, bounded below, and bounded are defined as in classical mathematics, 

and the least upper bound, if it exists, of a nonempty set S of real numbers is the unique 

real number b such that  

 

• b is an upper bound for S, and 

• for each c < b there exists s  S with s > c. 

 

Here a“nonempty” has the stronger constructive meaning of being inhabited, to wit, that 

an element of the set  in question can actually be constructed. 

 

Special Properties of  >. 

 

 Archimedean axiom. For each x  R such that x ≥ 0 there exists n  N such that  

 x < n. 

 

The least upper bound principle. Let S be a nonempty subset of R that is bounded above , 

such that for all real numbers a, b with a < b, either b is an upper bound for S or else there 

exists s  S with s > a. Then S has a least upper bound. 

 

The following basic properties of > and ≥ can then be established. 

 

(x > x)   x ≥ x   (x > y  y > z) → x > z   (x > y  y ≥ x)   (x > y ≥ z) → x > z    

(x > y)  y ≥ x   (x ≥ y)  (y > x)   (x ≥ y ≥ z) → x ≥ z    
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(x > y  x = y)   x ≥  0 →  (x = 0  >0 (x < ))  x + y > 0 → (x > 0  y > 0)   x > 0 → –x < 

0 

(x > y  z < 0) → yz > xz   x # 0  x2 > 0    1 > 0    0 < x < 1  → x > x2 

n  N+ → n-1 >0 

if  x > 0 and y ≥ 0, then there exists n  Z such that nx >y 

x > 0 → x-1 > 0       xy > 0 → (x  0  y  0) 

if a < b, then there exists r  Q such that a < r < b 

 

The constructive real line  as introduced above is a model of CA. Are there any other 

models, that is, models not isomorphic to ? If classical logic is assumed, CA is a 

categorical theory and so the answer is no. But this is not the case within intuitionistic 

logic, for it can be shown that, in intuitionistic set theory, both the Dedekind and Cantor 

reals are models of CA, while these may fail to be isomorphic. 

 

 

The intuitionistic continuum. In constructive analysis, a real number is an infinite 

(convergent) sequence of rational numbers generated by an effective rule, so that the 

constructive real line is essentially just a restriction of its classical counterpart. 

Brouwerian intuitionism takes a more liberal view of the matter, resulting in a 

considerable enrichment of the arithmetical continuum over the version offered by strict 

constructivism. As conceived by intutionism, the arithmetical continuum admits as real 

numbers “not only infinite sequences determined in advance by an effective rule for 

computing their terms, but also ones in whose generation free selection plays a part.”          

( Dummett 1977, p. 62).The latter are called (free) choice sequences. Without loss of 

generality we may and shall assume that the entries in choice sequences are natural 

numbers. 
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Hermann Weyl describes Brouwer’s conception of choice sequences in the following 

terms:                                                                                                                                                                   

 

In Brouwer’s analysis, the individual place in the continuum, the real number, is to be defined 

not by a set but by a sequence of natural numbers, namely, by a law which correlates with every 

natural number n a natural number (n)... How then do assertions arise which concern... all real 

numbers, i.e., all values of a real variable? Brouwer shows that frequently statements of this form 

in traditional analysis, when correctly interpreted, simply concern the totality of natural numbers. 

In cases where they do not, the notion of sequence changes its meaning: it no longer signifies a 

sequence determined by some law or other, but rather one that is created step by step by free acts 

of choice, and thus necessarily remains in statu nascendi. This “becoming” selective sequence 

(werdende Wahlfolge) represents the continuum, or the variable, while the sequence determined 

ad infinitum by a law represents the individual real number in the continuum. The continuum 

no longer appears, to use Leibniz’s language, as an aggregate of fixed elements but as a medium of 

free “becoming”. Of a selective sequence in statu nascendi, naturally only those properties can 

be meaningfully asserted which already admit of a yes-or-no decision (as to whether or not the 

property applies to the sequence) when the sequence has been carried to a certain point; while the 

continuation of the sequence beyond this point, no matter how it turns out, is incapable of 

overthrowing that decision.  (Weyl 1949, p. 52). 

 

While constructive analysis does not formally contradict classical analysis and may in 

fact be regarded as a subtheory of the latter, a number of intuitionistically plausible 

principles have been proposed for the theory of choice sequences which render 

intuitionistic analysis divergent from its classical counterpart. (Intuitionistic analysis, 

nevertheless, an extension of CA.) 

 

One such principle is Brouwer’s Continuity Principle. This asserts that, given a relation    

R(, n) between choice sequences  and numbers n, if for each  a number n may be 
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determined for which  R(, n) holds, then n can already be determined on the basis of the 

knowledge of a finite number of terms of . This may be seen to be plausible if one 

considers that the according to Brouwer the construction of a choice sequence is 

incompletable; at any given moment we can know nothing about it outside the identities 

of a finite number of its entries. Brouwer’s Continuity Principle amounts to the assertion 

that every function from  to  is continuous. 

 

From this one can prove a weak version of the Continuity Theorem, namely, that every 

function from  to  is continuous (Bridges and Richman 1987, p. 109). Another such 

principle is Bar Induction, a certain form of induction for well-founded sets of finite 

sequences (Dummett 1977, Bridges and Richman 1987). Brouwer used Bar Induction and 

the Continuity Principle in proving his Continuity Theorem that every real-valued 

function defined on a closed interval is uniformly continuous,  from which it follows that 

the intuitionistic continuum, and all of its closed interval,  are cohesive.   

 

Brouwer gave the intuitionistic conception of mathematics an explicitly subjective twist 

by introducing the creative subject. The creative subject was conceived as a kind of 

idealized mathematician for whom time is divided into discrete sequential stages, during 

each of which he may test various propositions, attempt to construct proofs, and so on. 

In particular, it can always be determined whether or not at stage n the creative subject 

has a proof of a particular mathematical proposition p. While the theory of the creative 

subject remains controversial, its purely mathematical consequences can be obtained by 

a simple postulate which is entirely free of subjective and temporal elements. The creative 

subject allows us to define, for a given proposition p, a binary sequence <an> by an = 1    if  

the creative subject has a proof of p at stage n;, an  = 0   otherwise. 

 

Now if the construction of these sequences is the only use made of the creative subject, 

then references to the latter may be avoided by postulating the principle known as 

Kripke’s Scheme: 
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For each proposition p there exists an increasing binary sequence <an> such that p holds if  

and only if an = 1 for some n.  

 

Taken together, these principles have been shown to have remarkable consequences for 

the cohesiveness of subsets of the continuum. Not only is the intuitionistic continumm 

cohesive, but, assuming Brouwer’s Continuity Principle and Kripke’s Scheme, it remains 

cohesive even if one pricks it with a pin “The [intuitionistic] continuum has, as it were, a 

syrupy nature, one cannot simply take away one point.” If in addition Bar Induction is 

assumed, then, even more surprisingly, cohesiveness is maintained even when all the 

rational points are removed from the continuum.  Thus it is appropriate to describe the 

classical continuum as the “frozen intuitionistic continuum”. 
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5. Nonstandard Analysis and the Hyrerreal Line 

 

 

Once the continuum had been provided with a set-theoretic foundation, the use of the 

infinitesimal in mathematical analysis was largely abandoned. And so the situation 

remained for a number of years. The first signs of a revival of the infinitesimal approach 

to analysis surfaced in the 1950s with a paper by A. H. Laugwitz and C. Schmieden 

(Laugwitz and Schmieden 1958).  But the major breakthrough came in 1960 when it 

occurred to the mathematical logician Abraham Robinson (1918–1974) that “the concepts 

and methods of contemporary Mathematical Logic are capable of providing a suitable 

framework for the development of the Differential and Integral Calculus by means of 

infinitely small and infinitely large numbers.”  (Robinson 1996, p. xiii). This insight led to 

the creation of Nonstandard Analysis (NSA), which Robinson regarded as realizing 

Leibniz’s conception of infinitesimals and infinities as ideal numbers possessing the same 

properties as ordinary real numbers. In the introduction to his book on the subject he 

writes: 

 

It is shown in this book that Leibniz’s ideas can be fully vindicated and that they lead to a 

novel and fruitful approach to classical Analysis and to many other branches of mathematics. 

The key to our method is provided by the detailed analysis of the relation between 

mathematical languages and mathematical structures which lies at the bottom of 

contemporary model theory. 

   

After Robinson’s initial insight, a number of ways of presenting Nonstandard Analysis 

were developed. Here is a sketch of one of them (Bell and Machover 1977, Keisler 1994). 

