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1 Introduction

The concept of precover is an essential constituent of that of pretopology, which was
formulated by GIOVANNI SAMBIN in [4] in order to provide a semantics for linear
logic. The concept of pretopology may itself be regarded as a generalization of the
notion of formal topology, which was introduced by SAMBIN as part of a program for
developing an intuitionistic approach to pointless topology, that is, topology in which
the basic concept is that of neighbourhood and points are defined as particular filters
of neighbourhoods (see (3] and [4]).

In this paper we develop the notion of precover in an elementary topos. Our
arguments will in fact be formulated within the so-called local set theories and the
linguistic toposes associated with them (see [1]). After a brief review of the relevant
definitions, we show how each modality within a local set theory induces a relation
possessing the reflexivity and transitivity properties of a precover. This relation,
defined by JoHN BELL in [2] and called universal precover, extends the notion of
precover to local set theories, and hence to elementary toposes. We show that the
concept of universal precover is in fact equivalent to that of modality, and hence to
that of universal closure operation in a local set theory. We also observe that the
notion of universal precover is a natural generalization of the membership relation
within a local set theory.

1) We would like to express our gratitude to GIOVANNI SAMBIN for his assistance.
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To define a universal precover in a local set theory we have to assign a relation to
each “set” (or to each object of the associated topos). We show that, when the set
is a monoid, the assigned relation actually becomes a precover in the original sense
of SAMBIN. Finally, we show that a universal precover may be obtained by assigning
such a relation just to the truth-value set of the local set theory.

2 Precovers and pretopologies

Definition. Let (S, -,1) be a commutative monoid. A precovering relation,
or precover, on S is a relation 4 between elements and subsets of S, satisfying the
following conditions:

(i) If a € U, then a aU (reflexivity);
(ii) ifaaU and U aV, then aaV, where UaV =Vb e U(baV) (transitivity);
(iii) if aaU and baV, then a-baU -V (stability).
A pretopology is a quadruple F = (S, -,1,45), where (S, -,1) is a commutative
monoid and 4 is a precovering relation on it.

A precover on S can equivalently be presented as an operator F : P(S) — P(S)
defined by

F(U)={a€S:aqarU}.
It follows from properties (i) and (ii) that F is a closure operator on S (see [4]). FU)
is called the F-saturation of U and U is called F-saturated if F(U) =U.
The collection Sat(F) of F-saturated subsets of S is then a complete lattice with
respect to C in which arbitrary infima and suprema are defined by
NietUi = NiesUi and Ve, Ui = F(UiesUs):
Furthermore, if we define the operation -x by
U-V =FU:-V), for any U,V € Sat(¥),

(Sat(F),-5) becomes a commutative monoid. The only link between the algebraic
and the lattice structure is infinite distributivity, that is to say

V - VietUi = Vier(V -7 Ui).

If -5 coincides with A or when we require (Sat(F), ) to be a semilattice with
ordering C, Sat(F) is a complete Heyting algebra [4].

3 Local set theories and linguistic toposes

A linguistic topos is a topos built up from a language in a way resembling the con-
struction of Lindenbaum algebras. It may be regarded as a “model” for a local set
theory, which is a type theoretic system built up from the primitive symbols €, =,
and {:} in a language whose basic axioms and rules are formulated so as to yield
exactly the theorems of intuitionistic logic (see [1]).

To sketch the construction of a linguistic topos, we begin by describing a local
language. A local language is a typed language with no logical operations among
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its primitive symbols, in which are specified two particular type symbols: 1 and ,
called the unity type and the truth value type, respectively. Its terms must include
the following:

1) * of type 1;

2) {za : a} of type P(A), where z 4 is a variable of any type A and « a term of
type ©;

3) o = 7 of type Q, where ¢ and 7 are terms of the same type;

4) o € 7 of type §2, where o and 7 are terms of type A and P(A), respectively;

5) (11,...,Ta) of type A; x --- x A,, where 7; is of type A; (i=1,...,n);

6) (7); of type A;, where 7 is of type A; X --- x Ap.

An occurrence of a variable z in a term 7 is bound if it appears within a context of
the form {z : a}, otherwise it is free. A term of type € is called a formula.

