A NOTE ON GENERIC ULTRAFILTERS

by J. L. Bell in London (England)

Let $\mathfrak{M} = \langle M, \epsilon \rangle$ be a transitive ϵ -model of ZFC (Zermelo-Fraenkel set theory with the axiom of choice) and let $B \in M$ be a complete Boolean algebra in the sense of \mathfrak{M} . Thus, if $X \in P^{(\mathfrak{M})}(B) = P(B) \cap M$, then $\bigvee X$ and $\bigwedge X$, the join and meet of X, exist and are in M. (Here P(B), $P^{(\mathfrak{M})}(B)$ are, respectively, the power set of B and the power set of B computed in \mathbb{M} .) An ultrafilter U in B (U need not be in M!) is said to respect the join $\bigvee X$, for $X \in P^{(\mathfrak{M})}(B)$, if

$$\bigvee X \in U \Rightarrow X \cap U \neq \emptyset$$

(the reverse implication holding trivially). If $\mathscr{S} \subseteq P^{(\mathfrak{M})}(B)$, then U is said to be \mathscr{S} -complete if U respects the join $\bigvee X$ for every $X \in \mathscr{S}$. A $P^{(\mathfrak{M})}(B)$ -complete ultrafilter is said to be \mathfrak{M} -generic. In this note we show that several apparently weak conditions on an ultrafilter in B are actually sufficient for \mathfrak{M} -genericity.

We construct the *B-extension* $M^{(B)}$ of \mathfrak{M} in the usual way, following Jech [1]. We write $\|\sigma\|$ for the *B*-value of any sentence σ of the language of set theory (which may contain names for elements of $M^{(B)}$). Well-known is the fact that $\|\sigma\| = 1^1$) whenever σ is a theorem of ZFC. We also recall that there is a natural map $x \mapsto \hat{x}$ of \mathfrak{M} into $M^{(B)}$.

A subset $\{b_i: i \in I\}$ of B is called an \mathfrak{M} -partition of B if (1) $b_i \neq 0$ for all $i \in I$, (2) $\langle b_i: i \in I \rangle \in M$, (3) $\bigvee_{i \in I} b_i = 1$ and (4) $b_i \wedge b_j = 0$ whenever $i, j \in I$ and $i \neq j$. We

have the following well-known facts (the first of which is a special case of the so-called "Mixing Lemma", see [1], Lemma 49):

Lemma 1. Let $\{b_i : i \in I\}$ be an \mathfrak{M} -partition of B and let $\{x_i : i \in I\} \in M$. Then there is $x \in M^{(B)}$ such that $b_i = ||x = \hat{x}_i||$ for all $i \in I$.

Lemma 2. Let U be an ultrafilter in B. Then U is generic iff whenever $\{b_i : i \in I\}$ is an \mathfrak{M} -partition of B, there is $i \in I$ such that $b_i \in U$.

Now let U be an ultrafilter in B which we assume fixed once and for all. There is a natural way of factoring $M^{(B)}$ by U; for $x, y \in M^{(B)}$ we put $x \sim_U y \Leftrightarrow \|x = y\| \in U$. It is easily verified that \sim_U is an equivalence relation on $M^{(B)}$. We write x^U for the \sim_U -class of x and define the relation \in_U on the set $M^{(B)}/U$ of all \sim_U -classes by

$$x^U \in_U y^U \Leftrightarrow ||x \in y|| \in U$$
.

We define the quotient of $M^{(B)}$ by U to the structure $\mathfrak{M}^{(B)}/U = \langle M^{(B)}/U, \epsilon_U \rangle$. We have the following well-known version of Łoś' theorem for $\mathfrak{M}^{(B)}/U$:

Lemma 3. For any formula $\varphi(v_0,\ldots,v_n)$ and any $x_0,\ldots,x_n\in M^{(B)}$,

$$\mathfrak{M}^{(B)}/U \models \varphi[x_0^U,\ldots,x_n^U] \Leftrightarrow \|\varphi(x_0,\ldots,x_n)\| \in U.$$

It follows immediately from this lemma that $\mathfrak{M}^{(B)}/U$ is a model of ZFC.

Now let Ord(x) be the formula expressing that x is an ordinal. An element $a \in M^{(B)}/U$ is called an $ordinal\ in\ \mathfrak{M}^{(B)}/U$ if $\mathfrak{M}^{(B)}/U \models Ord[a]$. Let $OR^{(\mathfrak{M})}$ be the set of ordinals of \mathfrak{M} ; then for each $\alpha \in OR^{(\mathfrak{M})}$, α^U is an ordinal in $\mathfrak{M}^{(B)}/U$ called a standard ordinal in $\mathfrak{M}^{(B)}/U$.