 

Starting with the classical real line , a set-theoretic universe—the standard universe—is 

first constructed over it: here by such a universe is meant a set U containing  which is 

closed under the usual set-theoretic operations of union, power set, Cartesian products 
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and subsets. Now write U for the structure (U, ), where  is the usual membership 

relation on U: associated with this is the extension (U) of the first-order language of set 

theory to include a name u for each element u of U. Now, using the well-known 

compactness theorem for first-order logic, U is extended to a new structure *U = (*U, *), 

called a nonstandard universe, satisfying the following key principle: 

 

Saturation Principle. Let  be a collection of (U)-formulas with exactly one free variable. 

If   is finitely satisfiable in U, that is, if for any finite subset ’ of  there is an element 

of U which satisfies all the formulas of ’ in U, then there is an element of *U which satisfies 

all the formulas of  in *U. 

 

The saturation property expresses the intuitive idea that the nonstandard universe is very 

rich in comparison to the standard one. Indeed, while there may exist, for each finite 

subcollection F of a given collection P of properties, an element of U satisfying the 

members of F in U, there may not necessarily be an element of U satisfying all the 

members of P.  The saturation of *U guarantees the existence of an element of *U which 

satisfies, in *U, all the members of P. For example, suppose the set  of natural numbers 

is a member of U; for each n   let Pn(x) be the property x   & n < x.  Then clearly, 

while each finite subcollection of the collection P = {Pn: n  } is satisfiable in U, the whole 

collection is not. An element of *U satisfying all the members of P in *U will then be an 

“natural number” greater than every member of , that is, an infinite number. 

 From the saturation property it follows that *U satisfies the important 

 

Transfer Principle. If  is any sentence of (U), then  holds in U if and only if it holds in   

*U.  
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The transfer principle may be seen as a version of Leibniz’s continuity principle: it asserts 

that all first-order properties are preserved in the passage to or “transfer” from the 

standard to the nonstandard universe.  

  

The members of U are called standard sets, or standard objects; those in *U – U  nonstandard 

sets or nonstandard objects: *U  thus consists of both standard and nonstandard objects. 

The members of *U will also be referred to as *-sets or *-objects Since U   *U, under this 

convention every set (object) is also a *-set (object).  The *-members of a *-set A are the *-

objects x for which  x  * A 

 

If A is a standard set, we may consider the collection A   —the inflate of A—consisting of 

all the *-members of A: this is not necessarily a standard set nor even a *-set. The inflate 

of a standard set may be regarded as the same set viewed from a nonstandard vantage 

point. While clearly A  A , A  may contain “nonstandard” elements not in A.  It can in 

fact be shown that infinite standard sets always get “inflated” in this way. Using the 

transfer principle, any function f between standard sets automatically extends to a 

function—also written f—between their inflates.   

 

Each mathematical structure A = (A, R, ...) has an inflate A  = (A , R ). From the transfer 

principle it follows that A and A  have precisely the same first-order properties.  

 

Now suppose that the set  of natural numbers is a member of U. Then so is the set  of 

real numbers, since each real number may be identified with a set of natural numbers.   

may be regarded as an ordered field, and the same is therefore true of its inflate  .This, 

the hyperreal line, has precisely the same first-order properties as .  The members of   

are called hyperreals.  A standard hyperreal is then just a real, to which we shall refer for 

emphasis as a standard real.  Since  is infinite, nonstandard hyperreals must exist. The 

saturation principle implies that there must be an infinite (nonstandard) hyperreal, that 



107 

 

is, a hyperreal a such that a > n for every  n  . In that case its reciprocal  is infinitesimal 

in the sense of exceeding 0 and yet being smaller than  for every n  . In general. 

we call a hyperreal a infinitesimal if its absolute value |a| is <  for every n  .  In 

that case the set I of infinitesimals contains not just 0 but a substantial number (in fact, 

infinitely many) of other elements. Clearly I is an additive subgroup of , that is, if a, b  

I, then a – b  I.  

 

Note that   is thus a nonarchimedean ordered field. One might question whether this 

is compatible with the facts that   and  share the same first-order properties, but the 

latter is archimedean. These data are consistent because the archimedean property is not 

first-order. However, while  is nonarchimedean, it is  *-archimedean in the sense that, 

for any a   there is n    for which a < n.  

 

 

The members of the inflate   of  are called hypernatural numbers. As for the hyperreals, 

it can be shown that   also contains nonstandard elements which must exceed every 

member of : these are called infinite hypernatural numbers.  

 

For hyperreals a, b we define a  b and say that a and b are infinitesimally close if a – b  I. 

This is an equivalence relation on the hyperreal line: for each hyperrreal a we write (a) 

for the equivalence class of a under this relation and call it the monad of a. The monad of 

a hyperreal a thus consists of all the hyperreals that are infinitesimally close to a: it may 

thought of as a small cloud centred at a.  Note also that (0) = I.  

 

A hyperreal a is finite if it is not infinite; this means that |a| < n for some n  . It is not 

difficult to show that finiteness is equivalent to the condition of near-standardness: here a 

hyperreal a is near-standard if a  r for some standard real r.  

1

a

1

1n +

1

1n +
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Much of the usefulness of Nonstandard Analysis stems from the fact that statements of 

classical analysis involving limits or the (, ) criterion admit succinct, intuitive 

translations into statements involving infinitesimals or infinite numbers, in turn enabling 

comparatively straightforward proofs to be given of classical theorems. Here are some 

examples of such translations: 

 

•     Let <sn> be a standard infinite sequence of real numbers and let s be a standard real 

number. Then s is the limit of <sn> within ,  in the classical sense, if and only 

if  sn   s for all infinite subscripts n.  

 

•      A standard sequence <sn> converges if and only if sn  sm for all infinite n and m. 

(Cauchy’s criterion for convergence.) 

 

Now suppose that f is a real-valued function defined on some open interval (a, b). We 

have remarked above that f automatically extends to a function—also written f—   on 

.  

 

•    In order that the standard real number c be the limit of f(x) as x approaches x0, 

, with x0 a standard real number in (a, b), it is necessary and sufficient that f(x)  f(x0) for 

all x  x0. 

 

•      The function f is continuous at a standard real number x0 in (a, b) if and only if f(x)  

f(x0) for all x  x0. (This is equivalent to saying that f maps the monad of x0 into the monad 

of f(x0). 

 

•     In order that the standard number c be the derivative of f ay x0 it is necessary and sufficient 

that  

lim n
n

s s
→

=

( , )a b

0

lim ( )
x x

f x c
→

=
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            for all x  x0 in the monad of x0.  

 

 Many other branches of mathematics admit elegant and fruitful nonstandard 

formulations.  

 

 Finally, it should be pointed out that while the usual models of Nonstandard Analysis 

are obtained using highly nonconstructive tools, other methods have been developed for 

producing such models which are constructively acceptable. (Moerdijk 1995 and 

Palmgren 1998, 2001). 
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6.The Continuum in Smooth Infinitesimal Analysis 

 

 

Smooth Infinitesimal Amalysis. In differential geometry it is customary to confine 

attention to functions between spaces which are smooth, that is, arbitrarily many times 

differentiable. Smooth Infinitesimal Analysis (SIA) provides a framework for mathematical 

analysis which embodies the practice of differential geometry in a remarkably direct and 

powerful way, namely by stipulating that all functions – however defined - between 

spaces be smooth. In particular al functions defined on the real line R to itself are required 

to be smooth.  In SIA this requirement is satisfied through the following considerations. 

Starting with a differentiable function   f: R → R,  draw the graph of f , so generating a 

curve in the Cartesian plane. Now pick any point on the curve and consider a short length 

L of the curve around the point.   If L is taken to be sufficiently short, it will appear to b 

approximately a straight line. In SIA it is required that, if L is taken to be of infinitesimal 

length, then it will be a straight line exactly.  This idea in its turn is realized by postulating 

the existence in R of a set  of infinitesimals with the property that all functions on  are 

linear.  

 

Thus in SIA we are given:  

 

• an object R called the real  line (or smooth line), on which the usual operations of 

addition and multiplication are defined and satisfy the usual algebraic laws 

governing real numbers (in particular 0 and 1 are present and are neutral elements 

under + and  × respectively; 

• a subset   of the set R of real numbers called the domain of infinitesimals.  is 

assumed to satisfy the following conditions: 

(1)   0  
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(2)  Any multiple of an infinitesimal is an infinitesimal, that is, for any a  R, x    

ax  . It follows  immediately from this that  is symmetric around 0, that is,              

x (x    −x  ). 