The logical operations among the terms in the language can be defined as follows,
where a, 3 are terms of type 2.

a—f for a=4,

true for “*'= 3%,

aAB for (a,pB) = (true, true),

a—f for (aAp)=a,

Vza for {z:a}={z: true},

false for VYw.w, w a variable of type 2,
o for a — false,

aVp for Yw[((a =w)A(B—w))—w],

w a variable of type 2 not occurring in « or S,
Jza for Yw[Vz(a — w) — w],

w a variable of type €2 not occurring in a.

To describe the axioms and the inference rules of a local set theory we use the
sequent notation I' : @ in which « is a formula and T is a (possibly empty) finite set
of formulas.

The basic azioms of a local set theory are the following:

tautology 0:a=a,

unity o2y =»,

equality z =y, a(z/z) : a(z/y), with z and y free for z in a,
products B:({z1,::,2a))i =% and_ Qom= ((#),.s, (2)n),

comprehension 0:z € {z:a} o a.

The rules of inference of a local set theory are the following: thinning, cut (with
the limitation that any free variable of the cut-formula is free in the antecedents or
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in the succedents of the sequents, different from «), and

i L ;
substitution — % , T free for z in I" and «,

I(z/7): a(z/T)

''z€o0—z€er

extensionality , z not free in I, o, 7,
| MR
val o, T2 8T o
equivalence ’
® Na-p

A proof from S is defined in the same way as in the sequent calculus and a sequent
I' : o 1s said to be derivable from S if there is a proof from S of which I' : « is the
conclusion. We will write I' g « to indicate that I' : « is derivable from S, and Fg o
for O s «. A local set theory is a theory in a local language, that is to say a collection
of sequents, S, which is closed under derivability.

Linguistic toposes are constructed as follows. In a local language the terms of
power type (if A is a type symbol P(A) is called the power type of A) are called
set-like terms and closed set-like terms are called L-sets or simply sets. We consider
the equivalence classes, called S-sets, of L-sets under the relation ~g defined in the
following way:

Xz ¥ SHITNE B AP

An S-map f: X — Y is a triple (f, X,Y) of S-sets such that Fg f € YX, where
Y X is defined as

{u:uC X xYAVe(z e X - 3y(y €Y Alz,y) € u))}.

The collection of S-sets and maps then forms a topos which is called a linguistic topos.
It can be shown (see [1]) that any elementary topos is equivalent to a linguistic topos.

4 Modalities

In this paragraph we will show how, given a local set theory S and a modality on
S (defined below), we can obtain a new relation between elements and S-sets which
generalizes the membership relation. We will also see that saturating the S-sets with
respect this new relation yields a universal closure operation.

Definition4.1. Let S be alocal set theory and € the S-set {w : true}. A modal-
ity 1s an S-map p : Q@ — € such that
(i) a ks p(a);
(i) if o bs B, then p(a) bs u(B);
(iii) p(p(a)) s pla).
We shall usually write o* for pu(«).

Note that this definition does not specify any relation between a modality and the
logical operators, but it is consistent with them as we state in the next proposition,
which is Corollary 5.3 of [1].
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Proposition4.2. If pisa modality in a local set theory S, we have:

L ks (a AB)* = o* A B*;

2. (a—»ﬁ)*i—sa*ﬁﬁ*;

3. a = flsa*— g+,

4. 3za* ks (3za)”, whence (Iza*)* g (3za)*;

5. (Vza)* ks Vza*. O

Modalities enable us to generalize the membership relation. Thinking of u(a) as
meaning “a is possibly true”, u(z € U) means “it is possible that z is in U” . Thus,

given a modality x on a local set theory S, for each S-set X we define a relation
ax € X x P(X) by

zax U = p(z € U),
for any S-set U such that kg U/ G X,
Theorem 4.3. The relation ax has the following properties:
LIftsUCX, thenz€UtgzaxU.
2.IfFsUC X andbg V C X, then yay UVz(z €U »zax V) Fsyax V.
3. Iff: X — Y is an S-function and FsUCY, then
z€XFs f(z)ay U & z ay 0,
where f=1[U] is the term {z : 2 € X A f(z) € U}.
Proof.
1. This follows immediately from the first property of modalities.
2. According to the definition of dx, we need to show:

()  Velz€U—(zeV)ks (yeU) — (ye V)~

Now yeU— (yeV)* bs (yeU) — (y € V)™ by 4.2.3, so, since (y € V= Es
(y € V)*, it follows that y € U — (e V) ks (y € U)* — (y € V)*, from which (*)
follows immediately.