Let \mathscr{S}_1 be the subfamily of $P^{(\mathfrak{M})}(B)$ consisting of all subsets of B of the form $\{\|x=\alpha\|:\alpha\in OR^{(\mathfrak{M})}\}$ for $x\in M^{(B)}$. It is well-known that, for any $x\in M^{(B)}$, we have

$$\|\mathbf{Ord}(x)\| = \bigvee_{\alpha \in OR^{(\mathfrak{M})}} \|x = \hat{\alpha}\|.$$

^{1) 1, 0} denote the unit and zero element of B, respectively.

We are now ready to state and prove our first result.

Theorem 1. The following conditions are equivalent:

- (i) Each ordinal in $\mathfrak{M}^{(B)}/U$ is standard;
- (ii) U is \mathcal{S}_1 -complete;
- (iii) U is M-generic.

Proof. (i) \Rightarrow (ii). Assume (i); then if $\bigvee_{\alpha \in OR^{(\mathfrak{M})}} \|x = \hat{\alpha}\| \in U$, we have $\|Ord(x)\| \in U$ by (1),

so $\mathfrak{M}^{(B)}/U \models \mathbf{Ord}[x^U]$ by Lemma 3. Hence (i) gives $x^U = \hat{\alpha}^U$ for some $\alpha \in \mathbf{OR}^{(\mathfrak{M})}$, whence $||x = \alpha|| \in U$, and (ii) follows.

(ii) \Rightarrow (iii). Assume (ii), let $\alpha \in OR^{(\mathfrak{M})}$ and let $\{b_{\xi} : \xi < \alpha\}$ be an \mathfrak{M} -partition of B with $\alpha \in OR^{(\mathfrak{M})}$. By Lemma 1 we can find $x \in M^{(B)}$ such that $b_{\xi} = ||x| = \hat{\xi}||$ for all $\xi < \alpha$. We have

 $\bigvee_{\boldsymbol{\xi} \in OR^{(\mathfrak{M})}} \|x = \hat{\xi}\| \ge \bigvee_{\boldsymbol{\xi} < \alpha} \|x = \hat{\xi}\| = 1 \in U,$

so by (ii) there is $\xi_0 \in OR^{(\mathfrak{M})}$ such that $||x = \hat{\xi}_0|| \in U$. If $\xi \geq \alpha$, $\xi \in OR^{(\mathfrak{M})}$, it is clear that $||x = \hat{\xi}|| = 0$, so we must have $\xi_0 < \alpha$. Hence $b_{\xi_0} = ||x = \hat{\xi}_0|| \in U$ and (iii) now follows from Lemma 2.

(iii) ⇒ (i). Assume (iii); then we have, using (1) and Lemma 3,

$$\mathfrak{M}^{(B)}/U \models \mathbf{Ord}[x^U] \Leftrightarrow \|\mathbf{Ord}(x)\| \in U$$

$$\Leftrightarrow \bigvee_{\alpha \in \mathbf{OR}^{(\mathfrak{M})}} \|x = \hat{\alpha}\| \in U$$

$$\Leftrightarrow \|x = \hat{\alpha}\| \in U \text{ for some } \alpha \in \mathbf{OR}^{(\mathfrak{M})}$$

$$\Leftrightarrow x^U = \hat{\alpha}^U \text{ for some } \alpha \in \mathbf{OR}^{(\mathfrak{M})},$$

and (i) follows.

Corollary. If U is \mathcal{S}_1 -complete, then \in_U is a well-founded relation.

Proof. If U is \mathscr{S}_1 -complete, then Theorem 1 shows that the map $\alpha \mapsto \mathscr{L}^U$ sends the well-ordered set $OR^{(\mathfrak{M})}$ onto the set of ordinals of $\mathfrak{M}^{(B)}/U$. This map is clearly order-preserving, and it follows that the ordinals of $\mathfrak{M}^{(B)}/U$ are well-ordered under ϵ_U . The usual rank argument now yields the well-foundedness of ϵ_U . \square

It is worth observing that, assuming the existence of a measurable cardinal, the converse of this corollary fails. This can be seen as follows. Take M = V, the universe of all sets, let \varkappa be a measurable cardinal and let D be a non-principal \varkappa -complete ultrafilter in the complete Boolean algebra $P\varkappa$. Then by standard results $V^{(P\varkappa)}/D$ is isomorphic to the ultrapower V^{\varkappa}/D and is therefore well-founded by Scott [2]. On the other hand D cannot be \mathscr{S}_1 -complete, because if it were it would be V-generic by Theorem 1, and hence principal, contrary to assumption. (This argument is due to Dana Scott.)

