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An Invitation to Smooth Infinitesimal Analysis 
 

John L. Bell 
 

   
In the usual development of the calculus, for any differentiable function f on 
the real line R,  y = f(x), it follows from Taylor’s theorem that the increment δy = 
f(x + δx) –  f(x) in y attendant  upon  an  increment δx in x is determined by an 
equation of the form 
 
                               δy  = f '(x)δx + A(δx)2,                                             (1) 
 
where f ′ (x) is the derivative of f(x) and A is a quantity whose value depends on 
both x and δx. Now if it were possible to take  δx so small (but not demonstrably 
identical with 0) that (δx)2 = 0 then  (1) would assume the simple form 
  
                      f(x +  δx) – f(x) = δy = f ′(x) δx.                                     (2) 
 
We shall call a quantity having the property that its square is zero a nilsquare 
infinitesimal or simply an infinitesimal. In smooth infinitesimal analysis (SIA)1 
“enough” infinitesimals  are present to ensure that equation (2) holds 
nontrivially for arbitrary functions  f: R →  R.  (Of course (2) holds trivially in 
standard mathematical analysis because there 0 is the sole infinitesimal in this 
sense.) The meaning of the term “nontrivial” here may be explicated in following 
way. If we replace δx by the letter ε standing for an arbitrary infinitesimal, (2) 
assumes the form 
 
                                f(x + ε) – f(x) =  εf ′(x).                                             (3) 
 
Ideally, we want the validity of this equation to be independent of ε , that is, 
given x, for it to hold for all infinitesimal ε. In that case the derivative f ′(x) may 
be defined as the unique quantity D such that the equation 
 

f(x + ε) – f(x) =  εD 
 
holds for all infinitesimal  ε. 
 Setting  x = 0 in this equation, we get in particular 
 
                                     f(ε) = f(0) + εD,                                                  (4) 
 
for all ε. It is equation (4) that is taken as axiomatic in smooth infinitesimal 
                                                           
1 For a detailed development of smooth infinitesimal analysis, see Bell [1998]. 
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analysis. Let us write ∆ for the set of infinitesimals, that is, 
 

∆ = {x: x ∈ R ∧ x2 = 0}. 
 

Then it is postulated that, for any f: ∆ → R, there is a unique D ∈ R such that 
equation (4) holds for all ε. This says that the graph of f is a straight line 
passing through (0, f(0)) with slope D.  Thus any function on ∆ is what 
mathematicians term affine, and so this postulate is naturally termed the 
principle of  infinitesimal affineness, of microstraightness. It means that ∆ cannot 
be bent or broken: it is subject only to translations and rotations—and yet is not 
(as it would have to be in ordinary analysis) identical with a point. ∆ may be 
thought of as an entity possessing position and attitude, but lacking true 
extension.  
 If we think of a function y = f(x) as defining a curve, then, for any a, the 
image under f of the “infinitesimal interval”  ∆ + a obtained by translating ∆ to a 
is straight and coincides with the tangent to the curve at x = a (see figure 
immediately below). In this sense each curve is “infinitesimally straight”. 
 
 
 
 
                                                                         y = f(x) 
 
                                                                 image under f of ∆ + a 
  
 
                                                                              
                                            ∆             ∆ + a 
                                                                        
 
 From the principle of infinitesimal affineness we deduce the important 
principle of  infinitesimal cancellation, viz. 
 

IF εa = εb FOR ALL ε, THEN  a = b.  
 
For the premise asserts that the graph of the function g: ∆ →  R defined by g(ε) 
= aε  has both slope a and slope b: the uniqueness condition in the principle of 
infinitesimal affineness then gives a = b. The principle of infinitesimal 
cancellation supplies the exact sense in which there are “enough” infinitesimals 
in smooth infinitesimal analysis. 
 From the principle of infinitesimal affineness it also follows that all 
functions on R are continuous, that is, send neighbouring points to neighbouring 
points. Here two points x, y on R are said to be neighbours if x – y is in ∆, that 
is, if x and y differ by an infinitesimal. To see this, given f: R →  R and 
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neighbouring points x, y, note that y = x + ε with ε in ∆ , so that 
 

f(y) – f(x) = f(x + ε) – f(x) =  εf '(x). 
 