(3) The Infinitesimal Linearity Principle or the Kock- Lawvere axiom. This asserts 

that all maps  → R are linear (strictly speaking, affine, but no matter) in the 

following strong sense:   

 

for any f :  → R there is a unique a  R such that, for all   , f() = f(0) + a. (Here 

and in the sequel we  shall use symbols ,  to denote arbitrary elements of.) This 

real number a  is called the slope of f, and is written slp(f). Thus, for any                              f 

:  → R and all   , f() = f(0) +  slp(f). 

 

Given   f :  → R, let f* :  → R   R  defined by f*() = (, f()).  The map f* may be thought 

of as the graph of the map f n the plane. The Infinitesimal Linearity Principle can be seen 

as asserting that this graph is a straight line with slope slp(f) passing through (0, f(0)). Thus 

the effect of any map on  is to translate and rotate it; in effect   behaves like a short 

“rigid rod”, just long enough to have a slope, but too short to bend. It is, as it were, a 

geometric object possessing location and direction but lacking extension.  

 

The Infinitesimal Linearity Principle can also be presented in the following way. Think 

of a real function f: R → R as defining a curve C in the plane. Then the Infinitesimal 

Linearity Principle amounts to the assertion that, for any such f and for any for any point   

a  R,  the image under f of the “infinitesimal interval”  + a obtained by translating  to 

a is a straight line and coincides with the tangent to C at x = a.    
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                                                                         y = f(x) 
 

                                                                 image under f of  + a 
  
 
                                                                              

                                                                           + a 
  

 

Thus each real function has the effect of “bringing”  into coincidence” with the tangent 

vector to the curve associated with the function at any point on it. In this sense, then,  

plays the role of a generic tangent vector.  Also, since the image of  under a function is 

necessarily a straight line and a part of the associated curve, it follows that each point on 

a curve is contained in a nondegenerate infinitesimal straight segment of the curve. 

Accordingly in SIA curves are infinitesimally straight.  This is called the Infinitesimal 

Straightness Principle. 

 

The Infinitesimal Linearity Principle has two immediate formal consequences: 

 

• The nondegeneracy of  :   {0}. For suppose  = {0, and let a, b be any unequal 

real numbers. Then the two maps   a and   b would both be identically 0, 

contradicting the Linearity Principle. 

• The Cancellation Principle: for any a, b  R, if a = b for all   , then a = b. This 

follows immediately from the uniqueness condition in the Linearity Principle. 

 

We can now show that  consists of nilpotent, in fact nilsquare quantities, that is,  

 

x (x   x2 = 0). 

 

To prove this, write s:  → R for the map   2.  Then we have, for   ,  
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2 = s() = s(0) +  slp(s) =  slp(s) 

 

and, since −  ,  

 

2 = (−)2  = s(−) = s(0) −  slp(s) = − slp(s). 

 

Hence 2 = −2  , so that 2 = 0. 

 

Notice that we do not claim that  comprises all nilsquare quantities.  This, although 

usually assumed in presentations of SIA, is not needed. 

 

Here is a further fact of interest. Without assuming the symmetry of  around 0, the 

following conditions are equivalent: 

 

(i) x (x   x2 = 0). 

(ii) slp(s) = 0. 

 

(i)   (ii). Assuming (i), we have, for all   , 0 = 2 = s() = s(0) +  slp(s) =   . slp(s). The 

Cancellation Principle yields  slp(s) = 0. 

 

(ii)  (i)   Assuming (ii), we have, for all    ,  2 = s() = s(0) +  slp(s) = 0 + 0 = 0. Hence 

(i).  

 

The Differential Calculus in SIA. Let us call a real function any real-valued function 

defined on a closed interval in to R. The derivative of an arbitrary real function can be 

formulated as follows.  Given a closed interval I  in R and a  function  f : I → R, for each  

x  I define the function fx:  → R by fx() = f(x + ). (Intervals are defined by providing R 
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with a suitable order relation. We assume that closed intervals are stable under the 

addition of infinitesimals: see below.) 

 

   The derivative  f : I → R of f is defined by f (x) = slp (fx). It follows easily that 

 

(*)                                                 f(x + ) = f(x) +  f (x). 

 

This is the Fundamental Equation of the Differential Calculus in SIA. The quantity f (x) is the 

slope at x of the curve determined by f and the infinitesimal  

 

 f (x) = f(x + ) − f(x)  

 

is the infinitesimal change or increment in the value of f on passing from x to x + .  

 

The fundamental equation (*) can be thought of as a rigorous formulation of the 

engineers’ “practical” version of the Taylor series of a function. For (*) is what we get if 

in the Taylor series 

 

f(x + ) = f(x) +  f (x) + 1/2! 2f(x) + … 

 

we follow the practice of engineers to treat as “vanishingly small” the square and higher 

powers of the “small” quantity  .  

 

Derivatives of elementary functions are easily calculated in SIA using the Cancellation 

Principle. For example, here is the calculation of the derivative of the function                          

xn: 

 

(xn) = (x + )n − xn = n xn−1 + terms in 2- and higher powers = n xn−1 
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Hence, by the Cancellation Principle, 

 

(xn) = n xn−1. 

 

And here is the calculation of the derivative of the function 1/x (for x > 0): 

 

(1/x) = 1/x+ − 1/x = −/x(x+) = −(x−)/x(x+)(x−)  

                                                                                         = −x+2/x(x2−2)  

                                                                                         = −x/x3 

                                                                                                                                      = −/x2. 

 

Cancelling  on both sides of the equation gives 

 

(1/x) =−1/x2. 

 

Let us derive in SIA a basic law of the differential calculus, the product rule: 

  

 (fg) = f g + fg.  

 
To do this we compute 
 

(fg)(x + ) = (fg)(x) + (fg)(x) = f(x)g(x) +  (fg)(x), 

    (fg)(x + ) = f(x + )g(x + ) = [f(x) +  f (x)].[g(x) +  g'(x)]  

                                                                        = f(x)g(x) +  (f g + fg') +2f g'  

                                                                        = f(x)g(x) +  (f g + fg), 

 

since 2 = 0. Therefore  (fg) = (f g + fg), and the result follows by the Cancellation 

Principle. This calculation is depicted in the diagram below. 
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                            g                    fg                    2f g 

 

                               g                    fg                        f g 

                                                       f                           f  

 

 

Infinitesimals in SIA have two fundamental aspects, algebraic and geometric. 

Algebraically, they are real numbers whose squares vanish; geometrically, they are 

straight segments of curves. Both of these aspects are used in applications.  

 

The interplay of these aspects is well illustrated by the derivation in SIA of the 

Fundamental Theorem of the Calculus.  To this end, let I be a closed interval {x: a  x  b} in 

R — or R itself—and let f: I →  R; also let A(x) be the area under the curve y = f(x) as 

indicated in the figure:   

 

                                                                                 Q       

                                                                    P     

                   y = f(x)                        A(x)             

                                                                    x      x +  

Then   

A(x) = A(x +  ) – A(x) =   +   = f(x) + . 

 

Now, by the Infinitesimal Straightness Principle, the arc PQ is a straight line; accordingly 

 is a triangle of area ½ . f (x) = 0. It follows that A(x) = f(x), and the Cancellation 

Principle gives 
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A (x) = f(x).  

                                      

Thus, if we regard A(x) as the integral of f(x), the above equation asserts that 

differentiation is the inverse of integration – the Fundamental Theorem of the Calculus. 

 

 

Smoothness of Functions in SIA. From the Fundamental Equation the Principle of 

Continuity can be deduced, namely, that in SIA all real functions are continuous, in the sense 

of sending neighbouring points to neighbouring points. (Here two points x, y on R are said to 

be neighbours if   x – y is in , that is, if x and y differ by an infinitesimal.) To see this, given 

a real function f and neighbouring points x, y, note that y = x +  with  in  , so that 

 

f(y) – f(x) = f(x + ) – f(x) =  f ‘(x). 

 

Since is infinitesimal, the result follows. 

 

From the fact that in SIA every real function has a derivative, which is itself differentiable,  

it follows that any real function is arbitrarily many times differentiable. This fact justifies 

the use of the term “smooth”. 

 

In SIA there is a sense in which everything is generated by the domain of infinitesimals. For 

consider the set  of all maps  → . It follows from the Linearity Principle that R can 

be identified as the subset of  consisting of all maps vanishing at 0. In this sense R is 

“generated” by .  

