UNCOUNTABLE STANDARD MODELS OF ZFC + V \neq L

by J. L. Bell

Dedicated to the memory of A. Mostowski

A well-known result of Cohen ([1], p.109) asserts that in ZF + V = L one can prove that there are no <u>uncountable</u> standard models of ZFC + "There is a non-constructible real". It is natural to ask what the situation is for uncountable standard models of ZFC + "There is a non-constructible <u>set</u>". In this paper we shall prove the following

THEOREM. ZFC + "There exists a natural model R_{α} of ZFC" |"There exist standard models of ZFC + V \neq L of all cardinalities < α ."

This theorem has the following consequences. Let ZFI = ZFC + "There exists an inaccessible cardinal".

Let KMC be Kelley-Morse set theory with choice. Since it is known [5] that in KMC one can prove the existence of arbitrarily large natural models of ZFC, it follows immediately from the theorem that

COROLLARY 2. KMC \vdash "There is a standard model of ZFC + V \neq L of any cardinality".

The proof of the theorem uses the technique of Boolean-valued models of set theory as presented, e.g. in [2]. For the theory of Boolean algebras we refer the reader to [6].

As usual, we write ZF for Zermelo-Fraenkel set theory, ZFC for ZF + axiom of choice, V = L for the axiom of constructibility and $V \neq L$ for its negation.

By a standard model of ZF we understand a model of the form $\mathcal{M}=\langle M,\, \epsilon/M\rangle$, where M is a transitive set and $\epsilon/M=\{\langle x,y\rangle\in M^2:x\in y\}$. If \mathcal{M} is a standard model of ZFC and B is a complete Boolean algebra in \mathcal{M} , we write, as usual $\mathcal{M}^{(B)}$ for the B-extension of \mathcal{M} and $\|\sigma\|$ for the B-value of any sentence σ of set theory (which may contain names for elements of $\mathcal{M}^{(B)}$). Well-known is the fact that $\|\sigma\|=1$ for any theorem σ of ZFC. We recall that there is a canonical map $x\mapsto \hat{x}$ of \mathcal{M} into $\mathcal{M}^{(B)}$. We shall also need the following fact ([2], Lemma 50).

LEEMA 1. For each formula $\varphi(x)$ of set theory (which may contain names for elements of $\mathfrak{M}^{(B)}$) there is $t \in \mathfrak{M}^{(B)}$ such that:

$\|\exists_{\mathbf{x}\phi}(\mathbf{x})\| = \|\phi(\mathbf{t})\|.$

Let B be a complete Boolean algebra; a subset P of B issaid to be dense if $0 \not\in P$ and $\forall x \in B[x \neq 0 \Rightarrow \exists p \in P \ (p \leq x)]$. If κ is a cardinal, P is said to satisfy the κ -descending chain condition (κ -dcc) if for each $\alpha < \kappa$ and each descending α -sequence $p_0 \geqslant p_1 \geqslant \ldots \geqslant p_{\xi} \geqslant \ldots \quad (\xi < \alpha)$ from P there is $p \in P$ such that $p \leqslant p_{\xi}$ for all $\xi < \alpha$.

LEMMA 2. Suppose that B contains a dense subset satisfying the x-dcc, and let $\{A_{\xi}:\xi<\chi\}$ be a family of subsets of B such that $\bigvee A_{\xi}=1$ for each $\xi<\chi$. Then there is an ultrafilter U in B such that $\bigvee A_{\xi}\neq\emptyset$ for all $\xi<\chi$.

<u>Proof.</u> Let J be a set sufficiently large so that each \mathbb{A}_{ξ} can be enumerated as $\{a_{\xi,j}:j\in J\}$. We show that there is $f\in J^{\times}$ such that, for each $\alpha<\aleph$,

$$\bigwedge_{\xi < \alpha} a_{\xi f(\xi)} \neq 0 .$$

We define f by recursion as follows. Let $\alpha<\mathcal{X}$ and suppose that for each $\xi<\alpha$ we have selected $p_{\xi}\in P$ and $f(\xi)\in J$ in such a way that

