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Banach theorem and a (slightly modified) version of the Krein—Milman theorem on the existence
of extreme points in compact convex sets. .

. In [3—35] it is shown, by various means, that the Boolean prime ideal theorem

effectively*) implies the Hahn—Banach theorem. Whether the implication can be
reversed is still an open question. In this paper we show that the Boolean prime ideal
theorem can be effectively obtained .from the conjunction of the Hahn—Banach
theorem and a (stightly modified) version of the: Krein—Milman theorem on the
existence of extreme points of compact convex sets.

1. Prelimiparies

Throughout this paper we shall assume that all linear spaces and algebras have
the real number field, R, as their underlying field of scalars. A linear functional
on a linear space is a linear mapping of the space to R.

DerNiTiON 1.1 ([5]). Let L be a (real) linear topological space. A subset 4 of I
is said to be quasicompact**) if whenever Fis a family of closed convex sets such
that {F N 4 : Fe F} has the finite intersection property, then N {FN A4 : Fe F}% @.

The proof of the following lemma is elementary and accordingly we omit it.

LEMMA 1.2 (i) A closed convex subset of a quasicompact set is itself quasicompact.
() A quasicompact subset of a Hausdorff locally convex space is closed. (iii) The
image of a quasicompact set under q continuous linear mapping is quasicompact.
(iv) A set of real numbers is quasicompact if and only if it is compact.

*)i.e. no application of the axiom of choice is made in the proof.
*¥) In [5] the term convex compact is used for this notion.
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We next state the version of the Krein—Milman theorem we shall ‘use in the
sequel. -

THEOREM 1.3. Any convex quasicompact subset of a locally convex Hausdorff
(linear topological) space has extreme points., '

Using the facts enumerated in Lemma 1.2, the proof of Theorem 1.3 is a straight-
forward modification of the proof of the existence of extreme points in compact
convex subsets of locally convex Hausdorff spaces (see, e.g., [2], p. 131).

Theorem 1.3 will be abbreviated in future to VKM.

THEOREM 1.4 ([5]). The Hahn—Banach theorem is effectively equivalent to the
Jollowing assertion (a weak form of Alaoght’s theorem): for any normed linear space L,
the closed unit sphere of the continuous dual L* of L is quasicompact in the weal*
* topology for L*. ’

DEFINITION 1.5 Let X be a completely regular Hausdorff topological ‘space.
C* (X) denotes the normed algebra of bounded real valued continuous functions on
X, with the supremum norm Ifll=sup {|f(x)|: xe X}. If A is a subalgebra of C* (X)
which contains the identity element 1 of C* (X), K, (X) denotes the set of all linear
mappings ¢ on 4 to the reals such that (1) ¢ is positive, i.e. f=0in A implies ¢ (f)>0,
() p()=1. If 4=C* (X), then K, (X) will be denoted simply by K (X).

THEOREM 1.6 ([7]). Let A be a subalgebra of C* (X) containing 1. Then an element
¢ of K, (X) is an extreme point of K, (X) if and only if ¢ is an algebra homomorphism
of A into R. :

We point out that the proof of this theorem is effective.

- Finally, we shall assume the Hahn—Banach theorem (which we shall refer to

as HB) in the following form, which is known to be effectively equivalent to all
the other forms in the literature.

THEOREM 1.7 (Hahn—Banach). Let L be a partially ordered linear space and let C
be the positive cone {xeL: x=0}. If L' is a linear subspace of L such that C A L'
is cofinal in C, then each positive linear Junctional on L' can be extended to a positive
linear functional on L

2. The main result
Our intention in this section is to prove the following

THEOREM 2.1. VKM-+HB effectively imply the Boolean prime ideal theorem:
every Boolean algebra contains a prime ideal.
The proof of this result rests on two lemmas.

LeMMA 2.1. Assuming VKM and HB, ‘one can effectively prove the Sollowing
assertion: if X is a completely regular Hausdorff space and A is q subalgebra of C* (X)
containing 1, then each positive homomorphism ¢4 of A to R which sends 1101 can
be extended to a homomorphism on the whole of C* (X). '
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.. Proof.” Assume VKM and HB. Let S be the closed unit sphere of the continuous
-dual D of C* (X) and let ¥ be the set of all positive members of D which extend gp,.
- Then ¥+ @ by HB. Also V<K (X)<S. The first of these inclusions i trivial. To
establish the second, notice that, if pe K (X Jand ||f||<1in C*(X), then —1<f<1, s0
that —1< g (f)<1by positivity of ¢ and the fact that @ (1)=1. Therefore |¢ (f)| <1
whenever [|f||<1 so that g€ S. It is easy to see that V is a closed convex subset of §
(in the weak* topology for D). By Theorem 1.4 HB implies that S is quasicompact
(again in the weak* topology for D); therefore, by Lemma 1.2, ¥ is also quasi-
compact, VKM now implies that ¥ has an extreme point y, which is also an extreme
point of K(X), because if y=ay,+(1—a)y, with v, y, e K(X) and 0<a<]1,
then ¢oéw1A=aw1 |A+(1—a) y, | 4. Clearly v1|A4 and y, | 4 are both in K, (X);
by Theorem 1.6, ¢, being a homomorphism, is an extreme point of K, (X). Therefore
Po=Vi1|A=wy,| A and so y, and Y2 are both in V. But y was assumed to be an
extreme point of ¥ so Y=y1=y, and y is therefore an extreme point of K (X).
It follows, again by Theorem 1.6, that v is a homomorphism of C* (X) which
extends ¢,. '

