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A well-known result of Cohen ([1], P.109) asserts that in
ZF + V = 1. one can prove that there are no uncountable standard mo-
dels of ZFC + "There is a non-constructible real". It is natural to
ask what the situation is for uncountable standard models of ZFC +
"Phere is a non-constructible set". In this paper we shall prove
the following

THEOREM. ZFC + "There exists a natural model R, of ZFC" =
"Phere exist standard models of ZFC + V £ L of all cardinalities
<L

This theorem has the following consequences. Let ZFI = ZFC +
"There exists an inaccessible cardinal".

COROLLARY 1. ZFI }— "There is a standard model of ZFC + V # L
of any cardinality less than the first inaccessible cardinal".

Let KMC be Kelley-Morse set theory with choice. Since it is
known [5] that in EMC one can prove the existence of arbitrarily
large natural models of ZFC , it follows immediately from the theo-
rem that
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COROLLARY 2. EKMC |— "There is a standard model of ZFC + V # L
of any cardinality"® .

The proof of the theorem uses the technique of Boolean-valued
models of set theory as presented, e.g. in [2]. For the theory of
Boolean algebras we refer the reader to [6].

As usual, we write ZF for Zermelo-Fraenkel set theory, ZFC
for ZF + axiom of choice, V = L for the axiom of constructibility
and V #Z L for its negation.

By a standard model of ZF we understand a model of the form
M= (M, €/M) , where M is a transitive set and €/M ={{(x,y) € ¥
xeyt . If Tlis a standard model of ZFC and B is a complete
Boolean algebra in VIl ; we write, as usual MEB)  £or the B-exten-
sion of TN\ and |o|| for the B-value of any sentence ¢ of set
theory (which may contain names for elements of mB)). Well-known
is the fact that |lo|| = 1 for any theorem o of 2FC , We recall
that there is a canonical map x+ x of TV into m(B) . We shall
alse need the following fact ([2], Lemma 50).

LEEMA 1. For each formula ¢(x) of set theo (which may cor-
; : e i mee
tain nemes for elements of ) there is t € such that:

N 3xel = ot -

Let B be a complete Boolean algebra; a subset P of B is_
said to be dense if O £ P andeEB[x;é0=> HpeP(ps x)] .
If % is a cardinal, P is said to satisfy the X-descending chain
condition (t-dec) if for each o < X and each descending x-sequence
Po E 2] 2 see 2 pg - S (E<x) from P there is p € P such that
pspg for all Z < o .

LEMMA 2. Suppose that B contains a dense subset satisfying
the x-dcc, and let {Ag : £ <X} be a family of subsets of B such
that V A =1 for each £ <X . Then there is an ultrafilter U in
B such that UnA§£¢ for 8l - E.<2C 5

Proof. Let J be a set sufficiently large sc that each Ag
can be enumerated as {agj : j € J¢ . We show that there is f € S Lo
such that, for each o« <X ,
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(1) §/<\a agf(g) # 0 .

We define f by recursion as follows. Let o < X and suppose that
for each { < @ we have selected Pr € P and f(() € J in such a
way that

(2) P < £ £(2) for all £ < «

3) n$§<a=>pn>p§.

We show how to ebtain p, and f(x) . Since P satisfies the A-dce,
there is p € P such that p < P: for all £ < a ., We have

O#p=pAt1=p A YV aaj:J\e/JpAa“:i’

s0 there must be j € J such that p A 83 # © , and hence, since P
is dense, q € P such that g< p A 8yg o We take f(x) te be such
a je€J, and P, %o be such a q € P ., It is now clear that (2)
and (3) hold with "E<o"™ replaced by "< a"™ and so by recursion
we obtain p, and f(ox) to satisfy (2) and (3) for all o < X , If
<A, {py : £E<a) is a descending Ol-sequence in P and so there
is (by dcc% a p € P such that p < Py for all § < o , But then,
by (2), we immediately obtain (1).

