Geog. 302 – Lecture Notes

Spatial regression analysis: Part 1
Regression analysis plays a central role in statistics being one of its most powerful and commonly used techniques. It is concerned with the problem of describing or predicting the value of one variable, y, on the basis of one or more variables, x1, x2,…xn.  The y variable is referred to as dependent or response variable, while the x's are called independent, predictor, or explanatory variables.  If the analysis involves one independent variable it is referred to as simple regression.   Regression with two or more independent variable is called multiple regression.  

The multiple regression equation takes the form y = a + b1x1 + b2x2 + ... + bnxn + e.  The b's are the regression coefficients, representing the amount the dependent variable y changes when the independent changes 1 unit. The a is the constant, where the regression line (or surface) intercepts the y axis, representing the amount the dependent y will be when all the independent variables are 0, and e is the error term or residuals. Associated with multiple regression is R2, multiple correlation, which is the percent of variance in the dependent variable explained collectively by all of the independent variables. The coefficients a and b are determined by the condition that the sum of the squared residuals is as small as possible. This method is referred to as the ordinary least squares (OLS) procedure. It derives its name from the criterion used to draw the best fit regression line: a line such that the sum of the squared deviations of the distances of all the points to the line is minimized.

Multicollinearity is the intercorrelation of independent variables. While simple correlations tell something about multicollinearity, the preferred method of assessing multicollinearity is to regress each independent on all the other independent variables in the equation. Inspection of the correlation matrix reveals only bivariate multicollinearity. The bivariate correlation coefficients > 0.90 indicate unacceptable level of collinearity.
Normality. It is assumed in multiple regression that the residuals (predicted minus observed values) are distributed normally (i.e., follow the normal distribution).

Homoscedasticity (the condition of equal variance). The residuals should be dispersed randomly throughout the range of the estimated dependent variable Put another way, the variance of residual error should be constant for all values of the independent variables. 

Spatial independency. It is assumed that the residuals are distributed randomly over the study area (i.e., there is no spatial autocorrelation). 
Ordinary Least Squares Regression: Interpretations and Diagnostics 
REGRESSION SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION 
Data set            : columbus 
Dependent Variable  :       CRIME  Number of Observations:   49

Mean dependent var  :     35.1288  Number of Variables   :    3

S.D. dependent var  :     16.5605  Degrees of Freedom    :   46   

R-squared           :    0.552404  F-statistic           :     28.3856 

Adjusted R-squared  :    0.532943  Prob(F-statistic)     :9.34074e-009 

Sum squared residual:     6014.89  Log likelihood        :    -187.377 

Sigma-square        :     130.759  Akaike info criterion :     380.754 

S.E. of regression  :      11.435  Schwarz criterion     :      386.43 

Sigma-square ML     :     122.753 

S.E of regression ML:     11.0794   

-----------------------------------------------------------------------

    Variable    Coefficient     Std.Error    t-Statistic   Probability 
-----------------------------------------------------------------------

    CONSTANT      68.61896       4.735486       14.49037    0.0000000

       HOVAL    -0.2739315      0.1031987      -2.654409    0.0108745

         INC     -1.597311      0.3341308      -4.780496    0.0000183

-----------------------------------------------------------------------

The regression results indicate that both housing values (HOVAL) and income (INC) are negatively related to neighborhood crime, with an R2 fit of 0.55 (adjusted R2 of 0.53). R2 is the proportion of the variance of the dependent variable that is explained by the independent variables.  Adjusted R-Squared is an adjustment for the fact that when one has a large number of independent variables, it is possible that R2 will become artificially high. 

Sigma-square = Sum squared residual/Degrees of freedom = 6014.89/46 = 130.759  

Sigma-square ML = Sum squared residual/Number of observations = 6014.89/49 = 122.753 

