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This paper treats some of the issues raised by Putnam's discussion of, and
claims for, quantum logic, specifically: that its proposal is a response to ex-
perimental difficulties; that it is a reasonable replacement for classical logic be-
cause its connectives retain their classical meanings, and because it can be de-
rived as a logic of tests. We argue that the first claim is wrong (1), and that
while conjunction and disjunction can be considered to retain their classical
meanings, negation crucially does nor. The argument is conducted via a thor-
ough analysis of how the meet, join and complementation operations are defined
in the relevant logical structures, respectively Boolean- and ortholattices (3).
Since Putnam wishes to reinstate a realist interpretation of quantum mechanics,
we ask how quantum logic can be a logic of realism. We show that it certainly
cannot be a logic of bivalence realism (i.e., of truth and falsity), although it is
consistent with some form of onrological realism (4). Finally, we show that
while a reasonable explication of the idealized notion of test yields interesting
mathematical structure, it by no means yields the rich ortholattice structure
which Putnam (following Finkelstein) seeks.

In his (1969), Putnam argues that logic is ‘in a certain sense a natural
science’ (p. 174), and that the natural logic for quantum mechanics is the
so-called quantum logic. The aim of this paper is to examine the basis
for these claims, and to show where they go wrong. Despite (or perhaps
because of!) the huge literature on quantum logic, there is still a good
deal of confusion about the subject, and it seems to us that many of the
fundamental issues remain shrouded in obscurity. We take Putnam’s pa-
per as a starting point because it has the admirable merit of putting for-
ward various bold theses. By showing where we think Putnam is mistaken
we hope to shed light on at least some of the problem areas. We con-
centrate on four topics central to Putnam’s paper: the question of in what
sense logic can be said to be empirical; the relationship between quantum
logic and classical logic; the adequacy of quantum logic as a logic of
realism; and the Putnam-Finkelstein attempt to base quantum logic on an

operationally determined semantics.
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as a direct result of a clash between a theoretical system and experiment.
If this happened, one could surely say that observation of the world had
directly affected our decisions about logical laws, thus showing logic to
be empirical in a very strong sense.' The opening paragraph of Putnam's
paper suggests that he believes that developments in quantum mechanics
and the emergence of quantum logic show logic to be empirical in pre-
cisely this sense.

I. .. want to raise the question: could some of the ‘necessary truths’
of logic turn out to be false for empirical reasons? 1 shall argue that
the answer to this question is in the affirmative, . . . (Putnam 1969,
p. 174; Putnam’s italics).

The first point we wish to make in this paper is that, whatever his inten-
tion, and despite his emphasis on various experimental ‘anomalies’, Put-
nam establishes no such thing.

Putnam'’s position can be summed up as follows. Classical physics can-
not satisfactorily account for the results of a number of experiments in-
volving microphenomena. Accordingly, classical theory (C) was replaced
by quantum theory (Q) which does explain these results. However, de-
spite the empirical success of Q, it has proved very difficult to furnish
it with a satisfactory metaphysical interpretation.? In particular, it has
proved very difficult to reconcile Q with common sense or classical re-
alism (M_). Putnam sees this as a high price to pay for the shift from C
to Q, since he regards classical realism as the natural position to hold
with respect to physics. (He also regards as seriously flawed the attempt
to rescue realism via hidden variable theories.) What he proposes there-
fore is this. By bringing logic into the framework in addition to physics
and metaphysics, we shift from the schema Q + M, + L. (where M,
stands for any of the unacceptable metaphysical interpretations of Q, and
L. is classical logic) to a new system Q + M + L,, where something
like classical realism (M) is preserved, but L. is replaced by quantum
logic, L,. Where does quantum logic come from? Well, it is simply read
off from the structure of the lattice of closed subspaces of Hilbert space
employed in the usual formulation of quantum mechanics. (The sugges-
tion goes back to Birkhoff and von Neumann 1936.) The overall system
Q+M,.+ L, is supposedly much more satisfactory than any Q + M,
+ L. because the change from L, to L, is claimed to be relatively minor
and therefore preferable to the adoption of any of the intuitively unpal-
atable metaphysical positions M, (or the equally unpalatable hidden vari-

‘Though for some doubts about this scenario ever being realized, see Fine (1972, pp.
10-14).
*For a review of the various interpretations, see Putnam (1965).
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ables assumption) (see specifically Putnam 1969, pp. 188-9 and 191-2).
That the existence of incompatible propositions (or ‘complementary’
properties) is high on the list of things Putnam wishes to explain with
quantum logic (see p. 358) without recourse to unacceptable metaphysics,
illustratcs perhaps that it is metaphysical or philosophical considerations
which dominate here, and not the outcome of any particular experiments.

Nevertheless, one of Putnam’s main arguments for rejecting classical
logic is based on a clash between a theoretical system and experiment,
in this case, the celebrated two-slit experiment. Putnam gives an analysis
of the experiment based on classical probability theory (which of course
yields an experimentally incorrect result) and points out that in this anal-
ysis the distributive law of classical logic plays a crucial role. This seems
to suggest that a sufficiently careful inspection of the fallacious classical
argument would already have cast doubt on distributivity even before the
proposal of Q. But this really won't do. The theory Q (as Putnam points
out, p. 180) correctly predicts the observed outcome of the experiment.
And logic is simply not at stake because Q + L. accounts for the results
perfectly well. Moreover, Gardner in his (1971) has argued that under
the Putnam-Finkelstein interpretation of quantum logic one can show that
distributivity does not actually fail in the two-slit case.

It therefore seems clear that the example Putnam gives does not in-
stantiate the radical Quinean thesis of the empirical nature of logic. The
metaphysical difficulties associated with the shift to Q could, it is true,
lead to the rejection of L., but this is quite another matter from the claim
that the results of an experiment lead directly to such a rejection.

