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Abstract

Advances in Web technology and the proliferation of mobile devicesemgbrs connected
to the Internet have resulted in immense processing and storageemeznis. Clou
computing has emerged as a paradigm that promises to meetdahesements. This work
focuses on the storage aspect of cloud computing, specifically am@datagement in cloyd
environments. Traditional relational databases were designed irfegentif hardware and
software era and are facing challenges in meeting the penfime and scale requirements of
Big Data. NoSQL and NewSQL data stores present themselvisrastaves that can handle
huge volume of data. Because of the large number and diversityisthg@xXNoSQL an
NewSQL solutions, it is difficult to comprehend the domain and even of@kéenging t
choose an appropriate solution for a specific task. Thereforepdpier reviews NoSQL and
NewSQL solutions with the objective of: (1) providing a perspectivehe field, (2)
providing guidance to practitioners and researchers to choose theragiprdpta store, and
(3) identifying challenges and opportunities in the field. Speclficthe most prominent
solutions are compared focusing on data models, querying, scalinggeaundty relate
capabilities. Features driving the ability to scale read résj@esl write requests, or scaling
data storage are investigated, in particular partitioning, egmit, consistency, and
concurrency control. Furthermore, use cases and scenarios in WS8QLNand NewSQ
data stores have been used are discussed and the suitability of sahdisns for differen
sets of applications is examined. Consequently, this study hasfieternallenges in th
field, including the immense diversity and inconsistency of terrogies, limite
documentation, sparse comparison and benchmarking criteria, and nonexi
standardized query languages.
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Introduction

In recent years, advances in Web technology and the proliferatisengbrs and mobile
devices connected to the Internet have resulted in the generatimmehse data sets that
need to be processed and stored. Just on Facebook, 2.4 billion content éesharad
among friends every day [1]. Today, businesses generate massives\ailgiaa which has
grown too big to be managed and analyzed by traditional data gpiragesols [2]. Indeed,
traditional relational database management systems (RDBMI®) designed in an era when
the available hardware, as well as the storage and processjngements, were very
different than they are today [3]. Therefore, these solutions have ése®untering many
challenges in meeting the performance and scaling requirements ofithiSa®” reality.

Big Data is a term used to refer to massive and complegedatmade up of a variety of data
structures, including structured, semi-structured, and unstructutad Alecording to the
Gartner group, Big Data can be defined by 3Vs: volume, velocity, andty [4]. Today,
businesses are aware that this huge volume of data can be usedrtdegeew opportunities
and process improvements through their processing and analysis [5,6].

At about the same time, cloud computing has also emerged as a camnpufadradigm for
on-demand network access to a shared pool of computing resources {egrk,ngervers,
storage, applications, and services) that can be rapidly provisioned with hmmamagement
effort [7]. Cloud computing is associated with service provisioningwimch service
providers offer computer-based services to consumers over the netwierk tiigfse services
are based on a pay-per-use model where the consumer pays otilg i@sources used.
Overall, a cloud computing model aims to provide benefits in termkessier up-front
investment, lower operating costs, higher scalability, elastiedagy access through the Web,
and reduced business risks and maintenance expenses [8].

Due to such characteristics of cloud computing, many applicatiores leen created in or
migrated to cloud environments over the last few years [9]. Initas interesting to notice
the extent of synergy between the processing requirementg ddda applications, and the
availability and scalability of computational resources offerby cloud services.
Nevertheless, the effective leveraging of cloud infrastructaceiires careful design and
implementation of applications and data management systems. CGloudnenents impose
new requirements to data management; specifically, a cloud @detagement system needs
to have:

» Scalability and high performance, because today’s applications are egpegie
continuous growth in terms of the data they need to store, the users they must serve, and
the throughput they should provide;

» Elasticity, as cloud applications can be subjected to enormous fluctuations actess
patterns;

* Ability to run on commodity heterogeneous servers, as most cloud environments dre base
on them;



» Fault tolerance, given that commodity machines are much more prone to failghamnti
servers;

» Security and privacy features, because the data may now be stored on thiptgrarses
on resources shared among different tenants;

» Availability, as critical applications have also been moving to the cloud and cafondt af
extended periods of downtime.

Faced with the challenges that traditional RDBMSs encounterndling Big Data and in
satisfying the cloud requirements described above, a number @algssl solutions have
emerged in the last few years in an attempt to address ¢beserns. The so-called NoSQL
and NewSQL data stores present themselves as data procdssingtives that can handle
this huge volume of data and provide the required scalability.

