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1. INTRODUCTION 
 
In their recent book Borwein et al [Bo08] tell us that the Riemann Hypothesis (RH) is 
perhaps the greatest unsolved problem in mathematics. Many eminent mathematicians in 
the last 150 years have tried to solve it, without success. No doubt in part because of all 
these failures, the problem is regarded as being very difficult. Even brilliant students are 
advised to avoid the problem for fear that their careers will be wasted. Since I do not 
expect to have any sort of career in the future, I have now nothing to lose but my time, so 
I have been investigating the RH.  
 
In his book Edwards [Ed74], p.178 provides a diagram of a section of the function Z . 
Plotted for real values this function oscillates about zero, and has zeros corresponding to 
the zeros of the zeta function on the line 2/1)Re( =s . It is known that the RH would be 
true if and only if it could be shown that the value of the second derivative of Z  at every 
turning point had sign opposite to that of Z  at that point. Numerical calculations have 
previously demonstrated the existence of the Lehmer phenomenon where a turning point 
occurs at a very low value of , so that the RH is almost contradicted, but no example 
has been found where the turning point sign rule is violated. This behavior suggests that 
there is some hidden mechanism in the structure of the functions involved that ensures 
the truth of the RH.   
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In the present studies I have made extensive use of numerical calculations. I believe that 
the computer provides us with a valuable tool that could give us an advantage over the 
mathematicians of the past. Below I describe some products of this work, which show 
how helpful the computer might be in pointing the way towards rigorous mathematical 
results. 
 
My approach has been to study the entire function as defined by Csordas et al 
[Cs86] (denoted by CNV), which is closely related to 

)(zF
Z . The RH is known to be 

equivalent to the statement that all the zeros of are real and negative. Karlin [Ka68] 
tells us that this condition is ensured by a requirement on the coefficients { } 
of the power series , from which is formed the semi-infinite matrix  
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K,2,1,0,,,0;, =<=≥= − nmmnmnaA mnnm, .     (1.1) 
 



Thus, if we define the matrix ),( λnK  of order λ  as 
 

λλ ,,2,1,,),( ,, K== + jiAnK njiji ,       (1.2) 
 
the RH is equivalent to the condition that 
 

[ ] KK ,2,1;,1,0,0),(det ==> λλ nnK       (1.3) 
 
In this case the matrix  is said to be 'totally positive' or TP, and the sequence  is 
called a one-sided sequence that is a Polya frequency sequence of infinite order (see 
Karlin [Ka68], p. 393). 
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With the help of high precision software (kindly made available by David Bailey of UCal 
Berkeley) it is possible on a laptop computer to evaluate the determinants of ),( λnK  for 
values of  λ,n  into the hundreds or more. In this context the difficulty of the RH appears 
in the fact that, as λ,n  become larger, the value of the determinant (always positive of 
course) gets increasingly smaller compared to the product of the elements on the main 
diagonal. To understand the structure of the problem, with the hope of eventually proving 
the RH, we have to understand the mechanism for this cancellation in the evaluation of 
the determinants.  
 
In the next section we describe what we believe to be a compelling explanation 
(supported in Section 3 by accurate numerical predictions of determinant values, etc.) for 
the cancellation in the situation n  large, λ  fixed. Given a proof of some algebraic results 
verified in special cases by the numerical approach, I believe that the explanation could 
be turned into a rigorous proof of (1.3) in this case for any fixed λ . For small values of 
λ , where computation has proved these results for a range of values of n, an application 
of standard techniques for finding error bounds, such as may be found in the book by 
Olver [Ol74], should lead to a proof in this part of the ( )λ,n -space. 
 
I regard this development as a sign that the RH problem may not be as difficult as is 
commonly believed, although we may have just picked the 'low-hanging fruit'. It is 
plausible to speculate that there will be analogous properties of the determinants in other 
parts of ( )λ,n -space. Progress may now be a matter of discovering the appropriate 
structures and the reasons for their existence, and this is where I am currently devoting 
my efforts. 
  
 
2. DETERMINANTS FOR LARGE n 
 
1. We first note that (1.3) is trivially satisfied if either 0=n  or 1=λ . 
 



Over 20 years ago CNV proved a result that implies that (1.3) holds for 
K,1,0,2 == nλ , but an important property used in the proof cannot be generalized 

beyond 2=λ . The present work discusses higher fixed values of λ . 
 