This question of the failure of distributivity in quantum logic brings
us to a point rightly raised and stressed by Dummett in his (1976), namely
concerning the meaning of the quantum logical connectives. We have
emphasized that at bottom Putnam’s motivation for the shift to L, from
L. was dissatisfaction over the metaphysical support for Q. and could not
be because of dissatisfaction over the empirical adequacy of Q.* It is not
possible here to go into all the metaphysical difficulties encountered by
quantum mechanics, nor is it necessary to do so. However, one of the
issues that clearly does exercise Putnam a good deal is that of how to
interpret certain classes of ‘anomalous’ statements of quantum mechan-

’For example, in his (1965), Putnam is clearly impressed by the empirical adequacy and
success of quantum mechanics. It is, he says, too successful to be simply accidentally
correct:

Not only does the quantum mechanical formalism yield correct answers to too many
decimal places, but it also yields oo many predictions of whole classes of effects
that would not have been anticipated on the basis of older theory, and these predic-
tions are correct (p. 133).
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ics, in other words the issue of what meaning is to be attached to these
statements. Thus, if we have two statements

§: the position of electron e at time ¢ is P
and
T: the momentum of electron e at time 1 is M,

Putnam points out that according to quantum logic § A T is a logical
contradiction. This is taken to explain why we can never in practice as-
sign the truth value ‘true’ to S A T, something which upholders of clas-
sical logic are hard put to explain. Let us quote Putnam. Let S, represent
some position statement, and let T, . . ., T, represent the statements
expressing a possible momentum for the given particle. Then:

The [unacceptable] idea that momentum measurement ‘brings into
being’ the value found arises very naturally, if one does not appre-
ciate the logic being employed in quantum mechanics. If I know that
§, is true, then I know that for each T the conjunction §, - T is false.
It is natural to conclude (‘smuggling in’ classical logic) that S, - (T,
VT,V ...\ T,)is false, and hence that we must reject (T, \/ 7,
V ...V Tg)—i.e., we must say ‘the particle has no momentum’.
Then one measures momentum, and one gets a momentum—say, one
finds that T,,. Clearly, the particle now has a momentum—so the
measurement must have ‘brought it into being’. However, the error
was in passing from falsity of S,- 7, \/ S,' T, \/ . . . \/ S. T, to the
falsity of S, (T, \/ T, \/ ... \/ T,). This latter statement is rrue
(assuming §,); so it is true that ‘the particle has a momentum’ (even
if it is also true that ‘the position is r,"); and the momentum mea-
surement merely finds this momentum (while disturbing the position);
it does not create it, or disturb it in any way. It is as simple as that
(Putnam 1969, p. 186; see also p. 180).

Such a simple solution to an old problem has obvious attractions.
(Though, of course, the solution is perhaps not quite as simple as it seems
at first sight. ‘We cannot know S, A\ T,.* because this is a contradiction
and we cannot know a contradiction’ loses some of its force if logic is
indeed empirical as Putnam claims. For if it is, it will be fallible and
therefore subject to flux. Hence the ascriptions ‘logically true/false’ lose
their absolute status, and Putnam’s explanation will lose much of its
power.) But as Dummett has pointed out this solution is only really ac-
ceptable if one can explain why (S, A T\) \/ . . . \/ (S, A T,) is logically

‘We shall use */\" for conjunction, except in quotations from Putnam's paper, where
‘+" is used.
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Jalse, and yet 8 NNt V T) is true. This will invoive explaining
what the statements mean, and hence what the meaning of the (quantum
logical) connectives is, and how the meaning differs from that of the
classical connectives. As Dummett stresses,* if such an explanation is nor
given, then the ‘simple’ Putnam solution will be quite mysterious, indeed,
one could say, just as mysterious as any that Putnam wishes to eschew.

(apparently disparate) ways. He first tries to sidestep the issue by claiming
that there is no real need to explain the meaning of the quantum con-
nectives because they are after all the same old, well-understood classical
connectives in a slightly new guise. This is the so called ‘invariance of
meaning’ argument, which we discuss in 2-3. We argue that it is quite
mistaken: there is a substantial and crucial variance of meaning between
the two logics. Putnam’s second way of tackling the meaning issue takes
it somewhat more seriously. For, following Finkelstein, he has attempted

that quantum logic is excessively dependent on (accidental) formal fea-
tures of the current formulatior of Quantum theory. We discuss this at-
tempt to provide ‘operational semantics’ in §, arguing that it just does
not work. We start, however, with the ‘invariance’ argument, and why

2. The Invariance Argument. As we have said in 1, Putnam’s claim
for the necessity of espousing quantum logic arises out of the need to
reconcile quantum-mechanical statements with ‘common sense’ realism.
(The question of what constitutes ‘common sense’ realism is touched on
below; see section 4.) In doing this he claims that we are stil| using the

*See, for example, Dummett (1976, p. 281).
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same (and not different or additional) connectives as in classical logic,
except that they no longer satisfy all the laws that we previously thought
they did. Specifically the distributive laws now fail.

There appear to be three closely interrelated reasons why Putnam
should want to claim that the quantum-logical connectives are the old,
familiar classical connectives. First, as we mentioned above, it neatly
sidesteps the whole issue of assigning a meaning to the quantum-logical
connectives, since it is asserted that the meaning has not essentially
. changed. Secondly, this move makes it unnecessary to argue for the ac-
ceptability or coherence of quantum logic: since classical logic is coher-
ent, then, in so far as the new logic is not essentially different, it is
equally coherent. Thirdly, and crucially linked with Putnam’s interest in
quantum logic, the minimality of the change involved in the shift from
classical to quantum logic raises the hope that something like ‘common
sense’ realism (with which classical logic is closely associated) can be
retained for quantum mechanics. Certainly the fact that quantum logic
preserves the distinctive classical laws of excluded middle and double
negation may strengthen the impression that quantum logic is consonant
with realism. However, it is by no means obvious that quantum negation,
conjunction and disjunction are actually the old familiar, well-understood
connectives. Why should they be? Putnam freely admits that he is asking
for a conceptual revolution: how do we know that this revolution didn’t
liquidate the old connectives and replace them with radically new ones?
Putnam tries to establish that there is substantial (and presumably suffi-
cient) continuity between the two logics by providing an invariance of
meaning argument backed up by an analogy drawn from the Einsteinian
revolution in geometro-physics.