But clearly any multiple of an infinitesimal is also an infinitesimal, so εf ′(x) is 
infinitesimal, and the result follows.  

In fact, since equation (3) holds for any f, it also holds for its derivative f ′; it 
follows that functions in smooth infinitesimal analysis are differentiable 
arbitrarily many times, thereby justifying the use of the term “smooth”.   

Let us derive a basic law of the differential calculus, the product rule: 
  

 (fg)′ = f ′g + fg′.  
 

To do this we compute 
 

(fg)(x + ε) = (fg)(x) + (fg)′(x) = f(x)g(x) +  (fg)′(x), 

    (fg)(x + ε) = f(x + ε)g(x + ε) = [f(x) +  f ′(x)].[g(x) +  g'(x)]  

                                                                        = f(x)g(x) +  ε(f ′g + fg') +ε2f ′g'  

                                                                        = f(x)g(x) +  ε(f ′g + fg′), 
 
since ε2 = 0. Therefore  ε(fg)′ = ε(f ′g + fg′), and the result follows by infinitesimal 
cancellation. This calculation is depicted in the diagram below. 
 
 
                        εg′                    εfg′                    ε2f ′g′ 

 
                         g                    fg                        εf ′g 

                                         
                                          f                           εf ′ 
 
 Next, we derive the Fundamental Theorem of the Calculus. 
 
                                                                y = f(x) 
                                                                 

                                                                                                             
                                     A(x)                 
                                 
                                                       x  x + ε 

Let J be a closed interval {x: a ≤ x ≤ b} in R and f: J →  R; let A(x) be the 
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area under the curve y = f(x) as indicated above. Then, using equation (3), 
 

 εA′(x) = A(x + ε ) – A(x) =   +   = εf(x) + . 

 
Now by infinitesimal affineness  is a triangle of area ½ε.ε f ′(x) = 0. Hence  

εA′(x) = εf(x), so that, by infinitesimal cancellation, 
 

A′ (x) = f(x).  
 
 A stationary point a in R of a function f: R →  R is defined to be one in 
whose vicinity “infinitesimal variations” fail to change the value of f, that is, 
such that f(a + ε) = f(a) for all ε. This means that f(a) + εf ′(a) = f(a), so that        

εf ′(a) = 0 for all ε, whence it follows from infinitesimal cancellation that             

f ′(a) = 0. This is Fermat's rule. 
 An important postulate concerning stationary points that we adopt in 
smooth infinitesimal analysis is the 
 
 Constancy Principle. If every point in an interval J is a stationary point of f: 
J  → R (that is, if f ′ is identically 0), then f is constant.    
 
Put succinctly, “universal local constancy implies global constancy”. It follows 
from this that two functions with identical derivatives differ by at most a 
constant. 
 In ordinary analysis the continuum R is connected in the sense that it 
cannot be split into two non empty subsets neither of which contains a limit 
point of the other. In smooth infinitesimal analysis it has the vastly stronger 
property of indecomposability: it cannot be split in any way whatsoever into two 
disjoint nonempty subsets. For suppose R = U ∪ V with U ∩ V = ∅. Define        
f: R → {0, 1}  by f(x) = 1 if  x ∈ U,  f(x) = 0 if x ∈ V. We claim that f is constant. 
For we have  
 

(f(x) = 0 or f(x) = 1)   &   (f(x + ε) = 0 or f(x + ε) = 1). 
 
This gives 4 possibilities: 
  