3. Asz € X ks (z € f~'[U])* & (f(z) € U)* follows from
z€X, (€ fTU)* : (f(z) €U)* and z€X,(f(z) €U :(z¢ oy

by the equivalence rule, we need to infer the last two sequents. Regarding the first
one, we have, by substituting into the equality axiom,

z€fUl=(f(z) EUAzEX), (z € fHUD ks (f(z) €U Az € X)*
so that, using 4.2.1,
z€ fU]=(f(z) EUAzEX), (z € fHUN ks (f(z) eUY Az € Xt

Hence, by the comprehension axiom we get (z€ fTHUD*Fs (f(z) eV A(z € X)*
so that (z € f~'[U])* ks (f(z) € U)*. Hence, z € X, (z € fHUN* ks (f(z) € U)*.

Similarly, we show
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From the first property of modalities we have z € X g (z € X)* so concluding that
(z € X), (f(z) €U)* ks (z € fTH U] D
The three properties in Theorem 4.3 embody the minimal conditions which a
putative membership-relation has to satisfy. We also note that when the S-set is a
monoid, the reflexive and transitive properties correspond to those of a precover.

The relation ax enables us to generalize the subset-relation by writing U ax V
for Vz(z € U — z ax V). With this new definition we can rewrite Theorem 4.3.2 as
follows:

24 IFEsTLEX and s V C X, thenzax U, Uax Vg zax V.

In particular, we can “saturate” an S-set U, g U C X, with respect to the relation
ax writing U2 for {z : z ax U} and calling it the saturation of U. It follows easily
from Theorem 4.3 that the saturation operation 2 is a universal closure operation in
the sense of [1].

5 Universal precovers

We are now going to define a relation between elements and S-sets in a local set
theory which will be characterized by the properties established in Theorem 4.3.

Definition 5.1. A universal precover < on a local set theory S is an assignment
of an S-set ax to each S-set X such that Fs ax C X x P(X) and
()if FsUC X, thenz€eUtgzax U,
(ii) if kg UC X and Fg V C X, then zax U, Uax VigzaxV,
(iii) if f : X — Y is an S-function and kg U C Y, then
z€XFtg f(.’l:) ay U 4—;2,‘<lx f_l[U]
We will show that, given a type A, a universal precover is “uniform” on every
S-set of type P(A), and so also on every subset of a given S-set X. For this reason

we can write 44 in place of ax if A is the type of X, and we can omit the subscript
whenever it is clear from the context.

Proposition 5.2. If X is an S-set of type P(A) and Fs U C X, then
J:EX"Sz‘deH.’EQAU,

where we write A for the S-set {z 4 : true}.

Proof. Consider the insertion j : X — A defined as J(z)=z. Since Fs U C A
it follows from the third property of universal precovers that

z€XFszax 7' U] & j(z)aa U.
It remains to prove kg j='[U] = U, yielding z € X g zax U «— za, U. Noting
that j='[U] = {z: 2 € X Az € U} we infer z € X,z €Uts ze€ j U], whence
z €Utsze j U], since Fs UC X. From t€jUlFs zeXAzeU we
obtain z € j~![U]Fs z € U, and Fs j~}[U] = U follows. m]
From this we easily obtain

Corollary 5.3. If X is an S-set of type P(A) and U is an S-set such that
FsUCX, thenz€Ubszay U —zax U. 0O
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We want next to show that universal precovers respect the operations of function
image and cartesian product. To do this we require the following

Lemma 5.4.

(a) zaX,y€Y s (z,9)a X x Y, oe X, yqY Felz,y)a X x Y.

(b) zaX, yaY ks (2,9) a X2 xY, 24X, yaY kg (z,y)a X x Y2,

()P X2 XY aXx ¥, Fs X x¥Sa¥ xV.