 

Explicitly,   is a monoid under composition which may be regarded as acting on  by 

composition: for f  , f   = f(). The subset V consisting of all maps vanishing at 0 is a 

submonoid naturally identified as the set of ratios of infinitesimals. The identification of R 

and V made possible by the principle of infinitesimal linearity thus leads to the 

( )f x
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characterization of R itself as the set of ratios of infinitesimals. This was essentially the 

view of Euler, who regarded infinitesimals as formal zeros and real numbers as 

representing the possible values of 0/0. For this reason Lawvere has suggested that R in 

SIA should be called the space of Euler reals. 

 

Once one has R, Euclidean spaces of all dimensions may be obtained as powers of R, and 

arbitrary Riemannian manifolds may be obtained by patching together subspaces of 

these. 

 

The “Internal Logic“ of SIA is Intuitionistic. We observe that the postulates of SIA are 

incompatible with the Law of Excluded Middle of classical logic (LEM)– the assertion that, for 

any proposition p, either p holds or not p holds.  This incompatibility can be demonstrated 

in two ways, one informal and the other rigorous.  First the informal argument. Consider 

the function f defined for real numbers x by f(x) = 1 if x = 0 and f(x) = 0 whenever x  0. If 

LEM held, each real number would then be either equal or unequal to 0, so that the 

function f would be defined on the whole of R. But, considered as a function with domain 

R, f is clearly discontinuous. Since, as we know, in SIA every function on R is continuous, 

f cannot have domain R there. (The domain of f is in fact (R – {0})  {0}, which, because of 

the failure of the law of excluded middle in SIA, is provably unequal to R.)  

 

So LEM fails in SIA. To put it succinctly, universal continuity implies the failure of the Law of 

Excluded Middle. 

 

Here now is the rigorous argument. We derive the failure of LEM from the Cancellation 

Principle. To begin with, if x  0, then x2  0, so that, if x2 = 0, then necessarily not x  0. 

This means that  

 

                                for all infinitesimal , not   0.                                       (*) 
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Now suppose that LEM were to hold. Then we would have, for any , either  = 0 or   

0. But (*) allows us to eliminate the second alternative, and we infer that, for all ,  = 0. 

This may be written 

 

for all ,  .1 = .0, 

 

from which we derive by Cancellation Principle the falsehood 1 = 0. So again LEM must 

fail. 

 

The “internal” logic of SIA is accordingly not full classical logic. It is, instead, intuitionistic 

logic, that is, the logic derived from the constructive interpretation of mathematical 

assertions. In practice when working in SIA one does not notice this “change of logic” 

because, like much of elementary mathematics, the topics discussed there are naturally 

treated by constructive means such as direct computation.    

 

It is worth noting that the refutability of the Law of Excluded Middle in SIA leads to the 

refutability of an important principle of set theory, the Axiom of Choice. This is the 

assertion 

 

(AC)  for any family A  of inhabited sets, there is a choice function on A, that is, a function  

f:  A → A  for which f(X)  X whenever X   A. (A set t is said to be inhabited if it can be 

constructively shown to have a member. In intuitionistic logic this is a stronger condition 

than the assertion that the set be nonempty.) 

 

Now the Law of Excluded Middle can be derived merely from the very special case of the 

Axiom of Choice which asserts merely that any doubleton {U, V } has a choice function. 

For let p be any proposition, define  
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U = {x 2: x = 0   p}    V = {x2: x = 1   p}     

 

and let f be a choice function on {U, V}. Writing a = f  (U), b = f(V), we have  a   U, b   V, 

i.e.,  

 

[a = 0  p}    b = 1   p]. 

 

It follows that 

 

[a = 0  b = 1]  p , 

 

whence 

 

(*)                                                                          a   b   p. 

 

Now clearly 

 

p  → U = V  = 2  →  a = b, 

 

whence 

 

a   b  → p, 

 

But this and (*) together imply p  p .  

 

Thus LEM is derivable from this special case of the Axiom of Choice.   Since LEM is 

refutable in SIA, so equally, then, is AC. 
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The refutability of the Axiom of Choice in SIA, and hence its incompatibility with the 

Principle of Continuity which prevails there, is not surprising in view of the Axiom’s 

well-known “paradoxical” consequences. One of these is the famous Banach-Tarski 

paradox (Wagon 1985) which asserts that any solid sphere can be decomposed into finitely 

many pieces which can themselves be reassembled to form two solid spheres each of the 

same size as the original, or into one solid sphere of any preassigned size. Paradoxical 

decompositions such as these become possible only when continuous geometric objects 

are, recalling Dedekind’s words, “dissolved to atoms ... [through a] frightful, dizzying 

discontinuity” into discrete sets of points which the axiom of choice then allows to be 

rearranged in an arbitrary (discontinuous) manner. Such procedures violate the Principle 

of Continuity. 

          

 

The Link between the Infinitesimal and the Real in SIA; the Constancy Principle.  

Suppose that we are investigating the behavior of some variable quantity represented by 

a function F. The approach taken in SIA, as (implicitly) in the differential calculus, is to 

begin the investigation by confining it initially to the infinitesimal world. Life in the 

infinitesimal world is beautifully simple: curves are just straight lines, and the squares of 

incremental changes vanish.  This makes the determination of infinitesimal increments 

equally simple, enabling the increment F(x) in F(x) to be presented in the form k(x), 

where k(x) is some explicit function whose form has been obtained by “infinitesimal” 

analysis. Thus we obtain an “infinitesimal” equation of the form F’(x) = k(x). Applying 

the Cancellation Principle in turn yields the “differential” equation  

 

(*)                                                                        F’(x) = k(x) 

 

which holds in the world “in the large”.  
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The Cancellation Principle thus provides a formal, astonishingly simple link between the 

infinitesimal world and the real world, the world “in the large”. The idea of a linkage 

between these two worlds was the animating principle behind applications of the 

calculus throughout the 17th and 18th centuries.  

 

In practice, of course, the equation (*), while of fundamental importance, is only the first 

step in determining the explicit form of the function F.  For this, it is necessary to 

“integrate” k , that is, to provide k with an antiderivative, an explicit function G such that    

G’ = k. It will then follow that F’ = G’ , from which we will be able to conclude that                   

F = G.  (Strictly speaking, F and G may differ by a constant function but we shall ignore 

this here.) 

 

To carry out this procedure in SIA we need to introduce an additional postulate. Let I be 

a closed interval. We define a stationary point of a function f:  I → R to be a point a  I in 

whose vicinity “infinitesimal changes in the value of the argument fail to change the 

value of f”, that is, for which f(a + ) = f(a) for all . This means that   f(a) + f ‘(a) = f(a), so 

that f ‘(a) = 0 for all , from which it follows by the Cancellation Principle that f ‘(a) = 0. 

Thus a stationary point of a function is precisely a point at which the derivative of the 

function vanishes.  

 

In classical analysis, if the derivative of a function is identically zero, the function is 

constant. This fact is the source of the following postulate concerning stationary points 

adopted in SIA: 

 

Constancy Principle. If every point in a closed interval I is a stationary point of f: I  → R 

(that is, if f ‘is identically 0), then f is constant.    

 

It follows from the Constancy Principle that two functions with identical derivatives 

differ by at most a constant.  
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Put succinctly, the Constancy Principle asserts that “universal infinitesimal (or “local”) 

constancy implies global constancy”, or “infinitesimal behaviour determines global 

behaviour” The Constancy Principle brings into sharp focus the difference in SIA 

between points and infinitesimals. For if in the Constancy Principle one replaces 

“infinitesimal constancy” by “constancy at a point” the resulting “Principle” is false 

because any function whatsoever is constant at every point. But since in SIA all functions 

on R are smooth, the Constancy Principle embodies the idea that for such functions local 

constancy is sufficient for global constancy, that a nonconstant smooth function must be 

somewhere nonconstant over arbitrarily small intervals.    

 

The Constancy Principle provides another bridge between the infinitesimal world and 

the world “in the large”. Hermann Weyl could not see such a direct linkage between the 

two worlds, and inferred that this absence doomed the idea of infinitesimal, leading to 

its inevitable replacement by the limit concept. In his Philosophy of Mathematics and Natural 

Science he says: 

 

[In its struggle with the infinitely small] the limiting process was victorious. For the 

limit is an indispensable concept, whose importance is not affected by the acceptance or 

rejection of the infinitely small. But once the limit concept has been grasped, it is seen to 

render the infinitely small superfluous. Infinitesimal analysis proposes to draw 

conclusions by integration from the behavior in the infinitely small, which is governed by 

elementary laws, to the behavior in the large; for instance, from the universal law of 

attraction for two material “volume elements” to the magnitude of attraction between two 

arbitrarily shaped bodies with homogeneous or non-homogeneous mass distribution. If the 

infinitely small is not interpreted ‘potentially’ here, in the sense of the limiting process, 

then the one has nothing to do with the other, the process in infinitesimal and finite 

dimensions become independent of each other, the tie which binds them together is cut. 
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In SIA the Constancy Principle reconnects the infinitesimal and the extended. Behaviour 

“in the large” is completely determined by behaviour “in the infinitely small”. 