To complete the proof we observe that, by (1), the set
{aaf(a) t @ <Xf{ has the finite intersection property and hence can
be extended to an ultrafilter.in B ., This ultrafilter clearly meets
the requirements of the Lemma. m

An ultrafilter U in B is said to preserve the family of joins
VA‘! (@ <%x) , where {A, : o <X} is family of subsets of B , pro-

vided that for each o« <X ,

VAu€U=>UnAm£¢.

Lemma 2 gives the following generalization, for complete Boolean al-
gebras, of the well-known Rasiowa-Sikorski lemma:

o ysnEm
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COROLLARY. Suppose that B contains a dense subset satisfying
the X-dcc. Then for each family {Aa t @ <X} of subsets of B
there is an ultrafilter in B which preserves the family of joins
V A, LX)

Proof. Put g =VAa and apply Lemma 2 to the family
{Aau {a&} : & <X} , where a; is the complement of 8 in'®P.m

Remark. I am grateful to Professor Vop&nka and others at the
conference for suggesting the present version of this Corollary, which
is stronger than my original version.

Now let X be a regular cardinal and let X, be the space 2*
endowed with the X -topology, i.e. the topology whose basic open sets
are of the form

U(e,f) = {g € Xyt g(8) = £(8) for £ < af

where f € X,, and « <X . We denote by B, the complete Boolean
algebra of regular open subsets of X5c « (B is the algebra which,
in the corresponding Boolean extension, adds a new member to Px
but leaves Po undisturbed for all o <X,)

It is clear that the family of all sets U(x,f) is dense in By
and that this family satisfies the »-decc (since % is regular).
Hence, by the Corollary to Lemma 2 we have

LEMMA 3, If X is a regular cardinal, then for each family
{4, * @ <X} of subsets of By ‘there is an ultrafilter in B, which
preserves the family of joins V A, (<) .

We now turmn to

Proaf of the Theorem. Let R, be a natural model of ZFC , By
[4], ¢ is a limit cardinal, and so by the downward Lowenheim-Skolem
theorem it will be enough to show that there is a standard model of
ZFC + V # L for each regular cardinal < « . So let m= (Rys €/R))
and let X be a regular cardinal < « . Put B = By - Then B is a
complete Boolean algebra in Y. and so we can form the B-extension

of M.
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Using Lemma 1, for each formula w(vo,...,vn) of the language
of set theory (without parameters from T1L B)) we let

x 1 (1768))n o I/
¢

be a Skolem function for ¢(vo,...,vn) in M) , i.e. such that,
for all Xqye..esX, €

(1) I‘Bvo‘p(vovxqo‘“oxn)“ = Hcp(f(p(xq,...,xn), x1,...,xn)|| -

Let A gm@) be the closure of the set {&: ¥ <%} wunder the £, .
fhen & has cardinality Y and, using (1) we have

(2) for any formula ¢(v0,...,vn) and any 8qye-er8y et ,
there is a, € A such that

ﬂavocp('vo,a,‘,...,an)“ = l‘q)(ao’a»]'--'oan)“ .

Let Ord(x) be the formula "x is an ordinal"”. It is well-known
that, for any x G'WRSB) , we have [0rd(x)| = ;J lx = & . Using
<

Lemma 3, let U Dbe an wltrafilter in B which preserves the joins

(3 foraca)l = V la = &l R TR

E<o
Let 5&/0 be the quotient of 21182 by U, i.e,

Hu = (10 a eAt, €p

where al is the equivalence class of a € S under the relation
g defined by a ~y a’ <=> |la=2a’ll € U and €y is defined by

ol €y Pl > la € a°|l € U . Using (2), it is easy to show by indu-

ction on complexity of formulas that for any formula ¢(vo,...,vn)
of set theory and any agy...,a, elyk,

AU | ¢ [890e--s80] <=> [[0Cagyee-rapdll € U .