(i)                         f(x) = 0   &  f(x + ε) = 0  
(ii)                        f(x) = 0   &  f(x + ε) = 1 
(iii)                       f(x) = 1   &  f(x + ε) = 0 
(iv)                       f(x) = 1   &  f(x + ε) = 1 
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Possibilities (ii) and (iii) may be ruled out because f is continuous. This leaves 
(i) and (iv), in either of which f(x) = f(x + ε). So f is locally, and hence globally, 
constant, that is, constantly 1 or 0. In the first case V = ∅ , and in the second  
U = ∅ .  
 We observe that the postulates of smooth infinitesimal analysis are 
incompatible with the law of excluded middle of classical logic. This 
incompatibility can be demonstrated in two ways, one informal and the other 
rigorous.  First the informal argument. Consider the function f defined for real 
numbers x by f(x) = 1 if x = 0 and f(x) = 0 whenever x ≠ 0. If the law of excluded 
middle held, each real number would then be either equal or unequal to 0, so 
that the function f would be defined on the whole of  R. But, considered as a 
function with domain R, f is clearly discontinuous. Since, as we know, in 
smooth infinitesimal analysis every function on  R is continuous, f cannot have 
domain R there2. So the law of excluded middle fails in smooth infinitesimal 
analysis. To put it succinctly, universal continuity implies the failure of the law 
of excluded middle. 
 Here now is the rigorous argument. We show that the failure of the law of 
excluded middle can be derived from the principle of infinitesimal cancellation. 
To begin with, if x ≠ 0, then x2 ≠ 0, so that, if x2 = 0, then necessarily not x ≠ 0. 
This means that  
 
                                for all infinitesimal ε, not ε ≠ 0.                                       (*) 
 
Now suppose that the law of excluded middle were to hold. Then we would 
have, for any ε, either ε = 0 or ε ≠ 0. But (*) allows us to eliminate the second 
alternative, and we infer  that, for all ε, ε = 0. This may be written 
 

for all ε,  ε.1 = ε.0, 
 

from which we derive by infinitesimal cancellation the falsehood 1 = 0. So again 
the law of excluded middle must fail. 
 The “internal” logic of smooth infinitesimal analysis is accordingly not full 
classical logic. It is, instead, intuitionistic logic, that is, the logic derived from 
the constructive interpretation of mathematical assertions. In our brief sketch 
we did not notice this “change of logic” because, like much of elementary 
mathematics, the topics we discussed are naturally treated by constructive 
means such as direct computation.   
 What are the algebraic and order structures  on R in SIA? As far as the 
former is concerned, there is little difference from the classical situation: in SIA 
R is equipped with the usual addition and multiplication operations under 
which it is a field. In particular, R satisfies the condition that each x ≠ 0 has a 
multiplicative inverse. Notice, however, that since in SIA no microquantity 
                                                           
2 The domain of f is in fact (R – {0}) ∪ {0}, which, because of the failure of the law of excluded 
middle in SIA, is provably unequal to R. 
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(apart from 0 itself) is provably ≠ 0, microquantities are not required to have 
multiplicative inverses (a requirement which would lead to inconsistency). 
From a strictly algebraic standpoint, R in SIA differs from its classical 
counterpart only in being required to satisfy the principle of infinitesimal 
cancellation.  

The situation is different, however, as regards the order structure of R in 
SIA. Because of the failure of the law of excluded middle, the order relation < 
on R in SIA cannot satisfy the trichotomy law  

 
x < y ∨ y < x ∨ x = y, 

 
and accordingly < must be a partial, rather than a total ordering. Since 
microquantities do not have multiplicative inverses, and R is a field, any 
microquantity ε must satisfy  
 

¬ ε < 0  ∧ ¬ ε < 0. 
 

Accordingly, if we define the relation ≤ (“not less than”) x < y, then, for any 
microquantity ε we have 
 

ε ≤ 0 ∧ ε ≥ 0. 
 

 Using these ideas we can identify three distinct infinitesimal neighbourhoods 
of 0 on R in SIA, each of which is included in its successor.  First,  the  set ∆  of 
 
 
 
 
                                                              J 
                                                              I 
                                                              ∆ 
                                             (     (    (    !     )       )     ) 
                                                              0 
 