Let us take the analogy first. Consider the notion ‘straight line’. Evi-
dently, this term obeys different laws in the new theory. But, says Put-
nam, we have not simply dragged in a new notion, ‘Riemannian straight
line’, and thrown out an old one, ‘Euclidean straight line’; or in other
vords, we have not just shifted the label ‘straight line’ from one set of
praths (Euclidean straight lines) to another set (Riemannian geodesics).
For, says Putnam:

We can say that the geodesics are straight, because they at least
obey what were always recognised to be the operational constraints
on the notion of straight line; but they do not obey the old geometry.
In short, either we say that the geodesics are what we always meant
by ‘straight line’, or we say that there is nothing clear that we used
to mean by that expression (Putnam 1969, p. 177).

In other words, the only viable candidates for being straight lines in the
new geometry are Riemannian geodesics, and these obey the old opera-
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tional constraints on the term ‘straight line’. That is to say, a fundamental
core of meaning has been preserved, enough for us to be able to overlook
the failure of some of the old Euclidean laws governing ‘straight line’.
Now, crucially, Putnam regards

. . . the analogy between the epistemological situation in logic and
the epistemological situation in geometry as a perfect one (1969, p.
190).

By this he means that in this case also the quantum connectives obey the
_ key laws characterising the classical connectives, and that distributivity
(which is portrayed as the main casualty here) cannot be classed as one
of these key laws. The following passage (pp. 189-90) contains the heart
of this argument:

The following principles:
p impliesp \/ q (1
q implies p \/ ¢ (2
if p implies r and g implies r then

PV q implies r (3)

all hold in quantum logic, and these seem to be like the basic prop-
erties of ‘or’. Similarly

p, q together imply p - ¢ 4)

(Moreover, p- g is the unique proposition that is implied by every
proposition that implies both p and q.)

p ‘- q implies p (S)
p ' q implies q . (6)
all hold in quantum logic. And for negation we have that p
and —p never both hold. (p: —p is a contradiction) (7
(p V —p) holds (8)
—=—p is equivalent to p (9)

Thus, a strong case could be made for the view that adopting quan-
tum logic is not changing the meaning of the logical connectives but
merely changing our minds about the law

p (g \/ r) is equivalent to
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p*q\/ pr(which fails in quantum logic) (10)

Only if it can be made out that (10) is ‘part of the meaning’ of ‘or’
and/or *and’ (which and how does one decide?) can it be maintained
that quantum mechanics involves a ‘change in the meaning’ of one
or both of these connectives.

The intended conclusion is clear: the quantum connectives differ only
marginally from the classical ones; as in the geometry case, a funda-
‘mental core of meaning has been preserved, enough for us to be able to
overlook the failure of distributivity. The analogy with geometry is sup-
posedly completed with Putnam’s (unsubstantiated) claim that ‘‘quantum
mechanics explains the approximate validity of classical logic ‘in the
large’ *’ (p. 184).

We argue here that the invariance of meaning claim is false: indeed,
we show that the meaning of the negation operation in (abstract) quantum
logic is quite different from the meaning of classical negation. This is
sufficient to destroy the ‘marginal change’ contention, and thus the sug-
gestion that quantum logic is automatically a satisfactory replacement for
classical logic. Moreover, we argue that, in any case, it is not clear how
quantum logic can be a logic of realism.

3. ... and its Failure. It seems to us quite wrong when considering
the meaning of the quantum-logical connectives to focus merely on the
formal rules which they obey. If one chooses to define a logic in a purely
formal way by specifying various axioms and/or rules of inference, then
one might properly claim that any notion of meaning appropriate for the
connectives must stem solely from their formal properties. But this is not
the way that quantum logic is arrived at. Rather the procedure is to spec-
ify a certain structure, in this case, the lattice of closed subspaces of a
Hilbert space (a certain kind of ortholattice, see below) and to interpret
the connectives as the corresponding operations in this lattice. It has been
justly observed by Fine (1972) that this fact already reveals a difference
in meaning between the quantum-logical and classical connectives, be-
cause in the quantum case we are concerned with a lattice of subspaces
while in the classical case we are concerned with a Boolean algebra of
subsets, and the operations corresponding to negation and disjunction are
manifestly different in the two cases (see particularly Fine 1972, pp.
16-19).

All well and good. However, it seems to us that the discussion has to
be taken further. For attempts have been made to free quantum logic from
its origins in Hilbert space and to base it instead on the more abstract
foundation of general ortholattices. This seems like an insistence on the
‘formal rules’ approach. For here the quantum-logical connectives are to
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be interpreted just as the designated operations in certain algebraic struc-
tures—ortholattices—satisfying certain formal axioms. This approach
may be regarded as an attempt to build a semantic framework in which
to analyze the formal rules satisfied by the quantum-logical connectives:
for ortholattices are the mathematical structures which act as models for
these rules, and hence furnish the most general class of interpretations
for the connectives.