S.E. of regression = √130.759   = 11.435  

S.E of regression ML = √122.753 = 11.0794

The F test is used to test the significance of R, which is the same as testing the significance of R2, which is the same as testing the significance of the regression model as a whole. If prob(F) < 0.05, then the model is considered significantly better than would be expected by chance and we reject the null hypothesis of insignificant relationship of y to the independent variables. F is a function of R2, the number of independent variables, and the number of observations. F-statistic = 28.3856:  the null hypothesis that all regression coefficient are jointly 0. The null hypothesis is rejected. Thus, the coefficients are significant. There is a extremely small probability of accepting the null hypothesis, Prob(F-statistic) = 9.34074e-009 = 0.000000000934. 
The following three measures:  Log likelihood = -187.377, Akaike info criterion (AIC)= 380.754, and Schwarz criterion (SC) = 386.43 are based on the assumption of multivariate normality and the corresponding likelihood function for the standard regression model. They are used for assessing (comparing) the goodness-of-fit for different models.  The three measures are related. Specifically, 

AIC = -2L +2K, where L is the log likelihood and K is the number of parameters in the regression model. 

AIC = -2 ×-187.377 + 2 × 3 = 380.754. 

SC = -2L +K ln(N) = -2 ×-187.377 + 3 × ln(49) = 386.43. 

The higher the log likelihood value, the better the fit of the regression line into the data.  For the AIC and SC measures, the lower the values, the better the fit. 

The t-statistics = Coefficient / Std.Error; for example, the t-Statistic for the constant = 68.61896/4.735486 = 14.49037. The constant is statistically significant. 
The coefficients for the housing values and income variables, respectively are significant at the p= 0.0108745 and p = 0.0000183 level of significance.
REGRESSION DIAGNOSTICS 
MULTICOLLINEARITY CONDITION NUMBER   6.541828

TEST ON NORMALITY OF ERRORS

TEST                  DF          VALUE            PROB

Jarque-Bera            2           1.835753        0.3993663

DIAGNOSTICS FOR HETEROSKEDASTICITY 
RANDOM COEFFICIENTS

TEST                  DF          VALUE            PROB

Breusch-Pagan test     2           7.900442        0.0192505

Koenker-Bassett test   2           5.694088        0.0580156

SPECIFICATION ROBUST TEST

TEST                  DF          VALUE            PROB

White                  5           19.94601        0.0012792

DIAGNOSTICS FOR SPATIAL DEPENDENCE 
FOR WEIGHT MATRIX : 8.GAL  (row-standardized weights)

TEST                          MI/DF      VALUE          PROB 
Moran's I (error)           0.222109     2.8400531      0.0045107

Lagrange Multiplier (lag)       1        8.8979986      0.0028548

Robust LM (lag)                 1        3.7356906      0.0532617

Lagrange Multiplier (error)     1        5.2062139      0.0225063

Robust LM (error)               1        0.0439059      0.8340287

Lagrange Multiplier (SARMA)     2        8.9419045      0.0114364

There is no multicollinearity (condition number of 6.541828) nor evidence of non-normality (normality not rejected with p = 0.3993663). 
Heteroskedasticity is an issue, as suggested by the three tests (the Breusch-Pagan, Koenker-Bassett and White tests). For example, the White’s heteroskedasticity test (i.e., 0.0012792) represents the probability that you would be incorrect if you rejected the null hypothesis of no heteroskedasticity. Thus, the alternative hypothesis should be accepted indicating the present of heteroskedasticity (or variance inequality). 

In terms of spatial autocorrelation, there is clearly a problem. The Moran's I value = 0.222109, and it is significant at the p = 0.0045107 level.  Also the other statistics for spatial dependency diagnostics are significant at p < 0.5, except the Robust LM (error) and Robust LM (lag) statistics.  
COEFFICIENTS VARIANCE MATRIX 
   CONSTANT       HOVAL         INC 

  22.424829   -0.161567   -0.942351 

  -0.161567    0.010650   -0.017237 

  -0.942351   -0.017237    0.111643 

  OBS           CRIME        PREDICTED        RESIDUAL     

    1         15.72598        15.37944         0.34654

    2         18.80175        22.49655        -3.69480

        ………………………………………………………………………………………………………………
   49         22.54149        28.78916        -6.24767

========================= END OF REPORT ==============
The coefficients variance matrix contains the covariance coefficients. 

CRIME = the data (the observed value of the dependent variable)
PREDICTED = the predicted value (also called estimated value or fitted value) of the dependent variable.

RESIDUAL = the difference between the observed and predicted values.

The spatial pattern of residual should be examined using the spatial autocorrelation analysis.  
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