 

Cohesiveness  of the Continuum in SIA.  In classical analysis the continuum and its closed 

intervals are connected in the sense that they cannot be split into two nonempty subsets 

neither of which contains a limit point of the other. In SIA the Constancy Principle 

ensures that these have the vastly stronger property of cohesiveness (or indecomposability)  

which, we recall, is  the property of not being splittable into two disjoint nonempty parts 

in any way whatsoever. This is clearly equivalent to the condition that any map defined on 

R or one of its closed intervals to {0, 1} takes a constant value. 

 

To show that this condition holds, let A be R or any closed interval, and suppose f: A → 

{0, 1}. We claim that f is constant. For we have, for any x  A, 

 

(f(x) = 0 or f(x) = 1)   &   (f(x + ) = 0 or f(x + ) = 1). 

 

This gives four possibilities: 

  

(i)                         f(x) = 0   &  f(x + ) = 0  

(ii)                        f(x) = 0   &  f(x + ) = 1 

(iii)                       f(x) = 1   &  f(x + ) = 0 

(iv)                       f(x) = 1   &  f(x + ) = 1 

 

Possibilities (ii) and (iii) may be ruled out because f is continuous. This leaves (i) and (iv), 

in either of which f(x) = f(x + ). So f is locally, and hence globally, constant, that is, 

constantly 1 or 0.  

 

From the cohesiveness of closed intervals it can be inferred (Bell 2001) that in SIA all 

intervals in R are cohesive.  
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Smooth infinitesimal analysis as an axiomatic theory; consequences for the continuum. 

SIA can be axiomatized as a theory formulated within (higher-order) intuitionistic logic. 

Here are the basic axioms of the theory (Moerdijk and Reyes 1991). 

 

 

Axioms for the continuum, or smooth real line R. These include the usual axioms 

for a commutative ring with unit expressed in terms of two operations + and  , 

(we usually write xy for x  y) and two distinguished elements 0    1. In addition 

we stipulate that R is an intuitionistic field, i.e., satisfies the following axiom: 

 

x    0 implies  y(xy = 1). 

 

Axioms for the strict order relation < on R. These are: 

 

O1. a < b and b < c implies a < c. 

O2. (a < a) 

O3.  a < b implies a + c < b + c for any c. 

O4.  a < b and 0 < c implies  

O5.  either 0 < a or a < 1. 

O6.  a  b  implies a < b or b < a.  

O7. 0 < x  implies y ( x = y2 ). 

 

Arithmetical Axioms. These govern the set N of Archimedean (or smooth) natural 

numbers, and read as follows: 

 

1. N is a cofinal or Archimedean subset of R, i.e. N  R and x  R n  N x < n. 

2. Peano axioms:   

                               0  N       

ac bc
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                              x  R(x  N → x + 1  N)    

                              x  R(x  N → x + 1   0)    

 

3. Restricted  Induction  scheme. For every formula (x) involving just =,  ,,  

(“true”), ⊥ (“false”),   

 

(0)  xN[(x) →  (x + 1)] → xN (x). 

  

Using restricted induction it follows that  

 

• N has decidable equality, i.e. xNyN (x = y  x  y) 

• N is linearly ordered, i.e. xNyN (x < y  x = y   y < x). 

• N satisfies decidable induction: for any formula (x), 

 

xN((x)  (x)) → [[(0)  xN( (x) →  (x + 1)] → x (x)]. 

 

The relation ≤ on R is defined by a ≤ b  (b < a). The open interval (a, b) and closed 

interval  [a, b] are defined as usual, viz. (a, b) =  {x: a < x < b} and [a, b] = {x: a ≤ x ≤ b}; 

similarly for half-open, half-closed, and unbounded intervals.  It can be shown from the 

axioms introduced so far that closed intervals are stable under the addition of 

infinitesimals.     

 

We have written  for the subset {x: x2 = 0} of R consisting of (nilsquare) infinitesimals.  As 

before, we use the letter  as a variable ranging over .   

 

The two final axioms are: 

         

Infinitesimal Linearity Axiom. For any map g:  → R there exist unique a, b  R such that, 

for all , we have 
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g() = a + b. 

     

 

 

Constancy Axiom. If A  R is any closed interval on  R, or R itself, and f: A → R satisfies         

f(a + ) = f(a) for all a  A and   , then f is constant.   

  

It follows easily from the Infinitesimal Linearity Axiom that  is nondegenerate, i.e.                 

  {0}.3 For if   = {0}, then the identity map i:  →  can be represented as i() = b for 

any b, in violation of the uniqueness condition on b.  It should be noted that, while  does 

not reduce to {0}, nevertheless 0 is the only explicitly nameable element of . For it is easily 

seen to be inconsistent to assert that  actually contains an element  0. 

 

From the nondegeneracy of  we can also (again) refute the Law of Excluded Middle in 

SIA, more particularly, we can prove  

 

(*)                                                                 ( = 0    0). 

 

For we have, for   , 2 = 0, whence (  0), and (*) would give  = 0. So  would be 

degenerate, contrary to what we have already shown. It follows from (*) that, using x and 

y as variables ranging over R,  

 

xy(x = y  x  y ). 

 

In a word, the identity relation is undecidable on R.  

 

Call a binary relation S on R balanced if it satisfies 

 
3 It should be noted that, while  does not reduce to {0}, nevertheless 0 is the only explicitly nameable element of . For it is easily seen to be 

inconsistent to assert that  actually contains an element  0. 
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xy (xRy → xRy). 

 

Then the nondegeneracy of  implies that, in SIA the equality relation is unbalanced. For 

suppose that = were balanced. Then, for any , it would be the case that   0  →  =0. 

But we have already shown above that (  0), so it would follow that  =0. This being 

the case for any ,  would be degenerate.  

 

On the other hand, in SIA the order relation < is balanced. For suppose a < b. Then 

certainly a  b, since a = b → a < b by irreflexivity. Therefore, by axiom O6, a < b or b < a. 

The second disjunct together with  a < b and transitivity gives a < a, which 

contradicts a < a. Accordingly we are left with a < b. Hence < is balanced.  

 

Even allowing for the presence of intuitionistic logic, we note that the algebraic structure 

on R in SIA differs little from that of the usual classical system of real numbers. In SIA, 

R is equipped with the usual addition and multiplication operations under which it is a 

field. In particular, R satisfies the condition that each x  0 has a multiplicative inverse. 

Notice, however, that since in SIA no infinitesimal (apart from 0 itself) is provably  0, 

they are not required to have multiplicative inverses (a requirement which would lead to 

inconsistency). From a strictly algebraic standpoint, R in SIA differs from its classical 

counterpart only in being required to satisfy the Cancellation Principle.  

         

The situation is otherwise, however, as regards the order structure of R in SIA. Since 

infinitesimals do not have multiplicative inverses, and R is an intuitionistic field, it must 

be the case that (  0), whence 

 

 ( < 0     > 0),  
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or equivalently 

 

(  0    0). 

 

It follows easily from this and the nondegeneracy of  that  

 

xy (x < y  y < x  x = y). 

 

In other words the order relation < on R in SIA fails to satisfy the trichotomy law; it is a  

partial, rather than a total ordering.  

 

The axioms of SIA entail that R differs in certain key respects from its counterpart in 

constructive analysis CA (section 4).  For example, in CA the equality relation is balanced, 

while we have shown above that in SIA it is unbalanced. Also in CA the ordering relation 

< satisfies  

 

(*)                                                             (x < y  y < x) → x = y; 

 

and this is incompatible with the axioms of SIA. For (*) implies 

  

(**)                                                        x( x < 0  0 < x) → x = 0. 

 

But in SIA it is easy to derive 

 

x( x < 0  0 < x), 

 

and this, together with (**), would give  = {0}, contradicting the nondegeneracy of . 
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In CA the object  is degenerate while the nondegeneracy of  in SIA is one of its 

characteristic features.  

 

In SIA cohesive subsets of R correspond, grosso modo, to connected subsets of  in 

classical analysis, that is, to intervals. This is borne out by the fact that any puncturing of 

R is decomposable, for it follows immediately from Axiom O6 that 

 

R – {a} = {x: x > a}  {x: x < a}. 