(2)
$$p_{\xi} \leq a_{\xi f(\xi)}$$
 for all $\xi < \alpha$

$$\eta \leqslant \xi < \alpha \Rightarrow p_{\eta} \geqslant p_{\xi}.$$

We show how to obtain p_{α} and $f(\alpha)$. Since P satisfies the χ -dcc, there is $p \in P$ such that $p \leq p_{\xi}$ for all $\xi < \alpha$. We have

$$0 \neq p = p \wedge 1 = p \wedge \bigvee_{j \in J} a_{\alpha j} = \bigvee_{j \in J} p \wedge a_{\alpha j}$$
,

so there must be $j \in J$ such that $p \wedge a_{\alpha j} \neq \theta$, and hence, since P is dense, $q \in P$ such that $q \leq p \wedge a_{\alpha j}$. We take $f(\alpha)$ to be such a $j \in J$, and p_{α} to be such a $q \in P$. It is now clear that (2) and (3) hold with " $\xi < \alpha$ " replaced by " $\xi \leq \alpha$ " and so by recursion we obtain p_{α} and $f(\alpha)$ to satisfy (2) and (3) for all $\alpha < \chi$. If $\alpha < \chi$, $\langle p_{\xi} : \xi < \alpha \rangle$ is a descending α -sequence in P and so there is (by dcc) a $p \in P$ such that $p \leq p_{\xi}$ for all $\xi < \alpha$. But then, by (2), we immediately obtain (1).

To complete the proof we observe that, by (1), the set $\{a_{\alpha f(\alpha)}: \alpha < X\}$ has the finite intersection property and hence can be extended to an ultrafilter in B. This ultrafilter clearly meets the requirements of the Lemma.

An ultrafilter U in B is said to <u>preserve</u> the family of joins $\bigvee A_{\alpha}$ ($\alpha < \kappa$), where $\{A_{\alpha} : \alpha < \kappa\}$ is family of subsets of B, provided that for each $\alpha < \kappa$,

Lemma 2 gives the following generalization, for complete Boolean algebras, of the well-known Rasiowa-Sikorski lemma:

COROLLARY. Suppose that B contains a dense subset satisfying the X-dcc. Then for each family $\{A_\alpha:\alpha<\varkappa\}$ of subsets of B there is an ultrafilter in B which preserves the family of joins $\bigvee A_\alpha$ $(\alpha<\varkappa)$.

<u>Proof.</u> Put $a_{\alpha} = \bigvee A_{\alpha}$ and apply Lemma 2 to the family $\{A_{\alpha} \cup \{a_{\alpha}^*\} : \alpha < \kappa\}$, where a_{α}^* is the complement of a_{α} in B.

Remark. I am grateful to Professor Vopenka and others at the conference for suggesting the present version of this Corollary, which is stronger than my original version.

Now let X be a <u>regular</u> cardinal and let X_X be the space 2^X endowed with the X-topology, i.e. the topology whose basic open sets are of the form

$$\mathbf{U}(\alpha, \mathbf{f}) = \{ \mathbf{g} \in \mathbf{X}_{\kappa} : \mathbf{g}(\xi) = \mathbf{f}(\xi) \text{ for } \xi \leq \alpha \}$$

where $f \in X_{\kappa}$ and $\alpha < \kappa$. We denote by B_{κ} the complete Boolean algebra of regular open subsets of X_{κ} . (B_{κ} is the algebra which, in the corresponding Boolean extension, adds a new member to p_{κ} but leaves p_{κ} undisturbed for all $\alpha < \kappa$.)

It is clear that the family of all sets $U(\alpha,f)$ is dense in B_{χ} and that this family satisfies the χ -dcc (since χ is regular). Hence, by the Corollary to Lemma 2 we have

LEMMA 3. If $\mathcal X$ is a regular cardinal, then for each family $\{A_{\alpha}: \alpha < \chi\}$ of subsets of B_{χ} there is an ultrafilter in B_{χ} which preserves the family of joins $\bigvee A_{\alpha}$ $(\alpha < \chi)$.

We now turn to

Proof of the Theorem. Let R_{α} be a natural model of ZFC. By [4], α is a limit cardinal, and so by the downward Löwenheim-Skolem theorem it will be enough to show that there is a standard model of ZFC + V \neq L for each regular cardinal $< \alpha$. So let $\mathcal{M} = \langle R_{\alpha}, \; \epsilon/R_{\alpha} \rangle$ and let χ be a regular cardinal $< \alpha$. Put $B = B_{\chi}$. Then B is a complete Boolean algebra in \mathcal{M} and so we can form the B-extension $\mathcal{M}^{(B)}$ of \mathcal{M} .