Suppose now that \in_U is a well-founded relation. Then $\mathfrak{M}^{(B)}/U$ can be collapsed uniquely to a transitive \in -structure $\mathfrak{M}[U] = \langle M[U], \in \rangle$ via the map h defined recursively on \in_U by

$$h(x^U) = \{h(y^U) : y^U \in x^U\} = \{h(y^U) : ||y \in x|| \in U\}.$$

Thus $h: \mathfrak{M}^{(B)}/U \to \mathfrak{M}[U]$ is a bijection satisfying $x^U \in_U y^U \Leftrightarrow h(x^U) \in h(y^U)$. Under these conditions we can define a surjection $i: M^{(B)} \to \mathfrak{M}[U]$ by putting $i(x) = h(x^U)$ for $x \in M^{(B)}$. Clearly we have, for $x \in M^{(B)}$,

(2)
$$i(x) = \{i(y) : ||y \in x|| \in U\}.$$

Our next lemma follows immediately from Lemma 3 and the fact that h is an isomorphism of $\mathfrak{M}^{(B)}/U$ onto $\mathfrak{M}[U]$.

Lemma 4. For any formula $\varphi(v_0,\ldots,v_n)$ and any $x_0,\ldots,x_n\in M^{(B)}$,

$$\mathfrak{M}[U] \models \varphi[i(x_0), \ldots, i(x_n)] \Leftrightarrow \|\varphi(x_0, \ldots, x_n)\| \in U.$$

Now define $j: \mathfrak{M} \to \mathfrak{M}[U]$ by putting $j(x) = i(\mathbf{\hat{z}})$ for $x \in M$. Then j is an ϵ -monomorphism. Also, let \mathcal{S}_2 be the subfamily of $P^{(\mathfrak{M})}(B)$ consisting of all subsets of B of the form $\{\|x=\hat{z}\|:z\in y\}$ for $x\in M^{(B)},y\in M$. We note the following well known fact

(3)
$$\|x \in \hat{y}\| = \bigvee_{z \in y} \|x = \hat{z}\|.$$
 Theorem 2. The following conditions are equivalent:

- U is \mathcal{S}_2 -complete;
- \in_{U} is well-founded and j is the identity on \mathfrak{M} ;
- (iii) $\in_{\mathcal{U}}$ is well-founded and $j[\mathfrak{M}]$ is transitive;
- (iv) U is M-generic.

Proof. (i) \Rightarrow (iv) Assume (i), and let $\{b_i : i \in I\} = y$ be an \mathfrak{M} -partition of B. Then by Lemma 1 we can find $x \in M^{(B)}$ such that $b_i = ||x = \hat{b}_i||$ for all $i \in I$. Hence

$$\bigvee_{\mathbf{z} \in \mathbf{y}} \| x = \mathbf{\hat{z}} \| = \bigvee_{i \in I} \| x = \hat{b}_i \| = \mathbf{1} \in U,$$

so by (i) there is $z \in y$ such that $||x = \hat{z}|| \in U$. Since $z = b_i$ for some $i \in I$, it follows that $b_i = ||x = \hat{b}_i|| \in U$, and (iv) now follows from Lemma 2.

(iv) \Rightarrow (iii). Assume (iv). Then \in_U is well-founded by the Corollary to Theorem 1. Also, if $y \in M$ and $x \in j(y)$ then, since $\mathfrak{M}[U]$ is transitive, there is $x' \in M^{(B)}$ such that x=i(x'). Thus $i(x')\in j(y)=i(\hat{y})$, so that, by (2), $||x'\in\hat{y}||\in U$. It follows from (iv) and (3) that there is $z \in y$, hence $z \in M$ such that $||x'| = \hat{z}|| \in U$, whence $x = i(z) \in i[\mathfrak{M}]$. This proves (iii).

(iii) \Rightarrow (i). Assume (iii). If $x \in M^{(B)}$, $y \in M$, then

$$\bigvee_{z \in y} \|x = \hat{z}\| \in U \Rightarrow \|x \in \hat{y}\| \in U \quad \text{(by (3))}$$

$$\Rightarrow x^U \in_U \hat{y}^U$$

$$\Rightarrow h(x^U) \in h(\hat{y}^U)$$

$$\Rightarrow i(x) \in i(\hat{y}) = j(y)$$

$$\Rightarrow i(x) = j(z) \text{ for some } z \in M \quad \text{(by (iii))}$$

$$\Rightarrow z \in y.$$

Hence $i(x) = j(z) = i(\hat{z})$, so, by Lemma 4, $||x = \hat{z}|| \in U$. (i) follows.

Finally, the equivalence of (ii) and (iii) follows immediately from the transitivity of \mathfrak{M} and the fact that j is an \in -isomorphism of \mathfrak{M} onto $j[\mathfrak{M}]$. \square

Remark. The equivalence of (i) and (iv) was suggested to me by B. Balcar.