Despite the appropriateness of NoSQL and NewSQL data stoobsuasdata management
systems, the immense number of existing solutions (over 120 [10])handidcrepancies

among them make it difficult to formulate a perspective on the domad even more

challenging to select the appropriate solution for a problem at fAdmsl.survey reviews

NoSQL and NewSQL data stores with the intent of filling the®. More specifically, this

survey has the following objectives:

» To provide a perspective on the domain by summarizing, organizing, and categorizing
NoSQL and NewSQL solutions.

» To compare the characteristics of the leading solutions in order to provide guimance t
practitioners and researchers to choose the appropriate data store for apglications.

* To identify research challenges and opportunities in the field of largeesstibuted data
management.

NoSQL data models and categorization of NoSQL data storesbleaveaddressed in other
surveys [10-14]. In addition, aspects associated with NoSQL, such delliage, the CAP
theorem, and eventual consistency have also been discussed inr#terditgl5,16]. This
paper presents a short overview of NoSQL concepts and data nmaledgheless, the main
contributions of this paper include:

» A discussion of NewSQL data stores. The category of NewSQL soluticeteistythe
first use of the term was in 2011 [17]. NewSQL solutions aim to bring the relatioaal dat
model into the world of NoSQL. Therefore, a comparison among NewSQL and NoSQL
solutions is essential to understand this new class of data stores.

* A detailed comparison among various NoSQL and NewSQL solutions over a large number
of dimensions. By presenting this comparison in a table form, this paper helpsoprersti
to choose the appropriate data store for the task at hand. Previous surveys have included
comparisons of NoSQL solutions [11]; nonetheless, the number of compared attributes
was limited, and the analysis performed was not as comprehensive.

» A review of a number of security features is also included in the data stopartson.
According to the surveyed literature [10-14], security has been overlooked, even though i
Is an important aspect of the adoption of NoSQL solutions in practice.

» A discussion of the suitability of various NoSQL and NewSQL solutions for diffeets
of applications. NoSQL and NewSQL solutions differ greatly in their charstotsr
moreover, changes in this area are rapid, with frequent releases of heesfead
options. Therefore, this work discusses the suitability of NoSQL and NewSQLialas s
for different use cases from the perspective of core design decisions.



The rest of this paper is organized as follows: the “BackgramidRelated Work” section
describes background concepts and studies related to this surveyefffoelofogy used in
this survey is presented in the “Methodology” section. The “Data Mbdeiction presents
the NoSQL and NewSQL data models and categorizes the survegestatas accordingly.
Querying capabilities are discussed in the “Querying” sectivhile the “Scaling” section
describes the solutions’ scaling properties and the “Secuggtion their security features.
The suitability of NoSQL and NewSQL data stores for diffetesg cases is discussed in the
“Use Cases” section. The challenges and opportunities identifigds study are described
in the “Opportunities” section, and the “Conclusions” section concludes the paper.

Background and related work

This section introduces relevant concepts and positions this paperesfhbct to other
surveys in the NoSQL domain.

Cloud computing

Cloud computing is a model for enabling ubiquitous, convenient, on-demand netwess a
to a shared pool of configurable computing resources (e.g., netwoklerssestorage,
applications, and services) that can be rapidly provisioned and releasedninimal
management effort or service provider interaction [7]. It denotemodel in which a
computing infrastructure is viewed as a “cloud”, from which busesesasd individuals can
access applications on demand from anywhere in the world [18ntiadésdtharacteristics of
the cloud-computing model, according to the U.S. National Institute afid&tds and
Technology (NIST), include [7]:

* On-demand self-service, enabling a user to access cloud provider sefthces human
interaction;

» Broad network access that enables heterogeneous thick and thin clientiapplicat
access the services;

» Pooling of service provider computing resources to serve multiple consumers;

* Automatic, rapid, and elastic provisioning of resources;

* Measured service in which resource usage is monitored and controlled.

Overall, a cloud computing model aims to provide benefits in termkesser up-front
investment in infrastructure during deployment, lower operating costs, highedikiya ease
of access through the Web, and reduced business risks and maintenance expenses [8].

The CAP theorem

In order to store and process massive datasets, a common employed stratpgstitson the
data and store the partitions across different server nodes. okadlyi these partitions can
also be replicated in multiple servers so that the datdlia\silable even in case of servers’
failures. Many modern data stores, such as Cassandra [19] gihabRi [20], use these and
others strategies to implement high-available and scalahigéasd that can be leveraged in
cloud environments. Nevertheless, these solutions and others replidatetked data stores
have an important restriction, which was formalized by the G&rem [21]: only two of
three CAP properties (consistency, availability, and partitionaots) can be satisfied by
networked shared-data systems at the same time [21,22].