Using Lemma 1, for each formula $\phi(v_0,\ldots,v_n)$ of the language of set theory (without parameters from $\mathcal{M}^{(B)}$) we let

$$f_{\varphi}: (\mathcal{M}^{(B)})^n \to \mathcal{M}^{(B)}$$

be a Skolem function for $\phi(v_0,\dots,v_n)$ in $M^{(B)}$, i.e. such that, for all $x_1,\dots,x_n\in M^{(B)}$

(1)
$$\|\exists v_0 \phi(v_0, x_1, \dots, x_n)\| = \|\phi(f_\phi(x_1, \dots, x_n), x_1, \dots, x_n)\|$$
.

Let $\mathcal{A}\subseteq \mathbb{M}^{(B)}$ be the closure of the set $\{\xi\colon \xi<\chi\}$ under the f_{ϕ} . Then \mathcal{A} has cardinality χ and, using (1) we have

(2) for any formula $\varphi(v_0,...,v_n)$ and any $a_1,...,a_n \in \mathcal{A}$, there is $a_0 \in \mathcal{A}$ such that $\|\exists v_0 \varphi(v_0,a_1,...,a_n)\| = \|\varphi(a_0,a_1,...,a_n)\|$.

Let Ord(x) be the formula "x is an ordinal". It is well-known that, for any $x \in \mathcal{M}^{(B)}$, we have $\|Ord(x)\| = \bigvee_{\xi < \alpha} \|x = \xi\|$. Using Lemma 3, let U be an ultrafilter in B which preserves the joins

(3)
$$\|\operatorname{Ord}(a)\| = \bigvee_{\xi < \alpha} \|a = \hat{\xi}\|$$
 $(a \in \mathcal{A})$.

Let \mathcal{A}/U be the quotient of $\mathfrak{M}^{(B)}$ by U, i.e.

$$Ay_{\overline{U}} = \langle \{a^{\overline{U}}: a \in A\}, \epsilon_{\overline{U}} \rangle$$

where a^U is the equivalence class of $a \in \mathcal{A}$ under the relation U defined by $a \sim_U a' \Longleftrightarrow \|a = a'\| \in U$ and \in_U is defined by $a^U \in_U a'^U \Longleftrightarrow \|a \in a'\| \in U$. Using (2), it is easy to show by induction on complexity of formulas that for any formula $\phi(v_0, \ldots, v_n)$ of set theory and any $a_0, \ldots, a_n \in \mathcal{A}$,

$$\mathcal{A}/\mathtt{U} \models \phi \ [\mathtt{a}_0^{\mathtt{U}}, \ldots, \mathtt{a}_n^{\mathtt{U}}] \Longleftrightarrow \|\phi(\mathtt{a}_0, \ldots, \mathtt{a}_n)\| \in \mathtt{U}.$$

It follows that \mathcal{A}/U is a model of ZFC. Also, the ξ^U for $\xi < x$ are all distinct, so \mathcal{A}/U has cardinality κ . Since B is atomless,

we have $\|V \neq L\| = 1$, so \mathcal{A}/U is also a model of $V \neq L$. Finally, since U preserves the joins (3), it quickly follows that the map $\xi \mapsto \hat{\xi}^U$ is order-preserving from (true) ordinals onto the ordinals of \mathcal{A}/U , so that the ordinals of \mathcal{A}/U are well-ordered. The usual rank argument now implies that ϵ_U is a well-founded relation, so that \mathcal{A}/U is isomorphic to a standard model which meets the requirements of the theorem. This completes the proof.

CONCLUDING REMARKS

1. Since B_{κ} is known to preserve cardinals, it is not hard to see that for a definable cardinal κ (e.g. $\chi_0, \chi_1, \ldots, \chi_{\omega}$, etc.) the proof of the theorem yields a standard model $\mathcal N$ of cardinality κ^+ such that

Notice that in any theory consistent with ZF + V = L one cannot prove the existence of a standard model $\mathcal N$ of cardinality χ^+ such that $\mathcal N\models \mathrm{ZFC}+\oint\chi \not \in L$, because in ZF + V = L one can prove that, for any such model, $\mathcal N\models \oint\chi \subseteq L$.