Proof.

(a) Let X be of type A and consider ¢ : A x ¥ — A defined by o((z,y)) = z.
The third property of universal precovers yields

XCA(r,yy€AxY,zaX s (z,y)aX xY

and so, since the cartesian product is defined by A x Y = {{(z,y) :z € ANy €Y}, we
obtain X CA,z € A,y€Y,z4aX kg (z,y)9X xY. From the hypothesis Fs X C A,
weobtainz € A,y €Y, 29X Fs (z,9)aX xY, ie.y€Y, 2aX kg (miyya X xY,
recalling that A = {z4 : true} so that k5 z € A. The second sequent in (a) is an
easy consequence.

(b) This follows from (a) by substituting X2 for X and observing that
Fsz€eX® ozaX
follows from the comprehension axiom, so that z 94X kg € X2. In the same way
we deduce the second sequence in (b).

(¢) The comprehension axiom implies (z,y) € X2 x Y g z € X4 A y €Y, and
by (a), za X,y €Y ks (z,y) 9 X x Y, whence (z,y) € X2 x Y b5 (z,y) aX x Y.
Hence k5 Vz,y((z,y) € X® x Y — (z,y) <X x Y) which may be written in the form
Fs X2 xY aX x Y. In the same way we deduce Fg X x Y2 aX xY. 0O

Proposition 5.5. If a is a universal precover on a local set theory S, then
(1) if f: X — Y is an S-function and Fs U C X, then
z€X, zax Uts f(z)ay fIU];
(i) Fs(z,y) 9 X xY > (zaX AyaY).
Proof.

(i) Let f: X — Y be an S-function. Since U C X b5 U C FYHfU]] it follows
that U C X s U « f~[f[U]]. By the second property of universal precovers, we have
zax U,U a f~[f[U]] Fs = ax f~'[f[U]] which yields

(1) UCX,zax Ukszax fYfU].
The third property of universal precovers gives

z€X, fU)CY, zax ffUN s f(z) <y FIU)
so that, since U C X g f[U] C Y, we infer
(2) UCX,z€X,zax fTHf[U]lFs f(z) ay fIU].
From (1) and (2) follows

UCX,z€X,zax Ukts f(z)ay f[U],
whence z € X, z ax U ks f(z) ay f[U].
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(ii) Let X, Y be of types P(A), P(B), respectively, write A, B for {z 4 : true},
{zB : true}, respectively, and 7, : A x B —, A, m3: Ax B — B for the S-functions
(z,y) — z, (z,y) =y, respectively. We first show (T, y) 9 X XY kg (zaX AyaY).
As we saw in (i) we can get

X xY CAxB,(z,y) € Ax B, (T, y) 9 X x Y kg m((z,y) am (X x Y)
so that
(3) XXYCAXB, (z,y)a X x Y kg m((z,y) am (X x Y),

recalling the definitions of A and B and observing that kg (z,y) € Ax B. From
the two hypotheses +g X CAand ks Y C B we infer Fs X xY C A x B, and
() 9 X XY kg z 14X follows from (3). In the same way, using 73 in place of ,
we have (z,y) 9 X x Y Fs yaY, whence (T, y) 9 X XY Fg 49X AyaY. Lastly,
we have (29X AyaY) kg (z,y) 9 X x Y. For from Lemma 5.4.(c), we obtain
P X% % Y2 o X % ¥ fom whick follows

(z,y) € X2 x Y2 kg (T,y)a X x Y

sothatzaX,qul-s(x,y)quY. 0

We finally show that a universal precover is uniquely determined by the relation
between formulas and the S-set 7'r = {w:w = true}.

Proposition 5.6. If U is an S-set of type P(A) and +5 U C X, then
"stdAUH(IEU)QQTT.

Proof. Let X :' 4 — Q be the S-function defined by X(z) = z € U. Then
ks X~ [Tr] = U so that FszaaU - zqy X~![Tr] and by property (iil) of univer-
sal precovers, Fg z q, X7UTr] & X(2) aq Tr. Putting these equivalences together
gives the required result. 0

6 Equivalence between modalities and universal precovers

Our next task is to show that a modality is equivalent to a universal precover. In fact
we will show that a universal precover induces a modality which, in its turn, gives
rise to a universal precover which turns out to be the same as the original one. We
will prove the same thing starting with a modality.