LEMMA 2.3. Lemma 2.2 effectively implies that every proper ideal in C*(X)
is contained in a maximal ideal.

Proof. Assume Lemma 2.2, and let 7 be a proper ideal in C* (X). Then, for
each fe I, since f is not invertible in C* (X) we must have inf {If®):xex }=0.
Let A be the subalgebra of C* (X) generated by 7 U {1}; then each element gof A4
is uniquely expressible as a sum g=a+f, where a is a constant function with
fixed real value @ and fe I Define the mapping ¢, : A—>R by setting, for each
g€ A, 9o (g)=0a where g=a+f is the decomposition given above. Clearly Po I8
a homomorphism from 4 to R which carries 1 to 1. Furthermore, g, is positive,
for if >0 in 4 and g=a+f with fe I and a e R then a+f(x)=0 for all xe X.
If a<O then, since inf {| /' (x)|: x & X}=0, there is x € X such that [f(*)|<|a| and so
a+f(x)<0, a contradiction. Therefore o is positive and by Lemma 2.2 can be
extended to a homomorphism ¢ on C* (X). The kernel of ¢ is the required maximal
ideal containing I.

Proof of Theorem 2.1. By Lemmas 2.2 and 2.3, VKM +HB effectively imply
that, for any completely regular Hausdorff space X, every proper ideal in C* X)
can be extended to a maximal ideal. It follows from this, using a standard (effective)
argument (q.v. [1]) that the Stone—Cech compactification SX of X can be constructed
as the space of maximal ideals of C'* (X). But it is a well-known fact ([6]) that the
_existence of BX for all such X effectively implies the Boolean prime ideal theorem.
This completes the proof. '

3. Concluding remarks

We feel that the result obtained in this paper is not entirely satisfactory for two
reasons: first, we do not know whether the strong form of the Krein—Milman
theorem we use is effectively equivalent to the usual version; and second, attempts
to prove either of the versions of the Krein—Milman theorem from the Boolean



~f

Conepxanne. B HeCKONBKHX 3aMeTKax 6u10 yxe nokasaHo, wro 6ynesas 'reopeMz{ mpocToro

194 J. L.Bell,'F. Jellett =~ - - cc oin

* prime ideal theorem have so far been unsuccessful. It is fairly easy to show, ‘ﬁowéﬁér,":'

that the Krein—Milman theorem can be effectively obtained fr_o\m ‘the‘mékilﬁgl“'
ideal theorem for distributive lattices: unfortunately it is not known whether’ this

result is really stronger than the Boolean prime ideal thecrem. anethel\eé's‘-.;Wé‘.

conjecture that the Boolean prime ideal theorem is effectively equivalent to ‘the
conjunction of the Krein—Milman theorem and the Hahn—Banach theorem.
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n.J. Bamwm, @, [Ixonner, 3aMeTka 0 3aBHECHMOCTH MexAy Gynemoil Teopemoii mpocToro mmeana
H ABYMS HPHHIHONAMH B ()YHKNMOBANLHOM AHAIH3E, ' SR

Haeana 3phexTHBHO BeTer 3a cobolt TeopeMy Xana—BaHaxa (7. e, MOXHO ZOKA3aTH AMIUTHKALHIO

we npuberat K axcHoMe BEIGOpa). OMEAKO npobnema: MOXHO-T O6paTHTE 3TO yTBEpRACHHE ! — _

BCE CIIE OCTaeTCA OTKpPHITOM. B HacTosmel 3ameTke Zloxa3pIBaeTcH, ¥T0 GyneByio Teopemy npoc-
TOro HMAEana MOXHO 3}{eKTHBHO MONYYHTh M3 KOHBIOEKIHE TeopeMbl Xana—baHaxa ¢ HEKOTO-
PEIM ("Heckomexo MOXH(HIMPOBAHHLIM) BADHAHTOM Teopemsl Kpaitna—Muanemana o CyINEeCTBO-

- BAaHHH 3KCTPEMAILHBIX TOYEK B KOMIAKTHBIX, BHITYKITBIX MHOXECTBAX. ,
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