It follows that 5k/U is a model of ZFC . Also, the EU for £ <X
are all distinect, so &k/U has cardinality X . Since B is atomless,

-



34

we have |V £ L] =1, so A/U is also a model of V # L . Finally,
since U preserves the joins (3), it quickly follows that the map
Eb EU is order-preserving from (true) ordinals onto the ordinals
of \%/U , S0 that the ordinals of SA/U are well-ordered. The usual
rank argument now implies that €y is a well-founded relation, so
that JA/U is isomorphic to a stendard model which meets the require-
ments of the theorem. This completes the proof., m

CONCLUDING REMARKS

1. Since By is known to preserve cardinals, it is not hard to
see that for a definable cardimal % (e.g. Ros }{1,...,}{“, etc.) the
prooef of the theorem yields a standard model A of cardinality x*
such that

N ZPC + PucL+Pir g1 .

Notice that in any theory consistent with ZFP + V = L one cannot
prove the existence of a standard model ./r of cardinality x"' such
that Ak ZFC + 55)15 L , because in ZF + V=1L one can prove that,
for any such model, Ak $xc L.

2. Both P. Vopénka and J. Paris have pointed out that the assum-
ption in the theorem that there exists # natural model of ZFC can
be substantially weakened (thereby yielding, of course, a weaker con-
clusion), In fact one can prove the following

(*) ZFC + "There exists an uncountable standard model of ZFC"
|~ "There exists an uncountable standard model of ZFC + V # L,

The proof of (*) can be based on the following Lemma (which I
have recently noticed resembles a result implicit in [3]):

LEMMA., Let %« be a regular uncountable cardinal and let VIl be
a standard model of ZFC such that (i) |M = % , (ii) xeM
and (iii) {x g2 : |[x|] <%} c Y. Then there is a standard model A
of ZFC such that Ic A and Nk Hug L.

Proof. (Sketch). Let B =BS{™) | i.e, the Boolean algebra B
constructed in VIl . Since every subset of Y of cardinality < % is
in TN, it quickly follews that B has a dense subset satisfying the
A~dcc (consider the set of U(x,f) constructed inTN ), Hence, by
the Corollary to Lemma 2 and the fact that [{J}| =X , there is an
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M-generic ultrafilter U in B . Then N =M[U] meets the requi-
rements of the lemma.

Now we can prove (*) a la Vopénka and Paris. Suppose that there
is en uncountable standard model Y of 2FC . If TIll=V £ L then
we are done, SO assume m|= V = L . There are now two cases to con-
sider.

Case (a) : w4 ¢Yl. We work in L until further notice, with
the provise that w, is always the true w, , not ng . By the
Léwenheim-Skolem theorem we may assume |Y¥f| = w, . It is now easy to
see that (inside 1), conditioms (i) through (iii) of the above Lemma
are satisfied by Wl (with X = w,‘). Therefore, applying the Lemma in-
gide L , there is a standard model N of ZPC + V # 1L such that
Me N , so that w4 e /. But the property of being a standard model
of ZFC + V+# L is L-absolute, so, emerging form L into the real
world, /¥ is truly a standard model of ZFC + V # L . Since w4, eN,
we have |A| > w, and (*) follows.

Case (b): w, £ TN . By the downward Lowenheim-Skolem theorem we
may assume |TI| = w, . It is clear that every member of §Il is coun-
table, since if x were an uncountable member of YN it could (by
AC in TI) be put into one-one correspondence with an ordinal of
which would have to be uncountable, contradicting the assumption that
W4 £ m . It follows that there are only countably many subsets of w

in TN, and so by the usual forcing argument we can find a generic
extension N of T{l which is a standard model of ZFC + V # L .

Thus in either case we have the conclusion of (*) , completing
the proof.

Notice that an argument similar to that used in case (a) also
proves the following:

7FC + "There exists an (uncountable) model of ZFC containing
a regular uncountable cardinal X " |- "There exists a standard mo-
del of 2ZFC + V # L of cardinality » ".
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