Consistencyas interpreted in CAP, is equivalent to having a single up-to-ustemice of the
data [22]. Thereforeconsistencyin CAP has a somewhat dissimilar meaning to and
represents only a subsetaninsistencys defined in ACID (Atomicity, Consistency, Isolation
and Durability) transactions of RDBMSs [22], which usually refey the capability of
maintaining the database in a consistent state at all tihhesAvailability property means
that the data should be available to serve a request at the moiseméeded. Finally, the
Partition Toleranceproperty refers to the capacity of the networked shared-datnsys
tolerate network partitions. The simplest interpretation of the @&Brem is to consider a
distributed data store partitioned into two sets of participant nddésg; data store denies all
write requests in both partitions, it will remain consistent, bigtmot available. On the other
hand, if one (or both) of the partitions accepts write requests, thestdae is available, but
potentially inconsistent.

Despite the relative simplicity of its result, the CAP theoleas had important implications
and has originated a great variety of distributed data stomasag to explore the trade-offs
between the three properties. More specifically, the challeoigB®BMS in handling Big
Data and the use of distributed systems techniques in the contbet GAP theorem led to
the development of new classes of data stores called NoSQL and NewSQL.

NoSQL and NewSQL

The origin of the NoSQL term is attributed to Johan Oskarsson, whatuse2D09 to name

a conference about “open-source, distributed, non-relational datab28gsrdday, the term

is used as an acronym for “Not only SQL”, which emphasizesSpatstyle querying is not
the crucial objective of these data stores. Therefore, the terosed as an umbrella
classification that includes a large number of immensely divdata stores that are not based
on the relational model, including some solutions designed for veryisggplications such
as graph storage. Even though there is no agreement on what erastijutes a NoSQL
solution, the following set of characteristics is often attributed to them [11,15]:

» Simple and flexible non-relational data models. NoSQL data stores offdidleaxhemas
or are sometimes completely schema-free and are designed to handtevanety of data
structures [11,12,24]. Current solution data models can be divided into four categories:
key-value stores, document stores, column-family stores, and graph databases.

 Ability to scale horizontally over many commodity servers. Some data gioyeide data
scaling, while others are more concerned with read and/or write scaling.

* Provide high availability. Many NoSQL data stores are aimed towarbby/ ligptributed
scenarios, and consider partition tolerance as unavoidable. Therefore, in orderde provi
high availability, these solutions choose to compromise consistency in favour of
availability, resulting in AP (Available / Partition-tolerant) data esomhile most RDBMs
are CA (Consistent / Available).

» Typically, they do not support ACID transactions as provided by RDBMS. NoSQL data
stores are sometimes referred as BASE systems (BasicallipBleaiSoft state,

Eventually consistent) [25]. In this acronyBasically Availableneans that the data store

is available all the time whenever it is accessed, even if parts of itaveailale;Soft-
statehighlights that it does not need to be consistent always and can tolerate inconsistenc
for a certain time period; arieventually consister@mphasizes that after a certain time
period, the data store comes to a consistent state. However, some NoSQL estalsthr

as CouchDB [26] provide ACID compliance.



These characteristics make NoSQL data stores espesiathble for use as cloud data
management systems. Indeed, many of the Database as @ Sdferings available today,
such as Amazon’s SimpleDB [27] and DynamoDB [28], are considered téoSQL data
stores. However, the lack of full ACID transaction support can bwejar impediment to
their adoption in many mission-critical systems. For instanceyeiaat al. [29] argue that it
is better to deal with performance problems caused by these/ef transactions rather than
trying to work around the lack of transaction support. Furthermore, thef lse-level query
languages, the lack of standardized interfaces, and the huge investneautyg adade in SQL
by enterprises are other barriers to the adoption of NoSQL data stores.

The category of NewSQL data stores, on the other hand, ig beed to classify a set of
solutions aimed at bringing to the relational model the benwfitorizontal scalability and
fault tolerance provided by NoSQL solutions. The first use of tine i®attributed to a report
of the 451 group in 2011 [17]. The Google Spanner [29] solution is considereie lmé
the most prominent representatives of this category, as is also VoltDBJW36h is based on
the H-Store [31] research project. Clustrix [32] and NuoDB [388]t&@0 commercial projects
that are also classified as NewSQL. All these data ssoigsort the relational model and use
SQL as their query language, even though they are based on diffssamhptions and
architectures than traditional RDBMSs. Generally speakingiS@L. data stores meet many
of the requirements for data management in cloud environments amuffaisthe benefits of
the well-known SQL standard.