 

The set Q of (smooth) rational numbers is defined as usual to be the set of all fractions of 

the form m/n with m, n  N, n   0. The fact that N is cofinal in R ensures that Q is dense 

in R.  

 

The set R – Q of irrational numbers is decomposable as 

 

R – Q = [{x: x > 0} – Q]  [{x: x < 0} – Q}. 

 

This is in sharp contrast with the situation in intuitionistic analysis that is, CA augmented 

by Kripke’s scheme, Brouwer’s Continuity Principle, and bar induction. For we have 

observed (section 4) that in intuitionistic analysis not only is any puncturing of R 

cohesive, but that this is even the case for the irrational numbers. This would seem to 

indicate that in some sense the continuum in SIA is considerably less “syrupy” than its 

counterpart in SIA.  

        

Comparing the smooth and Dedekind real lines in SIA.  In SIA The usual set  of real 

numbers can be constructed in SIA as Dedekind cuts. A Dedekind real is a pair                                       

(U, V)  P Q  P Q (here  P Q is the power set of Q, the set of rational numbers) satisfying 

the conditions: 
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x y (x  U  y  V) 

U   V  =  

x (x   U  yU. x < y) 

x (x   V  yV. y < x) 

                                                    xy(x < y → x   U   y  V). 

 

The set  of Dedekind reals as thus defined can be turned into an ordered ring (Johnstone 

1977).  This ring is always constructively complete, that is, satisfies the condition: Let A be 

an inhabited subset of  that is bounded above. Then sup A exists if and only if for all x, 

y   with     x < y, either y is an upper bound for A or there exists a  A with x < a. (A 

real number b is called a supremum, or least upper bound, of A if it is an upper bound for A 

and if for each  > 0 there exists x  A with x > b – .) 

 

Although   is constructively complete, it is not conditionally complete in the classical 

sense. (This is because of the failure in SIA of the logical law p  p. The failure of the 

latter in SIA follows immediately from the cohesiveness of R by considering the predicate 

x  0.) 

 

But shares some features of the constructive reals not possessed by R, e.g. 

 

x = y → x = y 

 

xn  = 0 → x = 0.  

 

There is a natural order preserving homomorphism : R →  given by 

 

(r) = ({qQ: q < r}, {qQ: q > r}) 

 

x y y x x y   → =
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This is injective on Q, and embeds Q as the rational numbers in . Moreover, the kernel 

of  coincides with the ideal I of strict infinitesimals in R, so   induces an embedding of 

the quotient ring R/I into . R/I is R shorn of its nilpotent infinitesimals: it is both an 

intuitionistic field and an integral domain, that is, satisfies 

 

x(x   0 → x is invertible)                

 

It can be shown that   is surjective—so that R/I  —precisely when R is constructively 

complete in the sense above. In that event  is both an intuitionistic field and an integral 

domain.  

 

In SIA the usual open interval topology can be defined on . It can be shown (Stout 1976) 

that with this topology  is always connected in the sense that it cannot be partitioned into 

two disjoint inhabited open subsets. In SIA  actually inherits a stronger cohesiveness 

property from R. To see this, call a subset X of a set A detachable if there is a subset Y of A 

such that  X  Y  =   , X  Y = A. Now we can show that, if X is a detachable subset of , 

then    [R]  X or X  [R] =  . For suppose X   detachable and define f:  →{0, 1} 

by f(x) = 1 if   x  X, f(x) = 0 if  x   X. Then f  : R → {0, 1} must be constant since R is 

cohesive. If f   is constantly 1, then [R]  X; if constantly 0, then A  [R] = . It follows 

easily that if  is surjective then is itself cohesive.  

  

 

Nonstandard Analysis in SIA. In certain formulations of SIA the system of natural 

numbers possesses some intriguing features which make it possible to introduce another 

type of infinitesimal—the so-called invertible infinitesimals—resembling those of 

Nonstandard Analysis.  

 

We recall that the set N of smooth natural numbers is required to satisfy not the full 

principle of mathematical induction for arbitrary properties but only the weaker 

[ 0 0 0].x y xy x y  = → =  =
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restricted induction scheme. This raises the possibility that N may not coincide with the 

set  of standard natural numbers, which is defined to be the smallest subset of R containing 

0 and closed under the operation of adding 1. Now, models of SIA have been constructed 

(Moerdijk and Reyes 1991) in which  is a proper subset of N; accordingly the members of 

N –  may be considered nonstandard integers. Multiplicative inverses of nonstandard 

integers are infinitesimals, but, being themselves invertible, they are of a different type 

from the (necessarily noninvertible) nilpotent infinitesimals which are basic to SIA.  

 

Proceeding formally, we define the set  of standard natural numbers to be the 

intersection of all inductive subsets of N, i.e., 

 

 =  

 

 evidently satisfies full induction: 

 

                                 

 

The space of arithmetical infinitesimals is the set 

 

AIN = {x  R: n(-1/(n+1) < x < 1/(n +1)}. 

 

This may be considered the largest infinitesimal neighbourhood of zero in SIA: it contains 

the space  of nilsquare infinitesimals as well as the space of invertible or Robinsonian 

infinitesimals 

 

IN = {x  AIN: x is invertible}.  

 

{ [0 ( 1 ) ].n X X m m X m X n X      → +  → N: N

[0 ( 1 ) ].X X m m X m X X     → +  → =N N
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As inverses of “infinitely large” reals (i.e. reals r satisfying                                                                     

n  . n < r   n  . r < –n) invertible infinitesimals are the counterparts in SIA of the 

infinitesimals of Nonstandard Analysis.  

 

To assert the existence of invertible infinitesimals is to assert that IN be inhabited: this is 

equivalent to asserting that the set N –  of nonstandard integers be inhabited, or 

equivalently, that the following holds: 

 

nNm m < n. 

 

When this condition is satisfied, as it is in certain models of SIA, we shall say that 

nonstandard integers, or invertible infinitesimals, are actually present. It is  consistent to 

assert the actual presence of invertible infinitesimals, i.e., that IN be inhabited,. 

 

One may also postulate the condition  

 

nN[xN– (x > n) → n  ], 

 

i.e. “a natural number which is smaller than all nonstandard natural numbers must be 

standard”. This is in fact equivalent to the condition that  be a stable subset of N, i.e.                 

N – (N – )  = . Assuming that nonstandard integers are actually present, this latter may 

be understood as asserting that as many as possible of these are actually present. 

 

In the presence of invertible infinitesimals is a nonstandard model of the reals lacking 

nilsquare infinitesimals. The passage via the function  from R to  eliminates the 

nilsquare infinitesimals but preserves the invertible infinitesimals. When  is onto,  is a 

cohesive nonstandard model of the reals. 
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Consistency and Models of SIA.  Smooth Infinitesimal Analysis is a fascinating theory 

with many attractive, even exotic features, but one may well ask whether is it consistent. 

Now the consistency of an axiomatic theory is usually established by producing a model 

for it, that is, providing an interpretation of the basic constituents of the theory under 

which all the axioms of the theory can be shown to be true. The consistency of SIA can 

be established by these means. Models of SIA are categories of a certain kind known as 

toposes (or topoi). These originated through the work of Alexander Grothendieck in 

algebraic geometry in the 1950s and 60s as a generalization of the idea of a category of 

sheaves on a topological space (hence the term topos).  In the late 1960s F William Lawvere 

and Myles Tierney formulated a simple but powerful set of first-order axioms 

characterizing the idea underlying Grothendieck’s concept of topos. A category satisfying 

the Lawvere-Tierney axioms was initially known as an elementary topos, and later just a 

topos.  Although the origin of the topos concept lay in topology and algebraic  geometry,  

elementary toposes have deep connections with logic and set theory. In particular, a topos 

can be thought of as a “generalized model of set theory”.. The remarkable thing is that 

the body of laws satisfied by the logical operations in a topos—its “internal logic”—does 

not, in general, correspond to classical logic, but rather to the intuitionistic or constructive 

logic of Brouwer and Heyting in which the law of excluded middle is not affirmed. 

 

Within a topos mathematical concepts can be formulated, arguments carried out and 

constructions performed much as one does in “ordinary” set theory. only observing the 

rules of intuitionistic logic.  