 
microquantities itself, next, the set I = {x ∈ R: ¬ x ≠ 0} of elements 
indistinguishable from 0; finally, the set J = {x ∈ R: x ≤ 0 ∧ x ≥ 0} of elements 
neither less nor greater than 0. These three may be thought of as the 
infinitesimal neighbourhoods of 0 defined algebraically, logically, and order-
theoretically, respectively.  
 In certain models of SIA the system of natural numbers possesses some 
subtle and intriguing features which make it possible to introduce another type 
of infinitesimal—the so-called invertible infinitesimals—resembling those of 
nonstandard analysis, whose presence engenders yet another infinitesimal 
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neighbourhood of 0 properly containing all those introduced above.  
 In SIA the set N of natural numbers can be defined to be the smallest 
subset of R which contains 0 and is closed under the operation of adding 1. In 
some models of SIA, R satisfies the Archimedean principle that every real 
number is majorized by a natural number. However, models of SIA have been 
constructed (see Moerdijk and Reyes [1991]) in which R is not Archimedean in 
this sense. In these models it is more natural to consider, in place of N, the  set   
N* of smooth natural numbers defined by  
 

N* = {x ∈ R: 0 ≤ x ∧ sin πx = 0}. 
 

N* is the set of points of intersection of the smooth curve y = sin πx with the 
positive x-axis. In these models R can be shown to possess the Archimedean 
property provided that in the definition N is replaced by N*. In these models, 
then, N is a proper subset of N*: the members of N* – N may be considered 
nonstandard integers. Multiplicative inverses of nonstandard integers are 
infinitesimals, but, being themselves invertible, they are of a different type from 
the ones we have considered so far. It is quite easy to show that they, as well as 
the infinitesimals in J (and so also those in ∆ and I) are all contained in the 
set—a further infinitesimal neighbourhood of 0—  

 
K = {x ∈ R: ∀n ∈ N. –1/n+1 < x < 1/n+1}  

 
of infinitely small elements of R. The members of the set 
 

In = {x ∈ K: x ≠ 0} 
 
of invertible elements of K are naturally identified as invertible infinitesimals. 
Being obtained as inverses of “infinitely large” reals (i.e. reals r satisfying ∀n ∈ 
N. n < r  ∨  ∀n ∈ N. r < –n)the members of In are the counterparts in SIA of  the 
infinitesimals of nonstandard analysis. 
 

* 
 

We conclude with two applications of SIA to physics.  
First, we derive the Kepler-Newton areal law of motion under a central force. 

We suppose that a particle executes plane motion under the influence of a force 
directed towards some fixed point O. If P is a point on the particle’s trajectory 
with coordinates x, y, we write r for the length of the line PO and θ for the angle 
that it makes with the x-axis OX. Let A be the area of the sector ORP, where R 
is the point of intersection of the trajectory with OX. We regard x, y, r, θ as 
functions of a time variable t: thus  
 

x = x(t), y = y(t), r = r(t), θ = θ(t), A = A(t). 



 8

 
 
 
 
                                                                             Q 
 
                                                                        rεθ′ 
                                                                          P 
                                                         
                                                    r       θ(t+ε) 
                              O               θ(t)   R         
                                                                                   X     
                                                      
 

  
 Now let Q be a point on the trajectory at which the time variable has value  
t + ε, with ε in ∆. Then by Microstraightness the sector OPQ is a triangle of base 
r(t + ε) = r + εr′ and height  
 

r sin[θ(t + ε) – θ(t)] = r sin εθ′ = rεθ′. 
 

(Here we note that sin ε = ε for microquantities ε: recall that sin x is 
approximately equal to x for small values of x.)  The area of OPQ is accordingly 
 

2 base × height = 2 (r + εr′)rεθ′ = 2(r2εθ′ + ε2rr′θ′) = 2 r2εθ′. 
 

Therefore 
 

εA′(t) = A(t + ε) – A(t) = area OPQ = 2εr2θ′, 
 

so that, cancelling ε,  
                                           A′(t) = 2r2θ′.                                  (*) 

 
Now let H = H(t) be the acceleration towards O induced by the force. 

Resolving the acceleration along and normal to OX, we have 
 

x″ = H cosθ        y ″ = H sinθ. 
 

Also x = r cosθ, y = r sinθ. Hence 
 

yx″= Hy cosθ = Hr sinθ cosθ         x y ″ = Hx sinθ = Hr sinθ cosθ, 
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from which we infer that 
 

        (xy′ – yx′)′ =  xy ″ – yx ″ = 0.      
 

Hence 
 
                                                 xy′ – yx′ = k,                                            (**) 

 
where k is a constant.                              
 