2. To determine the coefficients of  we use the following definitions from CNV. )(zF
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We call  the moments of , and the normalized moments. }{ nb )(tΦ }{ na
 
3. Our approach is to observe that, for suitably large values of , we can find 
approximations to the moments { } that are accurate enough to show that (1.3) holds 
for  the set of values of  

n
nb

),( λn  referred to above, i.e. )(λNn >  for some suitable choice 
of  )(λN . 
 
It will be seen that, as  increases, t 0)(/|)()(| 1 →Φ−Φ ttt φ  at a high rate compared to 
n, so that there are regions of  ),( λn - space where it is adequate in evaluating (2.3) to 
replace by )(tΦ )(1 tφ . For large  it is relatively larger values of that are required, and 
we restrict attention to that case. Therefore, let us use a familiar technique (called the 
Laplace method by Olver [Ol74]) and write 
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The function has a maximum at a point ),( ntp )(nt τ= , where 
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This is equivalent to 
 

.               (2.8) 
 

[ ]τπτ 4exp2=n

The function )(nτ  increases towards infinity monotonically with . Near the maximum 
point,  may be approximated by  

n
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which also increases towards infinity with . n
 
Assuming the validity of the above approximations as ∞→n , we conclude that the 
function has an increasingly sharp peak at ),( ntp τ=t , so that the integrand in (2.3) has 
a much sharper peak. The integral for the coefficient  is dominated for large  by 
values of  near

nb n
t )(nτ . In file 'data1' we have plotted some values of   that 

illustrate these remarks. 
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4.  Consider the matrix ),( λnK  with  replaced by , i.e. na nb
 

λλ ,,2,1,,),( , K== −+ jibnM injji .       (2.11) 
 
 We write  

[ ] ∑
=

=
!

1
)()(),(det

λ

ελ
k

kkBnM ,        (2.12) 

 
where  is a product of )(kB λ  matrix elements, each from a different row and column, so 
that !λ  is the number of permutations of the numbers λ,,2,1 K , with 1)( ±=kε  
corresponding to the sign of the permutation. We call  a 'component', and choose 

 to correspond to the component 
)(kB

1=k ( )λnbB =)1( , which arises from the product of the 
elements on the principal diagonal. Throughout this discussion we shall assume that 

λ>n . 
 
 
5. The first salient feature to be observed  is that, as ∞→n  for given λ , numerical 
evidence suggests that 
 

)(,2,1,1)1()( λpkBkB K=→ .       (2.13) 
 
This property shows that [ ] 0)1(),(det →BnM λ  as ∞→n .  



 
Some of the determinants  ),(det λnM  are negative (including all those with 2=λ ), so 
that, if the RH is to hold, it must often be due to the effect of the normalizing factor in 
(2.4), i.e. . We can argue that, if all the moments were equal to unity, 
then 

1)12( −+Γ n }{ nb
!,2,1,1)( λK== kkB . In that case we would have ),(),( λλ nGnK = , where the 

matrix ),( λnG  is given by 
 

.,0;,)1)(2(),( 1
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It is therefore favorable for the validity of the RH that Lemma A of the Appendix proves 
that      
 

KK ,2,1;,1,0,0),(det ==> λλ nnG       (2.15) 
 
6. A given component may be written as an integral over)(kB λ variables. For example, 
when 3=λ ,  could be written as )(kB
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where ( 321 ,, ννν ) are sets of integers chosen, in the case 3=λ , from the 6 possibilities  

)2,0,2(),1,1,2(),2,1,1(),0,1,1(),1,1,0(),0,0,0( −−−−−− according to the value of  k. Note 
that in all cases 
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The above discussion indicates that, for large n, the integral (2.16) is dominated by points 
near )(321 nttt τ=== , so we write   
 

λτ ,,1),1( K=+= ixt ii ,        (2.18) 
 
with the expectation that each  may be regarded as a small quantity in the important 
part of the domain of integration. We then expand the factor  to produce an 
approximating polynomial in . We repeat the process for the different 
permutations of   in (2.16) and average the results to obtain a formal expansion 
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Here is a numerical coefficient relating to a term ),,( kjmT ∏
=

=
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i
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average is over permutations of λ,,1, K=ixi . The degree ∑
=

=
1i

im σ , and j  labels the 

different types of power sets that occur for that degree, which are designated by 
[ K,,, 321 ]σσσ , with positive integers iσ  that satisfy K321 σσσ ≥≥ . Zero powers are 
omitted in the type designation.  
 