 

In fact, any topos may be regarded as a model of intuitionistic set theory IST.  (By 

intuitionistic set theory IST is meant the theory in intuitionistic first-order logic whose 

axioms are the “usual” axioms of Zermelo set theory (without the Axiom of Choice), 

namely: Extensionality, Pairing, Union, Power set, Infinity and Separation. For an 

exposition of IST, see Bell 2014). This means that, within a topos, mathematical 
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constructions can be carried out as if within IST. In particular, the rational numbers can 

be defined as usual and the real numbers constructed by employing either Dedekind’s 

procedure of making cuts in the rationals or Cantor’s procedure employing equivalence 

classes of Cauchy sequences of rationals. While classically these two constructions lead 

to isomorphic results, this is not true in IST: indeed, a number of toposes have been 

constructed in which the ordered rings of Dedekind and Cantor reals fail to be isomorphic 

(Johnstone 2002).  

 

Accordingly, in a topos-theoretic or constructive universe there is more than one 

candidate for the role of the mathematical continuum. The classical view that the linear 

continuum is a uniquely determined entity gives way to a pluralistic conception under 

which the continuum has a number of embodiments with essentially different properties. 

Even when one decides to choose the Dedekind reals as one’s continuum, its properties 

may fall far short of those possessed by its classical counterpart. For example, in 

intuitionistic logic it cannot be proved that the Dedekind reals satisfy the least upper 

bound property. It can be shown (Johnstone 2002) that, in a topos, the Dedekind reals 

possess this property exactly when the logical law (  ) → (  ) holds there. This 

is an arresting instance of the connection between logic and the properties of the 

mathematical continuum made visible by the shift from classical to constructive logic.   

 

The practice of topos theory quickly spawned an associated philosophy—jocularly 

known as “toposophy”— whose chief tenet is the idea that, like a model of set theory, 

any topos may be taken as a taken as an autonomous universe of discourse or “world” in 

which mathematical concepts can be interpreted and constructions performed (Bell 1986, 

1988). These “worlds” opened up by topos theory can have startlingly different 

properties from the world of classical mathematics. For example, recall that in 1924 

Brouwer proved from his intuitionistic principles that every real-valued function on a 

closed interval of the intuitionistic continuum of real numbers is uniformly continuous, 

in short, that the intuitionistic continuum has the Brouwer Property. This is of course 
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inconsistent with the classical account of the continuum. But a number of toposes have 

been constructed in which the continuum of Dedekind reals has the Brouwer property 

(Mac Lane and Moerdijk 1992). In these all closed intervals in the Dedekind continuum 

are cohesive. 

 

Toposes which are models of SIA have also been constructed. The basic ideas here go 

back to Lawvere.  In the 1960s he conceived the ideas of developing the concept of 

smoothness in category-theoretic terms and of employing nilpotent infinitesimals in the 

calculus and differential geometry. The framework he formulated is known as synthetic 

differential geometry (SDG). The key principle of SIA, what we have termed the 

Infinitesimal Linearity Principle, was given its explicit form by Lawvere and Anders 

Kock,  and, as remarked above,  is  often  called the Kock-Lawvere axiom. The explicit 

construction of topos models of SIA in which differential geometry can be fully 

developed – so-called smooth toposes (Moerdijk and Reyes 1991) was first achieved by 

Dubuc in 1979.  This, no easy task, established fully the consistency of SIA. 

 

Contrasting Nonstandard Analysis with SIA. SIA shares with Nonstandard Analysis 

(NSA) the feature that continuity is represented by the idea of “preservation of 

infinitesimal closeness”. Nevertheless, there are a number of differences between the two 

approaches: 

 

• In models of SIA, only smooth maps between objects are present. In models of 

NSA, all set-theoretically definable maps (including, in particular, discontinuous 

ones) appear. 

• The logic of SIA is intuitionistic, while the logic of SIA is classical. (It should be 

pointed out, however, that constructive versions of NSA have been developed. 

See Palmgren 1998). 

• In SIA, all curves are infinitesimally straight. Nothing resembling this is present 

in NSA. 
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• The nilpotency of the infinitesimals of SIA reduces the differential calculus to 

simple algebra. In NSA the use of infinitesimals is a disguised form of the classical 

limit method. 

• The hyperreal line in NSA is obtained by augmenting the classical real line with 

infinitesimals (and infinite numbers), while the smooth real line R comes already 

equipped with infinitesimals.  

• In any model of NSA, the hyperreal line   has exactly the same set-theoretically 

expressible properties as does the classical real line: in particular   is an 

archimedean field in the sense of that model. This means that the infinitesimals 

(and infinite numbers) of NSA are not intrinsically so in the sense of the model in 

which they “live”, but only relative to the “standard” model with which the 

construction began. That is, speaking figuratively, an inhabitant of a model of NSA 

would be unable to detect the presence of infinitesimals or infinite numbers in  . 

This contrasts with SIA in two respects. First, in models of SIA containing 

invertible infinitesimals, the real line is nonarchimedean with respect to the set of 

standard natural numbers, which is itself an object of the model. In other words, 

the presence of (invertible) infinitesimals and infinite numbers would be perfectly 

detectable by an inhabitant of the model. And secondly, the characteristic property 

of nilpotency possessed by the microquantities of a model of SIA is an intrinsic 

property, perfectly identifiable within the model. In NSA the hyperreals have 

precisely the same algebraic properties as do the classical real numbers, but the 

smooth reals in SIA do not. 

 

The differences between NSA and SIA arise because the former is essentially a theory of 

infinitesimal numbers designed to provide a succinct formulation of the limit concept, 

while the latter is, by contrast, a theory of infinitesimal geometric objects, designed to 

provide an intrinsic formulation of the concept of differentiability. 
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SIA and Physics. In the past physicists showed no hesitation in employing infinitesimal 

methods, In this connection we recall the words of Hermann Weyl: 

 

The principle of gaining knowledge of the external world from the behaviour of its 

infinitesimal parts is the mainspring of the theory of knowledge in infinitesimal physics as 

in Riemann’s geometry and, indeed, the mainspring of all the eminent work of Riemann 

(Weyl 1922, p. 92). 

 

The use of infinitesimals relied on the implicit assumption that the (physical) world is 

smooth, or at least that the maps encountered there are differentiable as many times as 

needed. For this reason SIA provides an ideal framework for the rigorous derivation, 

using infinitesimals, of results in classical physics (Bell 1998). We present two of these 

here.  

 

First, we derive the equation of continuity for fluids, first derived in 1757 by Euler.by 

original derivation by Euler  The derivation in SIA will follow Euler’s very closely, but 

the use of nilsquare infinitesimals and the Cancellation Principle will render the 

argument entirely rigorous. 

 

Before we begin we require a few observations on partial derivatives in SIA. Given a 

function  f: Rn  → R of n variables x1, ..., xn, the partial derivative  is defined as usual 

to be the derivative of the function f  (a1, ... , xi, ... , an) obtained by fixing the values of all 

the variables apart from xi. In that case, for an arbitrary infinitesimal , we have  

 

(1)    

 

Using the fact that 2 = 0, it is then easily shown that 

i

f

x





1 1 1( ,..., ,..., ) ( ,..., ) ( ,..., ).i n n n

i

f
f x x x f x x x x

x


+  = + 


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(2)                            

          

These equations are pivotal in deriving the equation of continuity. Here we are given a 

inviscid fluid of varying density flowing smoothly in space. At any point O = (x, y, z) in 

the fluid and at any time t, the fluid’s density  and the components u, v, w of the fluid’s 

velocity are given as functions of x, y, z, t. Following Euler, we consider the elementary 

volume element E—an infinitesimal parallelepiped—with origin O and edges OA, OB, 

BC of infinitesimal lengths , ,  and so of mass : 

 

 

 

 
 

 
 

Fluid flow during the infinitesimal time  transforms the volume element E into the 

infinitesimal parallelepiped E’ (see figure above) with vertices O’ , A’, B’, C’. We first 

calculate the length of the side O’A’.  Now, using (1), the rate at which A is moving away 

from O in the x-direction is  

                                                       

1 1 1 1
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u(x + , y, z, t) – u(x , y, z, t)  =  

The change in length of OA during the infinitesimal time  is thus  so that the length 

of O’A’ is  

 

 

Similarly, the lengths of O’B’ and O’C’  are, respectively, 

 

 

 

 

The volume of E’ is the product of these three quantities, which, using the fact that 2 = 0, 

comes out as 

 

(3) . 

 

Since the coordinates of O’ are (x+u, y+v, z+w), the fluid density ’ there at timet +  

is, using (2),  

 

(4)  

 

The mass of E’ is then the product of (3) and (4), which, again using the fact that that  2 

= 0, comes out as 

 

(5)                     

 

Now by the principle of conservation of mass, the masses of the fluid in E and E’ are the 

same, so equating the mass  of E to the mass of E’ given by (5) yields 

.
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The Cancellation Principle gives  

 

 

 

i.e.,  

 

 
. 