Related surveys

Several surveys have addressed the NoSQL domain [10-14]; neverthkiessurvey is
different because it focuses on the comparison of available Ne®@LNewSQL solutions
over a number of dimensions. Hecht and Jablonski [11] presented a es@ieated survey,
which, like this one, compares features of several NoSQL solutiookiding the data
models, querying capabilities, partitioning, replication, and consigtéfawever, for a large
number of features, they use a “black and white” (+/-) approacidicaie that the solution
either does or does not have the feature. This survey adopts andifsgmeroach by
expressing degrees, aspects, and details of each solution’s de&iareover, this survey
includes security features and NewSQL solutions, which are not addressed irotheir w

Pokorny [13], Cattell [12], and Sakt al.[14] have also reviewed NoSQL data stores. They
portrayed a number of NoSQL data stores, describing their data meu®lsheir main
underlying principles and features. However, in contrast to thig,vieey did not perform
direct feature comparison among data stores. Sadalage and Ha®jledescribed the
principles on which NoSQL stores are based and why they may beosupetraditional
databases. They introduced several solutions, but they did not comparesfest is done in
this work.

In addition, existing surveys have not described the rationale drothdbr choosing the
specific data stores to include in their studies [11-14]. For exarBpkret al. stated, “...we
give a brief introduction about some of those projects” [14], or HewthtJablonski “ The
most prominent stores are ...” [11]; however, the method for choosing thesttaks
included in their studies were not presented. In contrast, this walausetematic approach
to choose which data stores to include in the study. Additionally, silmgey includes
different data stores than the existing surveys [11-14].



Methodology

Due to the large number of NoSQL and NewSQL solutions, it was rablkedo include all
of them in this survey. While other NoSQL surveys did not specifyntethodology for
choosing the data stores to be included in their studies [11-14], thiesysmakes use of a
systematic approach to select the solutions.

DB-Engine Ranking [34] ranks database systems according to gbpularity by using
parameters such as the number of mentions on Web sites, genewstiatecording to
Google Trends, frequency of technical discussions on the Web, numhy off¢rs, and
number of professional profiles in which the solutions are mentioned¢aAde seen, the
DB-Engine Ranking estimates overall popularity of a data sinrthe Web. Nevertheless,
this work is also interested in popularity within the research aamty) therefore, it also
considers how often each system has been mentioned in research ipubligéten though
various research repositories could have been used, this study fooubedEEE as it is one
of the most prominent publishers of research papers in computer se@rdceoftware
engineering. Hence, the initial list of NoSQL solutions was inbth from DB-Engine
Ranking [34] and includes all NoSQL solutions listed by DB-EnginekiRg. Next, the
IEEE Xplore database was searched to determine how maeg #ach data store was
mentioned in the indexed publications. For each NoSQL category, theofteostited data
stores were chosen to be included in this survey. The key-valu®gateas further divided
into in-memory and disk-persistent key-value stores, and the mostnamnsolutions within
each subcategory were chosen.

The prevalent data stores found in IEEE publications are simoiléiret data stores ranked
high by DB-Engine Ranking. In the document category, the same thate stores,
MongoDB [35], CouchDB [26], and Couchbase [36] are the most popular accoodidgyt
Engine Ranking and IEEE publications. Both popularity estimation agipesarank
Cassandra [19] and HBase [37] as the most prominent in the colomiy-feategory.
SimpleDB [27] and DynamoDB [28] are ranked high by both approachese WBtEngine
Ranking considers them key-value stores, this work categorizesathealumn-family stores
because of their table-like data model. In the remaining twagodes, key-value data stores
and graph databases, a large number of solutions rank high in popataatygling to both
approaches, including Redis [38], Memcached [39], Riak [40], BerkeldyDB and Neo4J
[42].”

The selection of NewSQL data stores followed a similar gmiroNevertheless, because
most of these solutions are very recent, only VoltDB and Spanner had a argnificnber of
hits in the IEEE Xplore database. Therefore, in order to includegar number of solutions
in this survey, Clustrix and NuoDB were also selected becaus$eiofunique architectural
and technical approaches.