But now Fine's argument does not apply, because one is not now deal-
ing with a specific structure in which both the classical and quantum-
logical - operations (or their natural interpretations) exist side-by-side,
waiting to be differentiated. More importantly, this more general alge-
braic approach seems to reinstate Putnam’s contention about the invari-
ance of meaning. After all, ortholattices satisfy the same core of defining
axioms as do Boolean algebras (which constitute the most general class
of models for the classical logical rules). Hence Putnam’s argument can
now be stated like this: the meanings of the connectives, classical and
Quantum, are given by the basic rules expressed in the core axioms for
ortholattices (which do not assert distributivity); therefore in the shift
from classical to quantum logic one has not changed the meaning of the
connectives, but only shifted to a broader class of interpretations, i.e.,
general ortholattices, where in general the distributive laws fail, rather
than just Boolean algebras where they hold.

We argue that this position is untenable because it ignores the rela-
tionships between the connectives (or the corresponding lattice opera-
tions) within the relevant structures. We contend that if these are carefully
analyzed it appears obvious that there must have been a shift in meaning,
in fact, a shift in the meaning of negation. We base the argument on an
examination of the way the lattice structures are given, and a consider-
ation of the definability relations between the various lattice operations.
The position we adopt is that if two terms 7 and ¢’ are defined in terms
of the primitives a, b, . . . etc. in non-equivalent ways, or if one is so
definable and the other not, then they have different meanings relative
toa, b, .. .. More particularly, if two structures L and L’ both have the
primitives a, b, . . . etc. and ¢ is definable in terms ofa, b, ... inone
and not in the other than we will assume that ¢ has shifted its meaning
in the passage from one to the other. The point here is a simple_one: if
a term was once explicable in terms of a, b, . . . and now is not (or vice
versa), then relative to a, b, . . . it must have changed its meaning. This
seems to us a quite clear sufficient condition for there being a variance
of meaning, a condition which we can use without getting caught up in
the thorny issue of what meaning is. If one goes further and takes an
extensional view of meaning by stating that two terms have the same
meaning relative to a, b, . . . if they have equivalent definitions in terms



364 JOHN BELL AND MICHAEL HALLETT

of a, b, . . . then a case can be made out that the meanings of conjunction
and disjunction do not vary in the passage from classical to quantum
logic. However, we argue that there must nevertheless be a significant
shift in the meaning of negation.

To put the argument clearly we have to consider the relevant algebraic
structures in some detail. In particular we consider the way the lattice
operations meet, join and (where applicable) complementation are de-
fined, with the use of some minimal set-theoretic machinery in terms of
a partial ordering =< on an underlying set L.® Since we assume (L,<) to
be a lattice, any pair x, y of elements of L has both a supremum and an
infimum with respect to <. These are denoted respccuvcly by x \/ y and
x /\'y, thus giving rise to the operations \/ (‘join’) and /\ (‘meet’). If we
think of the elements of a lattice as ‘propositions’ of some kind, then the
relation =< corresponds to entailment or inclusion of propositions, while
the operations /\ and \/ correspond to conjunction and disjunction of
propositions. For a lattice L to be an ortholartice, it must have greatest
and least elements 1 and O with respect to < and an operation x ~ x*
called orthocomplementation subject to the conditions:

x\V/x*=1, xAx*=0, x**=x, (x/A\y)*=x*\/y*

(Cf. Putnam’s rules (7)-(9) mentioned above, p. 363.) The element x*
is called the orthocomplement of x (in this connection, an element y such
thatx\/y = 1, x A\ y = 0 is called a complement for x). The operation
* corresponds to negation of propositions. A Boolean algebra is a dis-
tributive ortholattice, i.e., one satisfying the (mutually equivalent) dis-
tributive laws

xANOV)=a&NA)VEA2, xvVyAN2)=GxVy)AxV2).

Boolean algebras provide the algebraic realization of classical logical sys-
tems. However the ortholattices which serve as models for quantum logic
(e.g., the lattice of closed subspaces of Hilbert space) are, in general,
non-Boolean (i.e., do not satisfy the distributive laws above).

Our point about conjunction and disjunction can now be simply made.
In any ortholattice, the operations /\ and \/ are set-theoretically definable
in terms of <:

aANb=co{x:xscl={x:x=sa}N{x:x=<b}
avVb=coixicsxt=kx:asx}N{x:b=x}.

In view of these equivalences, the meanings of /\ and \/ are completely

*This is the normal way lattices are given and certainly the way Putnam treats them in
his paper (1969, pp. 193-4).
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determined by < and are therefore invariant under the transition from
Boolean algebras to general ortholattices; that is, the meanings of con-
junction and disjunction are invariant in the transition from classical to
quantum logic.

Let us now tumn to the orthocomplementation operation *. In a Boolean
algebra, this operation is definable in terms of /\ (and hence <) by the
prescription:

(*) a=b*ﬁ{x:xsa}={x:b/\x=0}.

Conversely, any ortholattice satisfying (*) must be a Boolean algebra. It
follows that, in the case of classical logic, negation is (set-theoretically)
definable in terms of the basic relation < via equivalence (*), while in
quantum logic negation is 7ot so definable. Therefore, passing from clas-
sical to quantum logic destroys the possibility of explicating negation in
terms of the basic relation < by means of (*), and must accordingly in-
duce a change of meaning in this operation relative to <. Putnam as-
sumes (1969, p. 194) that quantum negation, like conjunction and dis-
junction, is ‘characterized in terms of the implication lattice’, i.e., in
terms of <. But he doesn’t say how. It could be set-theoretically definable
from =< in some manner. The crucial point, though, is that it cannot be
defined by equivalence (*).