 

This is Euler’s equation of continuity. 

 

Next, we derive the Kepler-Newton areal law of motion under a central force. We suppose that 

a particle executes plane motion under the influence of a force directed towards some 

fixed point O. If P is a point on the particle’s trajectory with coordinates x, y, we write r 

for the length of the line PO and  for the angle that it makes with the x-axis OX. Let A be 

the area of the sector ORP, where R is the point of intersection of the trajectory with OX. 

We regard x, y, r,  as functions of a time variable t: thus  

 

x = x(t), y = y(t), r = r(t),  = (t), A = A(t). 
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Now let Q be a point on the trajectory at which the time variable has value  t + , with  

in  (figure above). Then by Infinitesimal Straightness the sector OPQ is a triangle of base 

r(t + ) =  r + r’ and height  

r sin[(t + ) – (t)] = r sin ’ = r’. 

  

Here we have used the fact in SIA sin  =  for infinitesimal  (Bell 1998). 

 

The area of OPQ is accordingly 

 

2 base  height = 2 (r + r’)r’ = 2(r2’ + 2rr’ ’) = 2 r2’. 

 

Therefore 

 

A’(t) = A(t + ) – A(t) = area OPQ = 2r2’, 

 

so that, cancelling ,  

                                           A’(t) = 2r2’.                                  (*) 
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Now let H = H(t) be the acceleration towards O induced by the force. Resolving the 

acceleration along and normal to OX, we have 

 

x’’ = H cos        y ‘’ = H sin. 

 

Also x = r cos, y = r sin. Hence 

 

yx’’= Hy cos = Hr sin cos         xy ‘’ = Hx sin = Hr sin cos, 

 

from which we infer that 

 

        (xy’ – yx’)’ =  xy ‘’ – yx ‘’ = 0.      

 

Hence 

                                                                  xy’ – yx’ = k,                                            (**) 

 

where k is a constant.    

                           

Finally, from x = r cos,  y = r sin, it follows in the usual way that 

 

xy’ – yx’ = r2’,  

 

and hence, by (**) and (*), that 

 

A’(t) = 2k. 

 

Assuming A(0) = 0, we conclude that 
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A(t) = 2kt. 

  

Thus the radius vector joining the body to the point of origin sweeps out equal areas in 

equal times (Kepler’s law). 

 

 There is an intriguing use of infinitesimals in Einstein’s celebrated 1905 paper On the 

Electrodynamics of Moving Bodies (Einstein et al 1952) in which the special theory of 

relativity is first formulated. In deriving the Lorentz transformations from the principle 

of the constancy of the velocity of light Einstein obtains the following equation for the 

time coordinate   (x’, y, z, t) of a moving frame: 

 

(i)  

He continues: 

 

 Hence, if x’ be chosen infinitesimally small, 

 

(ii)  

 

or 

 

 

  

Now the derivation of equation (ii) from equation (i) can be simply and rigorously carried 

out in SIA by choosing x’ to be a nilsquare infinitesimal . For then (i) becomes 
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From this we get, using equation (1) above,  

 

 

 

So  

 

 

 

 

and (ii) follows by the Cancellation Principle. 

 

Spacetime metrics have some intriguing properties in SIA. In a spacetime the metric can 

be written in the form 

 

(*)                                      ds2  =  gdxdx        , = 1, 2, 3, 4. 

 

In the classical setting (*) is in fact an abbreviation for an equation involving derivatives 

and the “differentials” ds and dx are not really quantities at all. What form does this 

equation take in SIA? Notice that the “differentials” cannot be taken as infinitesimals in 

the sense of SIA  since all the squared terms would vanish. But the equation does have a 

very natural form in SIA. Here is an informal way of obtaining it. 

 

Think of the dx as being multiples ke of some small quantity e. Then (*) becomes  

 

ds2  =  e2gkk, 
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so that  

. 

 

Now replace e by a nilsquare infinitesimal . Then we obtain the metric relation: in SIA 

 

. 

 

This tells us that the “infinitesimal distance” ds between a point P with coordinates          

(x1, x2, x3, x4) and an infinitesimally near point Q with coordinate                                                       

(x1 + k1, x2 + k2, x3 + k3, x4 + k4) is . Here a curious situation arises. For when 

the “infinitesimal interval” ds between P and Q is timelike (or lightlike), the quantity 

is nonnegative, so that its square root is a real number. In this case ds may be 

written as d, where d is a real number. On the other hand, if ds is spacelike, then 

is negative, so that its square root is imaginary. In this case, then, ds assumes the form 

id, where d is a real number (and, of course   i = ). On comparing these we see that, if 

we take  as the “infinitesimal unit” for measuring infinitesimal timelike distances, then i 

serves as the “imaginary infinitesimal unit” for measuring infinitesimal spacelike 

distances.  

 

 For purposes of illustration (see figure below), let us restrict the spacetime to two 

dimensions (x, t), and assume that the metric takes the simple form ds2 = dt2 – dx2. The 

infinitesimal light cone at a point P divides the infinitesimal neighbourhood at P into a 

timelike region T  and a spacelike region S bounded by  the  null  lines l and l ‘ respectively 

(see figure below). If we take P as origin of coordinates, a typical point Q in this 

neighbourhood will have coordinates (a, b) with a and b real numbers: if |b| > |a|, Q 

lies in T; if a = b, P lies on l or l ‘; if |a| < |b|, P lies in S. If we write , then in 

ds e g k k  
= 

ds g k k  
=  

g k k  
 

g k k  

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the first case, the infinitesimal distance between P and Q is d, in the second, it is 0, and 

in the third it is id. 

 
  
 
 
 
 
 
                                                                                                
  
 
 
 

 

At the beginning of the 20th century Poincaré and   Minkowski introduced “ict” to replace 

the “t” coordinate so as to make the metric of relativistic spacetime positive definite. This 

was purely a matter of formal convenience and was later rejected by (general) relativists. 

In conventional physics one never works with nilpotent quantities so it is always possible 

to replace formal imaginaries by their (negative) squares. But spacetime theory in SIA 

forces one to use imaginary units, since, infinitesimally, one can’t “square oneself out of 

trouble”. This being the case, it would seem that, infinitesimally the dictum   Farewell to 

ict  (Misner, Thorne and Wheeler 1971)  needs to be replaced by 

 

Vale “ict”, ave “i” !  

 

We conclude this section with a speculation. The infinitesimal domain  can be seen to 

be “tiny” in the order-theoretic sense. For, using , ,  as variables ranging over , it is not 

hard to show that 

 

(*)                                                           

 

whence                                                   

( ).      

                         t        

                                          

                            Q                               

                           lhh            x             

                                               

                                               

  l    T      Q  l’                                                       

      P          S    

S’ 

        

          T 



149 

 

                                                                

 

In particular, the members of  are all simultaneously  0 and but cannot (because of 

the nondegeneracy of ) be shown to coincide with zero.  

 

In his book Just Six Numbers (Rees 2001) the astrophysicist Martin Rees comments on the 

microstructure of space and time, and the possibility of developing a theory of quantum 

gravity. In particular he says: 

 

Some theorists are more willing to speculate than others. But even the boldest acknowledge 

the “Planck scales” as an ultimate barrier. We cannot measure distances smaller than the 

Planck length [about 1019 times smaller than a proton]. We cannot distinguish two events 

(or even decide which came first) when the time interval between them is less than the 

Planck time (about 10–43 seconds). 

 

On this account, Planck scales seem very similar in certain respects to . In particular, the 

sentence (*) above seems to be an exact embodiment of the idea that we cannot decide of 

two “events” in  which came first; in fact it makes the stronger assertion that actually 

neither comes “first”.  

 

Could  serve as a suitable model for “Planck scales”? While  is unquestionably small 

enough to play the role, it inhabits a domain in which everything is smooth and 

continuous, while Planck scales live in the quantum world which, if not outright discrete, 

is far from being universally continuous. So if Planck scales could indeed be modelled by 

microneighbourhoods in SIA, then one might begin to suspect that the quantum 

microworld, the Planck regime—smaller, in Rees’s words, “than atoms by just as much 

as atoms are smaller than stars”—is not, like the world of atoms, discrete, but instead 

continuous like the world of stars. This would be a major victory for the Continuous in 

its long struggle with the Discrete.                

( ).       

 0
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