Now define $U_* \in M^{(B)}$ by domain $(U_*) = \{\hat{x}: x \in B\}$ and $U_*(\hat{x}) = x$ for $x \in B$. U_* is called the canonical generic ultrafilter in $\mathfrak{M}^{(B)}$, since, as is well-known, we have $||U_*$ is a $P^{(\mathfrak{M})}(B)$ -complete ultrafilter in $\hat{B}||=1$. We observe that, for $x\in M^{(B)}$,

$$\|x\in U_{*}\| = \bigvee_{y\in B}y\wedge\|x=\hat{y}\|\,.$$

Let \mathcal{S}_3 be the subfamily of $P^{(\mathfrak{M})}(B)$ consisting of all subsets of B of the form $\{y \land \|x = \hat{y}\| : y \in B\} \text{ for } x \in M^{(B)}.$

Our final result in this note is the following

Theorem 3. The following conditions are equivalent:

- U is \mathcal{S}_3 -complete;
- (ii) \in_U is well-founded, j is the identity on U, and $i(U_*) = U$;
- (iii) U is M-generic.

Proof. (i) \Rightarrow (iii). Assume (i). Let $\{b_i : i \in I\}$ be an \mathfrak{M} -partition of B; then by Lemma 1 we can find $x \in M^{(B)}$ such that $b_i = ||x = \hat{b_i}||$ for $i \in I$. We have

$$\bigvee_{y \in B} y \wedge \|x = \hat{y}\| \ge \bigvee_{i \in I} b_i \wedge \|x = \hat{b}_i\| = \bigvee_{i \in I} b_i = 1$$

 $\bigvee_{y \in B} y \wedge \|x = \hat{y}\| \geqq \bigvee_{i \in I} b_i \wedge \|x = \hat{b}_i\| = \bigvee_{i \in I} b_i = 1.$ Hence, by (i), there is $y \in B$ such that $y \wedge \|x = \hat{y}\| \in U$. If $y \notin \{b_i \colon i \in I\}$, then

$$\|x = \hat{y}\| = \|x = \hat{y}\| \wedge 1 = \|x = \hat{y}\| \wedge \bigvee_{i \in I} \|x = \hat{b}_i\| \leq \bigvee_{i \in I} \|\hat{y} = \hat{b}_i\| = 0,$$

so that $||x = \hat{y}|| \notin U$. It follows that $y = b_i$ for some $i \in I$, whence $b_i \wedge ||x = \hat{b}_i|| \in U$, and so $b_i \in U$. (iii) now follows from Lemma 2.

(iii) \Rightarrow (ii). Assume (iii). Then \in_U is well-founded and j is the identity on U by Theorem 2. We also claim that for $x \in M^{(B)}$, $\{i(x) \colon \|x \in U_*\| \in U\} = \{i(\hat{y}) \colon y \in U\}$. In fact this follows from the chain of equivalences:

$$\begin{split} \|x \in U_*\| \in U &\Leftrightarrow \bigvee_{y \in B} y \wedge \|x = \hat{y}\| \in U \quad \text{(by (4))} \\ &\Leftrightarrow \exists y \in B[y \wedge \|x = \hat{y}\| \in U] \quad \text{(by (iii))} \\ &\Leftrightarrow \exists y \in U[\|x = \hat{y}\| \in U]. \\ &\Leftrightarrow \exists y \in U[i(x) = i(\hat{y})]. \end{split}$$

Now we have $i(U_*) = \{i(x) \colon \|x \in U_*\| \in U\} = \{i(\hat{y}) \colon y \in U\} = \{j(y) \colon y \in U\} = U$ and so (ii) follows.

(ii) \Rightarrow (i). Assuming (ii), we have

(5)
$$U = i(U_*) = \{i(x) \colon ||x \in U_*|| \in U\}.$$

Hence

$$\bigvee_{y \in B} y \wedge \|x = \hat{y}\| \in U \Rightarrow \|x \in U_*\| \in U \quad \text{(by (4))}$$

$$\Rightarrow i(x) \in U \quad \text{(by (5))}$$

$$\Rightarrow i(x) = y = j(y) \text{ for some } y \in U \text{ (since } j \text{ is the identity on } U \text{)}$$

$$\Rightarrow i(x) = i(\hat{y})$$

$$\Rightarrow \|x = \hat{y}\| \in U$$

$$\Rightarrow y \wedge \|x = \hat{y}\| \in U ,$$

and (i) follows.

Acknowledgements. I wish to express my gratitude to Bohuslav Balcar and Dana Scott for helpful observations and suggestions.

References

- [1] JECH, T., Lectures on Set Theory. Springer Lecture Notes in Mathematics 217.
- [2] Scott, D., Measurable cardinals and constructible sets. Bull. Acad. Pol. Sci. 9 (1961), 521-524.

(Eingegangen am 28. November 1974 und 9. Oktober 1975)