The fact that, in a non-Boolean ortholattice, orthocomplementation is
generally not definable in terms of < prompts one to ask: what additional
structure is needed in order to render it definable? Although this question
does not have a unique answer, the most natural way of achieving the
desired result is to specify an extra relation 1, called an orthogonaliry
relation, satisfying certain conditions which need not detain us here. The
relation @ L b corresponds to mutual inconsistency of propositions: ‘a
and b do not both hold’. (In the lattice of subspaces of Hilbert space,
L is just the usual relation of perpendicularity between subspaces while
in a Boolean algebra, 1 is the ‘disjointness’ relation x /A y = 0.) Once
this is given, the orthocomplement of an element b can be defined as the
largest element a such that a | b, that is,

a=b*o{x:x=sa}l={x:x 15}
And conversely, of course, L can be defined in terms of *:
albeasph* -

So an ortholattice may alternatively be construed as a structure of the
form (L, =, 1) satisfying certain conditions.

In the case of a Boolean algebra the orthogonality relation coincides
with the disjointness relation:

albealb=0.
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Conversely, any ortholattice satisfying this condition must be a Boolean
algebra. Therefore, in the non-Boolean case, in order to define ortho-
complementation, and hence the interpretation of negation, one must be
given the orthogonality relation in addition to the partial ordering. We
see, then, that the semantic fundamentals are necessarily more elaborate
in the quantum case (L, < »L) than in the classical case (L, =) and they
are so precisely for the purpose of defining negation. Moreover, in the
passage from classical to quantum logic negation changes its meaning
with respect to the basic partial ordering =< in direct proportion to the de-
viation of the orthogonality relation from its classical counterpart—
disjointness.

We may conclude from this that Putnam’s invariance thesis fails even
in this abstract setting, for the apparently minor ‘failure of distributivity’
of quantum logic is inextricably bound up with a shift in the meaning of
negation. The fact that quantum negation satisfies the rules (8) and (9)
mentioned by Putnam does not prevent its meaning from differing from
that of its classical counterpart.

What has been said so far does not at all challenge the legitimacy of,
or interest in, the structures (L, =, 1) as the basis for a semantics for a
logic. Indeed, there is a sense in which experimental setups in quantum
mechanics yield natural definitions of < and L relations, making study
of these in combination a natural starting point for investigations of quan-
tum logic (see below, §). However, it does show that the change from
classical to quantum logic is not a minor affair.

4. The Logic of Truth and Falsity. There is a natural, indeed com-
pelling, sense in which classical (propositional) logic is the logic of truth
and falsity, or the logic of realism, more specifically bivalence realism,
which asserts that every proposition has exactly one of two truth values
frue and false, independently of our capacity to know what that value is.
This arises from the fact that the deducibility relation v of a classical
logical system can be completely explicated by means of assignments of
the two classical truth values T (truth) and F (falsity) to the propositions
of the system. In fact, let P and QO be two (molecular) propositions in-
volving proposition letters Py, - .., p,. For any assignment of T and F
to p,, ... p,, the propositions P and Q are also assigned T and F in
accordance with th Customary two-valued truth tables: such an assign-
ment will be called; a truth vaiuation. Then P F Q if, and only if, when-
ever P receives value 7, so does Q: this is, of course, the completeness
theorem for classical propositional logic.

If we think of a classical propositional system as a Boolean algebra in
the usual way, then the completeness theorem translates into the well-
known fact that
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given an orthocomplemented lattice L, is there a map A (representing, if
you like, a simultaneous valuation) which is a weak homomorphism of
L to 2, that is to say, such that the restriction of A to any Boolean sub-
algebra of L is a homomorphism? The celebrated results of Kochen and
Specker (1967) show, in effect, that for the relevant quantum lattices
there can be no such map.

Kochen and Specker showed that the lattice of subspaces of Euclidean
3-space E, has no weak homomorphisms. It follows from this that the
lattice L, of all closed subspaces of Hilbert space (i.e., the usual lattice
of quantum propositions) has no weak 2-valued homomorphisms which
map at least one line (i.e., one-dimensional subspace) to 1.'° Now under
the usual assignment of elements of L, to quantum propositions, Boolean
subalgebras of L correspond to sets of compatible propositions, and lines
in L, to atomic propositions of the form: ‘the value of such-and-such a
non-degenerate observable is so-and-so’. Thus the Kochen-Specker result
means that there will be no way of assigning T and F across the whole
system of quantum propositions so that compatible subsets are mapped
homomorphically, and at least one atomic proposition is assigned the
value T. Since this latter assertion is verified by experiment, the Kochen-
Specker result seems to block finally any attempt to reconcile classical
truth and falsity with quantum logic and the set of quantum propositions
based on it.

This shows that quantum logic is quite inappropriate for one of Put-
nam'’s central purposes (above, p. 357); for it shows quantum logic to
be irreconcilable with realism as usually understood. Does this mean that
quantum logic is absolutely irreconcilable with realism? No, for as we
shall see, (abstract) quantum logic can be reconciled with what we shall
call for convenience: onrological (or set-theoretic) realism, that is to say
the view that the (mathematical) world is a realm of independently ex-
isting real objects."!

First let us observe that both classical logic and intuitionistic logic can
be conceived as logics of realism in this sense. Classical logic can be
conceived as a logic of properties of real (unchanging) individuals. This
we know from the Stone Representation Theorem which says that every
Boolean algebra is isomorphic to an algebra of subsets (which may be
taken as properties in extension) of some underlying set of individuals.
Moreover, recent work in topos theory (cf. MacLane 1975 or Bell forth-
coming) shows that intuitionistic logic admits a similar description as a
logic of properties, only now the individuals must be conceived of as
varying in some manner (e.g.. in time or space). In other words (and

"°This does not seem 1o exclude the possibility that there exist weak 2-valued homo-
morphisms on L_ which send every line to 0. We do not know if such maps exist.
""We stress that this claim is being made only for quantum /ogic, not quantum physics.
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properties of a set that carnies some additiong/ Structure. Specifically, let
us define a proximity space to be a pair (X,=) in which X is a set and
=~isa proximity relation on X ie., a reflexive, symmetric binary rela-
tion." For each x € X the basic ~-neighbourhood of x is the set U, =
yex:x= y}. For each subset ¥ C X, rhe =-interior of Y is the set
P=hHex: Iyerixe U, C Y]}, and the ~-complement of ¥ the
set¥Y* = xe x - JygYxe U,1}. A subset y C X is ~-open if y
= Y°. The class X of all ~-0pen subsets of X is then an ortholattice under
inclusion, with U as lattice join and * a5 orthocomplementation 'S It can
now be shown that each ortholattice is isomorphic to a subortholattice of
X for some Proximity space (X,=). Thus any ortholattice may be repre-

YLet 7 be the set of lattice filters in L, i.e., subsets G of L such that ()G » L, (i) x
EG.xsy-tyEG, (ic'i)x,yEG—»x/\y € G. Deﬁneh:L-oP(l)byh(x) = {G
€/:x€G).