The selected NoSQL and NewSQL solutions were compared wittua @m the data model,
guerying, scaling, and security-related capabilities. The cagagion according to data
model was used because the data model is the main factor driving cojbeilities,

including querying and scaling. In the querying context, support for Edipée, SQL-like

qguerying, REST (representational state transfer) and other wdd considered. With regard
to scaling, the study considered scaling read and write reqoestsaling data storage and
analyzed four concepts closely related: partitioning, replicatmmsistency, and concurrency



control. Finally, the following security related features wewmalyzed: authentication,
authorization, encryption, and auditing.

Data models

The family of data stores belonging to the NoSQL categan be further sub-classified
based on their data models. Many authors have proposed distinptatagons for NoSQL

categories, which has led to different sub-classifications [10,12]thi& paper, the

classification provided by Hecht and Jablonski [11] has been used, whidbagdiiie various

NoSQL data stores into four major categories: key-value stomamn-family stores,

document stores, and graph databases. Figure 1 shows representdtiess afodels. This
study also reviews NewSQL as a hybrid between NoSQL stores and reldataizases.

Figure 1 Different types of NoSQL data models.

Key-value stores

Key-value stores have a simple data model based on key-valuevgairh, resembles an
associative map or a dictionary [11]. The key uniquely identifiesvéthee and is used to
store and retrieve the value into and out of the data store. Theigsadpaque to the data
store and can be used to store any arbitrary data, including aerjrdaegring, an array, or an
object, providing a schema-free data model. Along with being sclremakey-value stores
are very efficient in storing distributed data, but are not seitém scenarios requiring
relations or structures. Any functionality requiring relationsycttires, or both must be
implemented in the client application interacting with the keyeadtore. Furthermore,
because the values are opaque to them, these data stores cannotidanelel querying
and indexing and can perform queries only through keys. Key-vatuesstan be further
classified asn-memory key-value storeghich keep the data in memory, like Memcached
[39] and Redis [38], andersistent key-value storagich maintain the data on disk, such as
BerkeleyDB [41], Voldemort [43], and Riak [40].

Column-family stores

Most column-family stores are derived from Google Bigtable [#O\hich the data are
stored in a column-oriented way. In Bigtable, the dataset consistvefal rows, each of
which is addressed by a unique row key, also knownpasreary key Each row is composed
of a set of column families, and different rows can have differeinimn families. Similarly
to key-value stores, the row key resembles the key, and the s@tiofn families resembles
the value represented by the row key. However, each column famtinef acts as a key for
the one or more columns that it holds, where each column consisteashevalue pair.
Hadoop HBase [37] directly implements the Google Bigtable concepitsreas Amazon
SimpleDB [27] and DynamoDB [28] have a different data model thgtaBlie. SimpleDB
and DymanoDB contain only a set of column name-value pairs in ea¢lwrtheut having
column families. Cassandra [19], on the other hand, provides the additiooabhality of
super-columns, which are formed by grouping various columns together.

In column-family stores, a column family in different rows camtain different columns.
Occasionally, SimpleDB and DynamoDB are classified as kayevslores [34]; however,
this paper considers them as column-family stores due to theirlidadldata model in which



each row can have different columns. Typically, the data belgngina row is stored
together on the same server node. However, Cassandra offers ta siagde row across
multiple server nodes by using composite partition keys. In colamiyf stores, the
configuration of column families is typically performed duringrsup. However, a prior
definition of columns is not required, which offers huge flexibility in storing aatg type.

In general, column-family stores provide more powerful indexing and oquethian key-
value stores because they are based on column families and catuaaiastion to row keys.
Similarly to key-value stores, any logic requiring relatiomsst be implemented in the client
application.

Document stores

Document stores provide another derivative of the key-value store ddt by using keys
to locate documents inside the data store. Most document storeen¢mtesuments using
JSON (JavaScript Object Notation) or some format derived ftoRFor example, CouchDB
[26] and the Couchbase server [36] use the JSON format for datgestotadereas MongoDB
[35] stores data in BSON (Binary JSON). Document storeswatabte for applications in
which the input data can be represented in a document format. A eoc@an contain
complex data structures such as nested objects and does not refjaneneel to a fixed
schema. MongoDB provides the additional functionality of grouping therdests together
into collections. Therefore, inside each collection, a document should have a unique key.