First, we show how to obtain a modality from a universal precover.

Proposition 6.1. Let 4 be a unwersal precover on a local set theory S and
#:Q — Q the S-function defined by p(w) = w aq Tr. Then # 15 a modality.

Proof. We have to prove that u satisfies the three properties of a modality.

(1) We need to show that o Fs a<aq Tr. Since Fgw = (w = true), it follows that
Fsw — w e Trso that w Fs w € Tr. From the first property of a universal precover
we have w € Tr kg w da T'r, whence w kg w dn T'r, as required.

(i) We have to show that from a Fs B we can infer a aq T'r Fs Baq Tr. From
the hypothesis a g B we infer kg a — (3 and hence, recalling the definition of
a — B, the equality axiom yields a aq Tr ks a A B 4aq Tr. So our task reduces to
showing that a A 8 aq Tr Fs B<q Tr, and, to this end, we consider the S-function
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& Q x Q — Q defined by &((w,w')) =w Aw'. By the third property of universal
precovers, we have ks (w Aw') 9 Tr < (w,w') @&~ [Tr]. Now, if we can show that

(4) ts & Tr]=Tr xTr,
we may infer Fs (WAw') @ Tr & (w,w') aTr x Tr, so that
(wAwW)aTrts (w,w')aTr x Tr.

Proposition 5.5.(ii) then implies (wAW)aqTr ks wagTr A w' aq Tr from which
follows (w Aw') aq T ks W' aq T'r, so that, substituting o for w and g for w’, we get
what we want.

So we turn our attention to proving (4). To do this, we observe that, by the
comprehension axiom, ks (w,w') € & Tr] & (w,w') €A X QA (w Aw') €Tr, so
that ks (w,w') € & TI'T] & (w,w') € X QA (w Aw') = true. Therefore, we have
Fs (w,w') €& Tr] & (w,w') € Qx QA(wAW') from Fsw AW’ = ((w Aw') = true).
Now, w Aw' is (w,w’) = (true, true), whence s w Aw o w€TrAw €Tr. So we
have Fs (w,w') € &} [Tr] & (w,w') EAX QA (W E Tr Aw' € Tr), whence

Fs (w,w') € &~ HTr] & (w,w') €Tr xTr,

from which we infer s & [Tr] = Tr x Tr by extensionality.

(iii) Finally, we must prove p(u(e)) Fs pla), i.e. (adq Tr)anTr ks adaTr.
Since Fs adqTr < a € Tr® it follows that

(aanTr)aTr Fs(a€ TrA) aq T'r.
By proposition 5.6, we have ks (a € Tr®) aq Tr « a<4q Tr®. Hence
(5) Fs (aaqTr)aTr « adq Tré.
From the second property of universal precovers, we have

a dq Tr®, Tr® aTrbts « qn'Tr.

Since clearly ks Tr® aTr, we obtain a<qn Tr® Fg a<q Tr, which, together with
(5) gives the required conclusion. m]
Now we establish the equivalence between modalities and universal precovers.

Theorem 6.2. Every modality in a local set theory S 1s equivalent to a universal
precover in S, and further, every universal precover 1s equivalent to a modality.

Proof. Let u be a modality in S. As we saw in Section 4, we can define a
universal precover, ¢ aU = p(z € U), which, in its turn, induces a modality pq as
follows:

po(a) = aaTr = pla €TT).

We show that Fs p(a) < pe(a). Since Fs a—a€ Tr, we can apply the second
property of modalities and obtain

ts u(a) & p(a € Tr),

as claimed.
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Conversely, given a universal precover <, we can define a modality p as in the
previous proposition and then a universal precover q, by
zqU=pzel)=(z€U)agTr.

By Proposition 5.6 we have tg zax U — (z € U) 9q T'r which we can rewrite as
Fs zax U < x4, U so that g, is the same as «. a

7 Stability

We have defined a universal precover on a local set theory by assigning to each S-set
X a relation ax satisfying certain properties. When the S-set X is a monoid, we
have noted that the first two properties correspond to the reflexive and transitive
properties of a precover, respectively. Here we will show that, when X is a monoid,
dx also satisfies stability so that «ax is a precover on X.