Since, in the leading term of the approximation to )(tΦ  using (2.9) we have  
 

)exp(-const)( 22 xt ατ≈Φ ,        (2.20) 
 
we omit any types that contain one or more odd powers σ  because the corresponding 
integral would be zero. We have shown computationally that the procedure is legitimate 
for 52 −=λ . As a consequence of this step, we replace the type designation by 
[ ]K,2/,2/,2/ 321 σσσ . 
 
The quantity  is the integral  ),( jmI
 

∫ ∫ ∫ ΦΦΦ= QttttttdtdtdtjmI nnn 2
3

2
2

2
1321321 )()()(),(      (2.21) 

 
with the domain of integration restricted to an appropriate neighborhood of  ),,( τττ .  
 
7. To complete the structure needed for our remarks, we derive an expansion of the 
normalizing factors from (2.4) valid for large n. We note that multiplication of all 
elements of  the matrix ),( λnK  by a common positive factor does not affect the sign of 

[ ),(det ]λnK  , and define  
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We assert that the components  !,,2,1),,( λK=kknW  of the scaled normalization 
matrix H have an expansion valid for ∞→n  of the form 
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It is convenient to regard B(k), W(n,k),  etc. as the components of vectors in a space of 
dimension !λ , with scalar product  
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With this notation we observe that a scaled version of [ ]),(det λnK  may be written as 
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which may be approximated by 
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8. The properties of the scalar products in (2.26) , although not yet proven in general, are 
essential to the proof. We speculate, on the basis of analytical and numerical evidence, 
that 
 
for any value of  )(,,2,1 mnpj K=  the scalar product in (2.26) satisfies the relation 
 

)(,2,1,0),()( mnpjjmTiw K==⋅     if   2/)1( −<+ λλim .   (2.27) 
 
 
We believe that this property is the key to the cancellations required to prove  (1.3) for 
fixed λ  and  large n. 
 
 
3. CALCULATIONS 
 
1. The first task is to calculate with sufficient precision  the moments  of . This 
involves numerical evaluation of the integrals (2.3), in the present case for up to 

. In 1986 CNV reported using the Romberg method for up to , and they 
provided a table of moments useful for checking purposes.  
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The Romberg method involves the use of certain corrections to the simple trapezoidal 
rule, where the integrand must be evaluated at a set of equally spaced points. We have 
discovered by experiment that, for larger numbers of points, the trapezoidal method is in 
this case far more accurate than the Romberg method. I believe the reason may be 
understood in the context of the Euler-Maclaurin summation formula [Ed74], p.98, which 
also involves corrections to the trapezoidal rule. The corrections relating to the ends of 
the intervals vanish if the odd derivatives of the integrand are zero at the ends. As CNV 
point out, this is the case for the function )(tΦ at the end 0=t  and the same applies to 
the integrand. As the table in file 'data1' demonstrates, the same effectively applies at the 
upper end if we approximate the limit ∞  by say 0.5=t , since )(tΦ decreases very 
rapidly as t increases. It must be that the remaining Euler-Maclaurin correction gets small 
very quickly. For numbers of points in the vicinity of or higher, the increase in the 
precision of the trapezoidal approximation for a doubling of the number of points is in the 
hundreds of decimal places. This allows us to be confident in the accuracy of calculations 
of even high order determinants where a lot of cancellation is present. 
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2. An example may help to clarify the manipulations described in Sec. 2. Consider the 
case of 3=λ , where det ),( λnM  has 6 components , with corresponding signs )(kB

)(kε as follows. 
 

1)1()1( == εnnn bbbB  
1)2()2( 11 −== −+ εnnn bbbB  
1)3()3( 11 −== −+ εnnn bbbB        (3.1) 

1)4()4( 211 == −++ εnnn bbbB  
1)5()5( 112 == −−+ εnnn bbbB  

1)6()6( 22 −== −+ εnnn bbbB  
 
Inside the integral (2.16) corresponding to , for example, we write , with , )2(B 2
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As explained above, we have retained only even powers of x.  
 