Unlike an RDBMS, where every row in a table follows the sacteema, each document
inside these document stores can have a different structure. Bafcgiores provide the
capability of indexing documents based on the primary key asaw@h the contents of the
documents. This indexing and querying capability based on documenttsodiféerentiates
this data model from the key-value stores model, in which the vateespaque to the data
store. On the other hand, document stores can store only datarthHze cepresented as a
document. Like key-value stores, they are inefficient in mulkeletransactions involving
cross-document operations.

Graph databases

Graph databases originated from graph theory and use graphg aataenodel. A graph is
a mathematical concept used to represent a set of objects, kneenti@ss or nodes, and the
links (or edges) that interconnect these vertices. By usimmgnpletely different data model
than key-value, column-family, and document stores, graph databases cantlgftiee the
relationships between different data nodes. In graph databases, tekeandd=iges also have
individual properties consisting of key-value pairs. Graph databasespecialized in
handling highly interconnected data and therefore are very effidientraversing
relationships between different entities. They are suitablecenasios such as social
networking applications, pattern recognition, dependency analyssnneendation systems
and solving path finding problems raised in navigation systems [11,44].

Some graph databases such as Neo4J [42] are fully ACID-compliewever, they are not
as efficient as other NoSQL data stores in scenarios okizer handling graphs and
relationships. Moreover, existing graph databases are not effiagiehbrizontal scaling
because when related nodes are stored on different serveessitig multiple servers is not
performance-efficient.



NewSQL

These solutions are by definition based on the relational model. &¢&0), Clustrix [32],
and NuoDB [33] offer their clients a pure relational view of d&a.the other hand, Google
Spanner [29] is based on a semi-relational model in which taldesean as mappings from
the primary-key columns to the other columns. In its model, hierardhitables are created
so that users can specify locality relationships between tables [29].

Even though clients interact with these data stores in terntabtds and relations, it is
interesting to note that NewSQL solutions might use differentréat@sentations internally.
For example, NuoDB can store its data into any compatible key-value store.

Querying

Similar to the selection of a data model, the querying capeabilof data stores play an
important role when choosing among them for a particular scenalfferddt data stores

offer different APIs and interfaces to interact with them. Thidirectly dependent upon the
data model that a particular data store possesses. For exankgg,value store cannot
provide querying based on the contents of the values, because thesamalgsque to the

data store. On the other hand, a document store can do so becausentsdeafarovides the

capability to index and query the document contents.

Another important query-related feature of NoSQL and NewSQL dattessis their level of
support for MapReduce. MapReduce, which was first developed by &owgl a
programming model and an associated implementation for procéssyegdatasets [45]. It
has now become a widely accepted approach for performing distrithaiizzghrocessing on a
cluster of computers. Because one of the primary goals of NoSQ@lstutaies is to scale over
a large number of computers, MapReduce has been adopted by most of ithganly S
SQL-like querying has been a preferred choice because ofdespvead use over the past
few decades, and it has now also been adopted in the NoSQL world.ofbéeseime of the
prominent NoSQL data stores like MongoDB [35] offer a SQL-like qleerguage or similar
variants such as CQL [46] offered by Cassandra and SparQL [4Kleb¥j and Allegro
Graph [48].

As for the NewSQL category, the use of SQL as a query lgegisaone of its defining
characteristics, but the level of SQL support varies considerahlgtri@ [32] and NuoDB
[33] are the most SQL-compliant of the solutions analyzed, having onhporm
incompatibilities with the standard. On the other hand, Codiedl. state that the Google
Spanner query language “looks like SQL with some extensions to sypptwtol-buffer-
value fields” [29], but they do not provide details about the languagdlytiwaltDB [30]
has a larger number of restrictions in place: it is not postwhlse theéhavingclause, tables
cannot join with themselves, and all joined tables must be partitionedh®&veame value. It
is also worth mentioning that the recommended way of interactitig WaltDB is through
Stored Procedures. These procedures are written in Java, whgnanprong logic and SQL
statements are interspersed.

On the other hand, a command-line interface (CLI) is usuallgithplest and most common
interface that a data store can provide for interaction wigtf issd is therefore offered by
almost all NoSQL and NewSQL products. In addition, most of these psodifer API



support for multiple languages. Moreover, a REST-based API has beepogilar in the
world of Web-based applications because of its simplicity [46hs€quently, in the NoSQL
world, a REST-based interface is provided by most solutions, altrestly or indirectly
through third-party APIs. Table 1 provides a detailed view of thierdiit APIs support
provided by the most prominent NoSQL and NewSQL solutions along with qteeying
capabilities offered.