“Instead of defining / as in . 2, p. 356 above, take / as the set of lattice ideals, and
define h by hix) = {Ge€/:x & G}. We then get h(x \/ y) = h(x) U h(y).

- construction here is essentially a dualization of that given by Goldblatt (1975) for

onality spaces. Note that the notion of a Proximity space is, in effect, dual to that
of an orthogonality space.

“X is in fact a complete ortholattice, because like a topology it is closed under arbi
Unions. It fails to be a topology because the intersection of (WO ~-open sets may not be
~-open.
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classical counterparts. Again, we can if we choose preserve conjunction
by modifying the construction'®; but now, of course, classical disjunction
and negation will not in general be preserved.

All this shows again just how different quantum logic (or the theory
of non-Boolean ortholattices) is from classical logic. Nonetheless, we see
that in principle quantum logic is compatible with the assumed existence
of a world of real, independent objects, provided that not all of the logical
operations on properties of these objects are given their classical inter-
pretations. However, two points should be made immediately. First, this
resolution becomes otiose if one insists that realism or a realist theory of
properties (or their extensions) is necessarily bound up with the classical
connectives. Secondly, it still falls far short of attaining Putnam’s goal
of showing that quantum physics (and not Just abstract quantum logic)
can be reconciled with realism. (For example, what are the real objects
of the underlying space to be? Isn’t this just one of the old insoluble
fundamental problems come back to haunt us?) Furthermore, instead of
standing out as a clear and relatively simple realist approach to the con-
ceptual difficulties faced by quantum physics, it seems to be one among
many unclear and unstraightforward approaches. Quantum logic is by
no means an obvious replacement for classical logic, by no means ob-
viously compatible with a realist approach to physics, and, so far in our
account, by no means reveals how or why logic is empirical. In short,
Putnam’s ‘sidestepping move’ (see p. 361, above) fails to provide the
kind of justification for quantum logic that he is looking for. However,
as we pointed out, Putnam does have another approach to the quantum
connectives which takes the issue of their meaning more seriously. This
approach, although it seems to shift away from realism towards verifi-
cationism, at least attempts to put some body back into the claim that
logic is empirical. We turn to this second approach now.

S. The Operational Determination Argument. Dummett has proposed
that what is the correct logic for a given class of statements will be de-
cided by first determining the correct model of meaning for those state-
ments. In other words one develops a logic by developing a semantics
which itself is guided by certain fundamental principles about meaning. "’
According to Dummett, in this respect ‘there is an evident generic sim-
ilarity between’ the quantum case and the intuitionistic case:

Both employ a notion of meaning that relates to the means avail-
able to us for knowing the truth of statements of the relevant class:

““That is, by following the original argument given by Goldblatt in his (1975).
"Dummett has argued this in various papers; the best reference in the present context
is (1976, pp. 287-9).
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in the quantum case, in terms of measurements of physical quantities;
in the intuitionistic case, in terms of proofs of mathematical propo-
sitions (1976, pp. 288-9).

In other words, Dummett sees the way to look for the correct logic for
quantum mechanics as building up the semantics from the notion of ver-
ification appropriate for elementary quantum mechanical propositions,
just as intuitionistic logic is founded on the notion of verification appro-
priate for mathematical propositions (i.e., proof). There are two points
that should be noted in the context of the present discussion. Firstly, this
approach is fundamentally antirealist in spirit. Secondly, the Putnam-Fin-
kelstein approach which we want to consider here appears to harmonize
well with the program Dummett outlines.

The aim of the approach is to show that one can set up a natural op-
erational semantics for quantum mechanical propositions based on the
notion of a test, which is supposed to be an idealization of quantum-
mechanical experimental practice. The verificationist tendency in this
proposal is obvious, since the underlying assumption is that an elementary
proposition P about a system S is said to be true just in case S passes a
certain empirical test T,. What Putnam and Finkelstein claim'® is that the
logic associated with this empiricist/verificationist semantical approach
is precisely what we know as quantum logic. We argue here that this is
ccrrect only if one makes very strong ad hoc assumptions about the avail-
ble collection of tests, assumptions for which neither Putnam nor Fin-
kelstein provide any convincing arguments, and which in any case take
us far away from the background of ‘empirical practice’ which is sup-
posedly the starting point.

In order to give the notion of a rest some substance we formulate it
within a (simplified and idealized) framework of filters and beams, build-
ing on an idea suggested by Mielnik (1968) and (1969). This framework
yields an axiomatisation of the empirical notions involved which is not
only intuitively convincing, but has a quite clear and elegant algebraic
structure. However, while the notion of test so formulated is entirely in
harmony with that of Putnam and Finkelstein, the mathematical structure
by no means stretches naturally to that of a lattice, which is what they
are seeking.