Next we permute and average the z variables to obtain the formal expression 

. This means that with zzzz 3541 2 +++ 2,3 == kλ  we have for the quantity 
appearing in (2.19) the values ),,( kjmT

 
T(0,1,2)=1;      T(1,1,2)=4;      T(2,1,2)=5;      T(2,2,2)=3;    (3.3) 
 
For 2,3 == kλ  and degree m = 0 there is one type [0] or 1.  
For degree m = 1 there is one type [1] or z.  
For degree m = 2 there are two types, [2] or  for  j = 1  and [1 1] or zz for  j = 2. 2z
For degree m = 3 there are three types, [3] for  j = 1, [2 1]  for  j = 2 and [1 1 1] for j = 3. 
 
 
k ε  type=0 type=1 type=2 type=1 1 type=3 type=2 1 type=1 1 1 
1 1 1 0 0 0 0 0 0 
2 -1 1 4 5 3 7 5 0 
3 -1 1 4 5 3 7 5 0 
4 1 1 12 35 21 84 70 10 
5 1 1 12 11 45 14 96 54 
6 -1 1 16 36 60 84 220 0 
 
Table 3.1 .  Some values of the coefficients for ),,( kjmT 3=λ  and degrees m = 0 - 3.  
 



 
 
 
 
k 0 1 2 3 4 
1 1 0 0 0 0 
2 1 -4 10 -22 46 
3 1 -4 10 -22 46 
4 1 -12 70 -282 922 
5 1 -12 86 -490 2466 
6 1 -16 136 -856 4576 
 
Table 3.2.  Some values of the coefficients w(i) for 3=λ  and i = 0 - 4. 
 
 
Given these values in these tables, it may be shown that the relations (2.27) hold for all 
types corresponding to m + i < 3. For example take degree m = 2, type = (1 1) and i = 0, 
where we see that  0)16(1)12(1)12(1)4(1)4(101 =−×−−×+−×+−×−−×−×  
 
It is also important for the later development to note that  128)1,0()3( =⋅Tw ,  a positive 
number. Calculations up to 5=λ  have verified (2.27), and in each case )1,0()( Tiw ⋅  is 
positive for 2/)1(2 −== λλλi . 
 
Using data such as appears in the above two tables we have calculated the cross products  

),()( jmTiw ⋅  for a range of values of λ , i and m. The results are shown in file 'data2'. 
 
At the beginning of each λ  section we have displayed an array with rows m = 1,2,.. and 
columns i = 0,1,.., in which  0 means that all cross products are zero, 1 means that at least 
one cross product is not zero. The striking  pattern corresponds to (2.27), and I have little 
doubt that it continues for higher values of λ  than those in file 'data2'. 
 
    
3.  Next we use (2.26) to approximate a normalized scaled value [ ] )1(/),(det BnK Sλ  of 

[ ),(det ]λnK   that we define as 
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In each of the integrals over t that occur in (3.4) we take the leading term of the Laplace 
expansion. Pairing individual integrals from numerator and denominator, we see that 
some common factors cancel and we are left with terms containing the form  
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where  
 

2)()( nn ταβ = .         (3.6) 
 
Here, )(ηc  is defined by      ,2/1)1( =c [ ]2/)12()1()( −×−= mmcmc ,  m = 2, 3, . 
 
Now consider the contribution to the numerator of (3.4) from the terms with given values 
of  m and  i. Take for example the case  λ  = 3, i = 0 and  m =3, where there are three 
types corresponding to . Using the values of the cross products from file 
'data2' , the contribution to the numerator becomes 
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This quantity may be compared with the exact value of  )1(/)0( BwB ⋅ , which is done in 
file 'data3', Section lam = 3, heading ' Approximations to cross product factors'. In the 
column headed 0, we have shown, for various values of n from 200 to 4000, the quantity  

)1(/)0( 3 BwB β⋅ . It is seen that this quantity appears to be converging to the -16 of (3.7) 
as n increases. 
 