Table 1Querying capabilities

NoSQL Data Stores Querying License
Map Reduce REST Query Other API Other features
Key-value stores Redis http://redis.io No Third-party APIs Does not provide SCKelguerying  CLI and APl in several languages  Server-sidgtisgr support using Lua Open source: BSD (Berkeley
Software Distribution)
Memcachec http://memcached.org No Third-party APIs Does not provide $iglquerying CLI and API in several languagesNo server-side scripting support Open source: BSD 3-clause
Binary and ASCII protocols for license
custom client development
BerkeleyDB No Yes SQLite CLI and APl in several languages ~ No secgriddices, no server-side-  Closed source: Oracle

http://www.oracle.com/us/products/database/berkeley-
db/overview/index.html

Voldemort http://www.project- Yes Under No Clients for several languages Open source: Apache 2.0
voldemort.com/voldemort development license

scripting support Sleepycat license

Riak http://basho.com/riak Yes Yes Riak search, secondaigeisd CLI and API in several languages  Provides filtettimgugh key filters. Open source: Apache 2.0
Configurable secondary indexing. Providé@snse
Solr search capabilities. Provides server-
side scripting
Column family stores Cassandrz http://cassandra.apache.org Yes Third party APIs Cassquodry language CLI and API in several languageSecondary indexing mechanisms includeéOpen source: Apache 2.0
Supports Thrift interface column families, super-columns, license
collections
HBasc¢http://hbase.apache.org Yes Yes No, could be used with Hive a/Argw\Writer Server-side scripting support. Several Open source: Apache 2.0
secondary indexing mechanisms license
DynamoDB (Amazon service) Amazon Elastic Yes Proprietary API in several languages Provides secoimiigying based on  Closed source: Pricing as pay-
http://aws.amazon.com/dynamodb MapReduce attributes other than primary keys per-use basis
Amazon SimpleDB (Amazon service) No Yes Amazon proprietary Amazon proprietary API Autamardexing for all columns Closed source: Pricing as pay-
http://aws.amazon.com/simpledb per-use basis
Document stores MongoDB http://www.mongodb.org Yes Yes Proprietary CLI and APlemesal languages  Server-side scripting and secondary Open source: Free GNU AGPL
indexing support. A powerful aggregation3.0 license
framework
CouchDB http://couchdb.apache.org Yes Yes SQL like UnQL, under dprent  API in several languages Server-side scriptingesahdary Open source: Apache 2.0
indexing support license
Couchbase Serve http://www.couchbase.com Yes Yes No Memcached APbtopol (binary Server-side scripting and secondary ~ Open source: Free Community
and ASCII) in several languages indexing support Edition. Paid Enterprise Edition
Graph databases Neo4. http://www.neo4j.org No Yes Cypher, Gremlin and SparQL ad API in several languages  Server-side scripting aswhdary Open source license: NTCL +
indexing support (A)GPLV3
HyperGraphDB www.hypergraphdb.org/ No Yes SQL like querying Currently lsas API. Could be Provides a search engine and Seco scrijOpen source license: GNU
used with Scala IDE LGPLv3
Allegro Graph No Yes SparQL and Prolog API in several languages Suppdsoloindexing and search Closed source: free, developer
http://www.franz.com/agraph/allegrograph and enterprise versions
NewSQL VoltDB http://voltdb.com/ No Yes SQL CLI and APl in sevemiduages. Stored procedures are written in Java. Open source AGPL v3.0
JDBC support Tables cannot join with themselves, andlakense.
joined tables must be partitioned over th€ommercial enterprise edition
same value
Spanner Yes NA SQL like language NA Tables are partitioned intoan@hies, Google internal use only
which describe locality relationship
between tables
Clustrix http://www.clustrix.com/ No No SQL Wire protocol comiidi with Closed source. Available as a
MySQL service in the AWS
marketplace, as an appliance,
and as standalone software
NuoDB http://www.nuodb.com/ No No SQL CLI and drivers for mosnomon  No support for stored procedures Closed source. Pro and

data access APIs (JDBC, ODBC,
ADO.NET). Also provides a C++
API

Developers editions.
Available as a service in the
AWS marketplace




Scaling

One of the main characteristics of the NoSQL and NewSQL statas is their ability to
scale horizontally and effectively by adding more serverstint resource pool. Even though
there have been attempts to scale relational databases hdigjzontséhe contrary, RDBs are
designed to scale vertically by means of adding more power to a sindiegegever [3].