- 2. Both P. Vopenka and J. Paris have pointed out that the assumption in the theorem that there exists a natural model of ZFC can be substantially weakened (thereby yielding, of course, a weaker conclusion). In fact one can prove the following

<u>Proof.</u> (Sketch). Let $B=B_{\kappa}^{(\mathcal{M})}$, i.e. the Boolean algebra B constructed in \mathcal{M} . Since every subset of κ of cardinality $<\kappa$ is in \mathcal{M} , it quickly follows that B has a dense subset satisfying the κ -dcc (consider the set of $U(\alpha,f)$ constructed in \mathcal{M}). Hence, by the Corollary to Lemma 2 and the fact that $|\mathcal{M}|=\kappa$, there is an

 \mathfrak{M} -generic ultrafilter \mathbb{U} in \mathbb{B} . Then $\mathcal{N}=\mathfrak{M}[\mathbb{U}]$ meets the requirements of the lemma.

Now we can prove (*) á la Vopěnka and Paris. Suppose that there is an uncountable standard model \mathcal{M} of ZFC. If $\mathcal{M} \models V \neq L$ then we are done, so assume $\mathcal{M} \models V = L$. There are now two cases to consider.

Case (a): $\omega_1 \in \mathbb{M}$. We work in L until further notice, with the provise that ω_1 is always the <u>true</u> ω_1 , <u>not</u> $\omega_1^{(L)}$. By the Löwenheim-Skolem theorem we may assume $|\mathbb{M}| = \omega_1$. It is now easy to see that (inside L), conditions (i) through (iii) of the above Lemma are satisfied by \mathbb{M} (with $\mathbf{x} = \omega_1$). Therefore, applying the Lemma inside L, there is a standard model \mathbb{N} of ZFC + $\mathbb{V} \neq \mathbb{L}$ such that $\mathbb{M} \subseteq \mathbb{N}$, so that $\omega_1 \in \mathbb{N}$. But the property of being a standard model of ZFC + $\mathbb{V} \neq \mathbb{L}$ is L-absolute, so, emerging form L into the real world, \mathbb{N} is truly a standard model of ZFC + $\mathbb{V} \neq \mathbb{L}$. Since $\omega_1 \in \mathbb{N}$, we have $|\mathbb{N}| \geqslant \omega_1$ and (*) follows.

Case (b): $\omega_1 \notin \mathbb{M}$. By the downward Löwenheim-Skolem theorem we may assume $|\mathbb{M}| = \omega_1$. It is clear that every member of \mathbb{M} is countable, since if x were an uncountable member of \mathbb{M} it could (by AC in \mathbb{M}) be put into one-one correspondence with an ordinal of \mathbb{M} which would have to be uncountable, contradicting the assumption that $\omega_1 \notin \mathbb{M}$. It follows that there are only countably many subsets of ω in \mathbb{M} , and so by the usual forcing argument we can find a generic extension \mathbb{N} of \mathbb{M} which is a standard model of ZFC + V \neq L.

Thus in either case we have the conclusion of (*), completing the proof.

Notice that an argument similar to that used in case (a) also proves the following:

ZFC + "There exists an (uncountable) model of ZFC containing a regular uncountable cardinal \mathcal{K} " |- "There exists a standard model of ZFC + V \neq L of cardinality \mathcal{K} ".

Acknowledgments. I am grateful to several participants at the conference, in particular P.Vopěnka and W.Guzicki, for their stimulating observations, I would also like to thank Jeff Paris for his valuable comments on an earlier draft of this paper, Kenneth Kunen

for his timely assistance in proving (*), and George Wilmers for providing general aid.

References

- [1] Cohen, P, J., Set Theory and the Continuum Hypothesis, Benjamin, New York, 1966.
- [2] <u>Jech, T.J.</u>, Lectures in Set Theory, Lecture Notes in Mathematics 217, Springer, Berlin, 1971.
- [3] Levy,A., On the logical complexity of several axioms of set theory, AMC Proc. on Axiomatic Set Theory, Vol. XIII, Part I, 1971.
- [4] $\underline{\text{Marek}}, \underline{\text{W}}.$, On the metamathematics of impredicative set theory, Dissertationes Mathematicae XCVIII, Warszawa, 1973.
- [5] Mostowski, A., Constructible Sets with Applications, North-Holland, Amsterdam, 1969.
- [6] <u>Sikorski,R.</u>, Boolean Algebras, 2nd ed., Springer, Berlin, 1964.

The London School of Economics and Political Science.