Let £ be a local language in which we can write the monoid axioms and let M be
a type of a monoid. We write M for the S-set {z s : true} of type P(M), and if U
and V are S-sets of type P(M), we write U -V for the term {z -y : z € U ANy eV}

We will say that a universal precover satisfies stability if
a<1MU, bQMV"s a~b<lMU-V.
Proposition 7.1. If « is a universal precover on a local set theory S, then Anm
satisfies stability.

Proof. Let f : M x M — M be the S-function defined by f({z,y)) =z -y
From 5.5.(i) we infer (z,y) € M x M, (z,y) aU x V +s f((z,y)) anr fF(U x V) and
so, since ks (z,y) aU x V > z apr U Ay aps V by Proposition 5.5.(i1), we obtain

(z,y) EM x M,z apg UAyapVisz-yan U V.
Since clearly g (z,y) € M x M, the conclusion follows. O

8 Precovers on

We have seen in Theorem 6.2 that specifying a modality on a local set theory S is
equivalent to specifying a universal precover, but to specify a universal precover we
have to define a relation for every S-set X whereas, to specify a modality we have
to define an S-function only on the S-set Q. This fact leads one to suspect that a
universal precover may be obtained just by defining a relation on the S-set Q, which
i1s what we finally show.

Definition 8.1. A precover-on-Q in a local set theory S is an S-set <q such
that aq C Q x P(Q), and
(i) if FsUCQ,thenz €U Fg zaq U;
(i)if FsUCQand FsVCQ, thenzaqU, UaqV ks zaq V;
(i) Fs (wWAW)aqaTr s waqTr Aw' aq Tr;
(iv) if f: Q — Q is an S-function and 5 U C Q, then
Fs wan f_l[U] — f(w) al.
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We now show that this relation determines a universal precover.
Theorem 8.2. Let S be a local set theory and <aq a precover-on-§) in S. If for
each S-set X we define the relation 9, dx € X x P(X), by
zax U = (.’EEU)QQTT‘,
then we obtain a universal precover on S.
Proof.
(i) Since w ks w € T'r, we obtain z € U Fs (z € U) € Tr from which follows

z € Uts (zr €U)aq Tr by the first property of a precover-on-2, and if we rewrite
the conclusion using the definition of Ax,wegetzeUklgzax U.

(i1) We must show

(yeU)aqTr,Vz((z € U)—=(z€V)aqTr)ks (ye V)aq Tr.

Now, from the definition of o — B we infer
(z€U)— (z€V)aqTr, (z€U)aqTrts ((z e UYA(x € V)aq Tr)aq Tr

and the third property of implies

(z€U)—(z€V)aqTr, (z € U)agTr

Fs(z€U)aaTrA((z € V)aq Tr)<aq Tr.

Hence (z €U) —» (z € V) aq Tr, (z € U)waTrts ((z € V) aq Tr) g Tr so that

Ve((z €U) = (z € V) aq Tr),(yeU)waTrks ((ye V)<aq Tr) aq Tr.
Now, from Proposition 5.6 we infer (yeV)aqTr)aqTr kg (y € V) aq Tr® and so,
since kg Tr® aTr, we deduce

Vz((z €U) — (z € V) aq Tr),(yeU)aqaTrts (ye V)aq Tr,
as required.

(iii) Let f : X — Y be an S-function and Fs U CY. The equality axiom gives
us (f(z) € U) = (z € f-1[V)), (f(z) €V)aqTr ks (z € f'U)) 9 Tr, and then,
observing that z € X b5 f(z) € U & z € f1[U] follows from the definition of
f~1[U], we obtain z € X, (f(z) €U)aqTrts (z € f7U)) 9 Tr. Similarly we infer
z€ X, (z€ f![U]))aa Tr ks (f(z) € U) aq T from which follows

T€XFs(z€fU)) anTr o (f(z) € U) aq T
If we rewrite the conclusion using dax, we get £ € X g z ay U] & f(z)ay U. O
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