This behavior may be explained on the basis that corrections to the approximation to 

)1(/)0( BwB ⋅  would involve other terms from the numerator of (3.4) with i = 0 and 
higher values of  m, and these would contain additional factors of , which  as 
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Generalizing this explanation, we propose that a useful approximation for large n to the 
normalized scaled determinant (which may be written as i

i
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where  is analogous to the -16 in (3.7) and depends only on i and )(iP λ . For 52 −=λ  
the values of  are listed in the 'Theory' line at the foot of the first table for each )(iP λ . 
 
The other columns under the heading  ' Approximations to cross product factors' indicate 
the quality of these approximations for each λ  and  i. Note that the columns for i > 2λ  
relate to an approximation of the form  iyiP )( .
 



The second table in each λ  section of file 'data3' is headed  'Relative contributions to 
exact determinants'. The entries denote the quantities  2)2(.)(. λλ ywByiwB i . It is seen 
that there is a trend as n increases for the contribution to [ ]SNnK ),(det λ   from 2λ=i  to 
become dominant, although the value of n for which dominance becomes apparent 
rapidly increases with λ . 
 
The third table in each λ  section is headed  'Determinants'.  The first column headed  
'approx/exact'  gives the ratio of the approximation (3.8) to the exact value of   

[ SNnK ),(det ]λ  .  The second column headed   'exact/diag'  gives the ratio of the exact 
determinant to the corresponding product of the elements on the main diagonal, a 
measure of the amount of cancellation occurring in the calculation of the determinant.  It 
is seen that the amount of cancellation increases rapidly with n and λ . These results 
appear to be a compelling demonstration of the power of the theoretical analysis and the 
accuracy of the computations. 
 
4.    The approximate determinant formula (3.8) may be written in the form  
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where from (2.10 and (3.6)  
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As (2.8) shows, ∞→)(nτ  as ∞→n , so that 0/2 →βn  as ∞→n , but slowly. For all 
λ  the term in (3.9) corresponding to 2λ=i  will eventually dominate, but our 
calculations show that the other terms are significant for values of  n in the 1000s and 
beyond, the more so the higher λ . 
 
 
4.  THE QUESTION OF PROOF 
 
1. Based on the above development a simple but weak proposed theorem states 
 
PROPOSED THEOREM   For given order λ  the scaled normalized determinant of the 
matrix ),( λnK  has the property  
 

PnKn SN →)],(det[2 λλ   as  ∞→n ,       (4.1) 
 
where  2/)1(2 −= λλλ    and P is a positive constant dependent on λ . 
 
To construct a proof of this theorem the most important required missing inputs are 



 
1. A proof of the algebraic relations (2.27); 
2. A proof that the constant P is positive; 
3. The analysis that, for large enough values of n, all the corrections to the 

approximation (3.9) are negligible. 
 
In connection with these remarks we observe that 
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The cross products ),()( jmTiw ⋅  used in (2.26), (2.27) may be obtained from the results 
of symmetrizing ),( yxJ , differentiating several times with respect to the arguments, and 
setting x  and y to zero. This method might lead to a general proof of (2.27) and 
information about  the coefficients P(i) for general λ . 
 
An approach based on the structure of Olver's discussion [Ol74], p.82, might lead to the 
analysis required in Point 3 above. 
 
It should also be possible to extend the proposed theorem to more values of  n by using 
the approximation of  (3.9). 
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APPENDIX 
 
 
LEMMA  A.  Define an infinite sequence [ ]ng  by  
 

[ 1)21( −+Γ= ngn ] ,  },2,1,0{, L=∈ XXn  
0=ng ,   . 0<n

 
Then the sequence [  gives rise to a kernel  on ] )ng ,( nmG XX × , with  
which is a one-sided Polya frequency sequence of infinite order, i.e. it is . 

mngnmG −=),( ,
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Proof.  First we prove the above result with  replaced by ng [ ] 1)1( −+Γ= nhn .  We note 

that the generating function . This function belongs to the class of 

generating functions to which the fundamental representation theorem for one-sided PF 
sequences applies. This proves that the sequence 
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[ ]nh  is , so that the kernel 
 is TP. That is, for all ,  the determinant of every finite square matrix 

formed by choosing k rows and columns from  is non-negative. 
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If we restrict this choice to rows and columns with even indices, we obtain all  those 
determinants needed to prove that the kernel  is TP, which proves the lemma.  ),( nmG
 
 

 
 