Finally, from  x = r cosθ,  y = r sinθ, it follows in the usual way that 
 

xy′ – yx′ = r2θ′,  
 

and hence, by (**) and (*), that 
 

2A′(t) = k. 
 
Assuming A(0) = 0, we conclude that 
 

A(t) = 2kt. 
  
 Thus the radius vector joining the body to the point of origin sweeps out 
equal areas in equal times (Kepler’s law). 

 
Finall, a remark on the form of spacetime metrics in smooth infinitesimal 

analysis. In a spacetime the metric can be written in the form 
 
(*)                    ds2  =  Σgµνdxµdxν        µ,ν = 1,2,3,4. 
 
In the classical setting (*) is in fact an abbreviation for an equation involving 
derivatives and the “differentials” ds  and  dxµ are not really quantities at all. 
What form does this equation take in SIA? Notice that the “differentials” cannot 
be taken as nilsquare infinitesimals since all the squared terms would vanish. 
But the equation does have a very natural form in terms of nilsquare 
infinitesimals. Here is an informal way of obtaining it. 
 We think of the dxµ as being multiples kµe of some small quantity e. Then (*) 
becomes  
 

ds2  =  e2Σgµνkµkν, 
 

so that  



 10

ds  =  e[Σgµνkµkν]2 
 

 
Now replace e by a nilsquare infinitesimal ε. Then we obtain the metric relation 
in SDG: 
 

ds  =  ε[Σgµνkµkν]2. 
 

This tells us that the “infinitesimal distance” ds between a point P  with 
coordinates (x1, x2, x3, x4) and an infinitesimally near point Q with coordinates 
(x1 + k1ε, x2 + k2ε, x3 + k3ε, x4 + k4ε) is ε[Σgµνkµkν]2. Here a curious situation 
arises. For when the “infinitesimal interval” ds between P and Q is timelike (or 
lightlike), the quantity Σgµνkµkν is nonnegative, so that its square root is a real 
number. In this case ds may be written as εd, where d is a real number. On the 
other hand, if ds is spacelike, then Σgµνkµkν is negative, so that its square root 
is imaginary. In this case, then, ds assumes the form iεd, where d is a real 
number (and, of course   i = 1− ). On comparing these we see that, if we take ε 
as the “infinitesimal unit” for measuring infinitesimal timelike distances, then 
iε serves as the “imaginary infinitesimal unit” for measuring infinitesimal 
spacelike distances.  

 
For purposes of illustration, let us restrict the spacetime to two 

dimensions (x, t), and assume that the metric takes the simple form ds5 = dt5 – 
dx5. The infinitesimal light cone at a point P divides the infinitesimal 
neighbourhood   at  P   into   a   timelike   region  T  and  a spacelike  region  S, 
 
                                                               t 
 
 

                                                         
                                                  T    Q 
                                            l               l′ 
                                                                 S 
                                           S        P                             x 
 
                                                      T 

 
 
 
 
 
bounded by  the  null  lines l and l′ respectively. If we take P as origin of 
coordinates, a typical point Q in this neighbourhood will have coordinates (aε, 
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bε) with a and b real numbers: if |b| > |a|, Q lies in T; if a = b, P lies on l or l′; 
if |a| < |b|, P lies in S. If we write d = |a5n b5|2, then in the first case, the 
infinitesimal distance between P and Q is εd, in the second, it is 0, and in the 
third it is iεd. 

 
Minkowski introduced “ict” to replace the “t” coordinate so as to make the 

metric of relativistic spacetime positive definite. This was purely a matter of 
formal convenience, and was later rejected by (general) relativists (see, for 
example Box 2.1, Farewell to “ict”, of Misner, Thorne and Wheeler Gravitation 
[1973]). In conventional physics one never works with nilpotent quantities so it 
is always possible to replace formal imaginaries by their (negative) squares. But 
spacetime theory in SIA forces one to use imaginary units, since, 
infinitesimally, one can’t “square oneself out of trouble”. This being the case, it 
would seem that, infinitesimally, Wheeler et al.’s dictum needs to be replaced 
by 

 
Vale “ic(t)”, ave “iε” !  
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