We assume that we are supplied with various streams or populations
of objects (to be thought of as beams of particles) which are to be tested
to determine whether they have a given property or not. For a given prop-
erty P, testing for P amounts to interposing some kind of screen or ab-
sorber which allows only those objects having property P to pass through
it, all other objects being ‘absorbed’. (For example, the stream of objects

"See Putnam (1969, pp. 192-7) and Finkelstein (1963), (1969) and (1972).
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could be a beam of light photons, the property P, that of ‘redness’ and
the screen a piece of red glass.) We shall assume that these screens are
equipped with two ‘windows’ through which the objects can enter and
leave, and that either of these windows can serve as entrance or exit.
That is, each screen s can be ‘reversed’ to yield a new screen §—its
transpose—in which the entrance and exit windows have been inter-
changed. Given a pair of screens s, t we can construct a new screen
st—the product of s and +—by juxtaposing ¢ and s. Thus the effect of the
screen st on a stream of objects is the same as that produced by first
passing through ¢, and then through s. Clearly we then have: (st) =
tsand (§) =s.

The notion of a screen sketched here is rather general, so we must now
determine what properties a screen should possess if it is to correspond
to a test. To begin with, since a test is supposed to select and pass only
those objects in a stream having a given property, a subsequent appli-
cation of the same test should have no further effect on the stream, i.e.,
should allow every object already selected to pass through unchanged.
This means that a screen s which corresponds to a test must be idem-
potent:

sl=gsm g, (5.1

We shall also suppose that a screen corresponding to a test is a purely
selective device which is indifferent to the ‘direction’ that an object trav-
els through it, i.e., which of its two windows the objects enter and leave
through. In other words, a screen s corresponding to a test must be equal
to its transpose:

§=s. (5:2)

A screen s satisfying (5.1) and (5.2) is called a filter: this is the notion
which, in this framework, corresponds to the idea of a test.

After this heuristic account, let us now proceed more formally. We
assume that we are given two sets S, the set of screens and B, the set of
beams (of particles). Each screen s acts on each beam x to yield to a new
beam sx (to be interpreted as the beam that emerges when x passes
through s).

X 5x
—

QAW
|

A

We assume that each screen is uniquely determined by its action on
beams: thus for s, t € §

VxEB[sx=tx]>s=1.
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Any pair s, 1 € S is assumed to have a product st € § satisfying
Vx € B [(st)x = s(tx)].
So st may be regarded as the screen obtained by juxtaposing ¢ and s:

st

D —
2 tx > st x
%Z

~

s

We shall assume that the product operation is associative: s(tu) = (st)u
foralls, t, u € S.

We also suppose that B contains a unique ‘empty’ beam O satisfying
sO = O for all s € S, and that S contains two special elements 0 and
1 satisfying Ox = O and 1x = x for all x € B. Thus 0 is a screen which
‘absorbs’ every beam and 1 is a screen which passes every beam un-
changed. It follows that Os = sO0 = 0 and 1s = s1 = s for all s € S.
Thus, S may be described in mathematical jargon as a monoid acting on
B. Finally, we assume that for each s € S there is an element § € §
called its transpose such that

(s1)" =15, (§) =s

forall s, t € S. It is easily shown that 0 = 0, 1 = 1. (Thus, S is a monoid
with involution.)

An element s € S is called a filter if s* (=, ss) = s = 5. This is clearly
equivalent to the condition: s§ = s. We write F for the set of all filters.
Observe that 0, 1 € F. Also note the important fact that, for filters s, ¢
€r.

stEF © st = ts. (5.3)

A screen s is said to be transparent to a beam x, and x is said to pass
s, if sx = x, i.e., if passage through s has no effect on x. And s is said
to be opaque to x, or to block x, if sx = O, i.e., if x is completely
absorbed by s. Thus, still thinking of a beam x as a stream of objects,
and a filter s as a test for a property P, then every object in x passes the
test corresponding to s iff s is transparent to x, and every object in x fails
the test iff s blocks x.

Given this set F as the collection of filters/tests, the crucial thing to
ask is: does it have a natural lartice structure? Well, it certainly has nat-
urally defined ordering and orthogonality relations. These relations are
characterised as follows. For s, t € F, let

§Stey,VxEB[sx =x—tx =x].
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This says that every beam that passes s also passes t, and for the cor-
responding tests, every stream of objects each of which passes the test
s also passes the test 1. Thus < corresponds to Putnam’s and Finkelstein's
natural ordering of tests (see Putnam 1969, p. 195). Next, we define
1:for s 1 EF,

sltey,VxEB[sx=x—>ux=0 and tx=x-sx=0].

This says that no beam that passes s passes ¢, and vice-versa, i.e., nothing
passes both the test s and the test 1. Thus L corresponds to Finkelstein's
notion of exclusion (1972, p. 146). Now the following key results hold
(for proofs, see the Appendix): for s, t, u € F

i) sstost=ts=s
(i) sLteost=ts=0 (5.4)

(il) s<t&tlu—>slu
And from these it follows that

=< is a partial ordering on F with 0,1

as smallest and largest elements and

1 is an orthogonality relation on F, (5.5)
i.e., L is irreflexive and symmetric

onF —{0}and 0 L sforalls € F.

Let us write P(x,s) for the statement ‘the beam x passes the filter s'.
Then each s € F is uniquely correlated with the set {x € B : P(x, s)} or
equivalently with the ‘property’ P(-,s). Thus we may regard F as a set
of properties of beams. Moreover, as we have seen above, we have nat-
ural relations < and L defined for these properties. The Putnam-Finkel-
stein claim may now be construed to assert that (F, <, 1) gives rise to
the quantum-logical operations because it is actually an ortholattice.

It seems to us that this claim is open to doubt. To begin with, we
certainly cannot prove it to be true within our framework, because it is
easy to find an example of a monoid S for which the corresponding F
is not a lattice at all.' Moreover, if we think of F as a structure given
empirically, then whether F is actually a lattice would appear to depend
on what we are prepared to accept as a filter or ‘test’. For example, the
definition of the disjunction s \/ t of two elements s, t € F as the least
upper bound of s, means that it must satisfy

VxEB[P(x,s\/t) o Vu[s<uandt=<u— P(x,u)]l.

"*Take S to be a lower semi-lattice (i.c., a partially ordered set having meets, but not
joins) which has 0 and 1, but which is not a lattice. Let st =, s A t; then F (which is
now just §) is not a lattice.
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That is, in order to test whether a beam passes s \/ ¢ we are in principle
obliged to test whether it passes all filters u such that s < u and ¢t < u.
Is there any reason to suppose that we can always find a filter v which
has the property that any beam passes v if and only if it passes every
filter u such that s < u and ¢ < u? To put it another way, is the ‘higher-
order’ property of beams Vu[s < u and ¢t = u — P(x, u)] equivalent to
an ‘elementary’ property of the form P (x, v) for some filter v? The answer
to this question is by no means clear cut, for Mielnik (1969) actually
supplies examples of filters s and ¢ for which the existence of the least
upper bound filter s \/ ¢ only results from an appeal to a particular phys-
ical theory, in this case classical linear electrodynamics. It seems, there-
fore, that there is nothing inherent in the nature of F as a collection of
empirically given entities which guarantees that it even carries a lattice
structure.

Is there any way of ensuring that F is an ortholattice of the sort Putnam
and Finkelstein have in mind? Of course there is: just assume that B is
a Hilbert space,” § is the set of bounded linear operators on B, and F
is the set of projection operators on B (which is naturally isomorphic to
the lattice of subspaces of B). All the axioms are then satisfied. But how
can this assumption be justified? Apparently only by invoking, as Putnam
does (cf. 1969, p. 165), the ‘truth of quantum mechanics’. But this in-
vocation really begs the question, since the ‘truth of quantum mechanics’
is virtually equivalent to the assumption which is to be justified, and in
any case carries us right away from the straightforward empirical con-
siderations that served as our starting point. As far as we can see, the
only convincing way of justifying the assumption would be to show by
further analysis of the nature of the structure (B, S, F) that F satisfies
conditions which ensure that it is isomorphic to a lattice of subspaces of
a Hilbert space. Such conditions have been formulated,? but they are of
such complexity as to make them look entirely ad hoc in the present
context.

The plain fact of the matter is that although S, rather strikingly, carries
a natural algebraic structure (that of a monoid with involution) the derived
structure (F, =<, 1) is too weak to guarantee that it carries unique, or in-
deed any, lattice operations. In this connection, it is worth observing that,
irrespective of any lattice structure that F may carry—quantum-logical
or otherwise—the structure (F, <, 1) is always embeddable in a Boolean
algebra. For we may correlate each s € F with the class B, of non-zero
beams that pass it, and the B, are, of course, members of the Boolean
algebra of subsets of the class B of beams. This embedding preserves

®For simplicity we are assuming that the elements of B are ‘pure’ beams which cor-
tes?ond to the ‘pure’ states of orthodox quantum mechanics.
ISee ¢.g., Varadarajan (1968, ch. 6).
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which are then necessarily distinct from the former.
The observation that quantum mechanics implies that F is not closed
under the classical logical operations, but only under the quantum-logical

VxEB[P(x, s N\ t) & P(x,s) and P(x,1)]

VxEB[P(x, s V1) e P(x,s)or P(x,1)].

But these equivalences are another way of asserting that the quantum-
logical operations on filters are just the classical ones, and we know this
to be false (provided quantum mechanics is true). The ‘logic of tests’
may be not justified, but it is not inconsistent.

To summarize, then, in our view Putnam and Finkelstein's ‘logic of
tests’, although consistent, falls far short of the requirements imposed on
a semantic framework by Dummett's program. The structure (F, <, 1),
albeit quite natural, is much too weak to yield the quantum-logical op-
erations unaided. Moreover, the additional data required to yield these

empirical testing and is itself empirically determined must remain in
doubt.

APPENDIX
Proof of (5.4) Let S,l,u €F.

(i) lf:St.thcnsx=x—’tx=xfora|leB. But s-sx = % = g SO Isx = sx for
all x € B whence 1s = 5. Therefore s € F, whence st = ¢5 = 5. Conversely, suppose s
=:;thcnif.tx=x.wehavcx=:x=rsx=lx.sodnat:SI.

(i) If s L ¢, then sx =x = 1x = O for every x € B. But ssx = % = g, 50 fsx =
Oforall x € B, whence 15 = 0. Hence 15 € F,sothat st = 15 = (. Conversely, suppose

.ﬂ=t.r=0.Thcnif.u=x,wchavclx=tsx=03ndiftx=x.thcnxx=su=0.
Hence s 1 .
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(i) If s<randr L u, then st = ¢5 = sand e = ut = 0. Hence su = sty = 0 and us
=uwts =0,s0thats L u. W

Finally. we prove the

Proposition Let (X,<) be a partially ordered set with least element 0. and let L be an
orthogonality relation on X, i.e., 1 is irreflexive and symmetric on X — {0} and 0 1 x for
all x € X. Then the following are equivalent:

(i) for all x, y, z € X,
X<y and ylz—>x]z

(ii) there is a set / and a one—one map f: X — P(I) (the set of all subsets of /) such
that f(0) = @, and for all x, YEX.xsyeo f(x)Cf(y),and x L Yy & f(x) 1) f(v) =
P

Proof (Sketch) (ii) = (i) is obvious. For (i) — (ii), let 7 be the set of all subsets J C
Xsuchtha(xel.yZ.t—b)'EJand.t.y €EJ—>x /[ v. Definef: X - P(I) by f(x)
={JEI:x€J) Itis now easy to verify that / and f meet the requirements of (ii). W
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