With regard to what is being scaled, three scaling dimensi@ensamsidered: scaling read
requests, scaling write requests, or scaling data storage.pditigioning, replication,
consistency, and concurrency control strategies used by the No®NlesvSQL data stores
have significant impact on their scalability. For example, pamiiig determines the
distribution of data among multiple servers and is therefore a nudaashieving all three
scaling dimensions.

Another important factor in scaling read and write requestsplcation: storing the same
data on multiple servers so that read and write operations cantbbutksl over them.
Replication also has an important role in providing fault tolerancausecdata availability
can withstand the failure of one or more servers. Furthermore, thee affaieplication model
is also strongly related to the consistency level provided bydkee store. For example, the
master—slave asynchronous replication model cannot provide consisténecqeiests from
slaves.

Finally, another influential factor in scaling read and writguessts is concurrency control.
Simple read/write lock techniques may not provide sufficient concurrencyottortthe read
and write throughput required by NoSQL and NewSQL solutions. Therafarst solutions
use more advanced techniques, such as optimistic locking with mudidweroncurrency
control (MVCC).

In the following subsections, partitioning, replication, consistency, anducrency control
strategies of NoSQL and NewSQL data stores will be cordpareoverview is presented in
Table 2.



Table 2 Partitioning, replication, consistency, and concurency control capabilities

NoSQL Data Stores

Partitioning Replication Consistency

Concurrency control

Key-value stores Redis Not available (planned for Redis Cluster releaseartbeMaster—slave, asynchronous replication. Eventual stray. Application can implement optimistic (using the
implemented by a client or a proxy. Strong consistency if slave replicas are solely for ~ WATCH command) or pessimistic concurrency

failover. control.

Memcached Clients’ responsibility. Most clients support consistent No replication. Strong consistency (single instance). Application caplément optimistic (using CAS
hashing. Repcached can be added to memcached for replication. with version stamps) or pessimistic concurrency

control.

BerkeleyDB Key-range partitioning and custom partitioning functiongaster—slave. Configurable. Readers-writer locks.

Not supported by the C# and Java APIs at this time.
Voldemort Consistent hashing. Masterless, asynchronous replication Configurable, based on quorum read and write requests. MV@Gregtor clock.
Replicas are located on the fiRhodes moving over the
partitioning ring in a clockwise direction.
Riak Consistent hashing. Masterless, asynchronous replication Configurable, based on quorum read and write requests. MV@Gragtor clock.
The built-in functions determine how replicas distribile
data evenly.

Column family stores ~ Cassandra Consistent hashing and range partitioning (known as dktkesterless, asynchronous replication. Configurable, based on quorum read and write requests. Ctievitlpd timestamps are used to determine the
preserving partitioning in Cassandra terminology) is noftwo strategies for placing replicas: replicas are placed most recent update to a column. The latest timestamp
recommended due to the possibility of hot spots and Iahe nextR nodes along the ring; or, replica 2 is placed on always wins and eventually persists.
balancing issues. the first node along the ring that belongs to another data

centre, with the remaining replicas on the nodes along the
ring in the same rack as the first.
HBase Range partitioning. Master—slave or multi-master, asymzius replication. ~ Strong consistency. MVCC.
Does not support read load balancing (a row is served by
exactly one server). Replicas are used only for failove
DynamoDB Consistent hashing. Three-way replication across meiltiphes in a region. Configurable. Application can implement optimistic (using
Synchronous replication. incrementing version numbers) or pessimistic
concurrency control.

Amazon SimpleDB  Partitioning is achieved in the DB design stage by Replicas within a chosen region. Configurable. Application can implement optimistic concurrency
manually adding additional domains (tables). Cannot control by maintaining a version number (or a
query across domains. timestamp) attribute and by performing a conditional

put/delete based on the attribute value.

Document Stores MongoDB Range partitioning based on a shard key (one or moreMaster—slave, asynchronous replication. Configurable. Readers—writer locks.
fields that exist in every document in the collectidn). Two methods to achieve strong consistency: set
addition, hashed shard keys can be used to partition data. connection to read only from primary; or, sette

concernparameter to “Replica Acknowledged”.
CouchDB Consistent hashing. Multi-master, asynchronous replicatio Eventual consistency. MVCC. In case of conflicts, whening revision is

Designed for off-line operation. Multiple replicas can
maintain their own copies of the same data and synchronize
them at a later time.

chosen, but the losing revision is saved as a previous
version.

Couchbase Server

A hashing function determines to which bucket a Multi-master.
document belongs. Next, a table is consulted to look u

server that hosts that bucket.

Within a cluster: strong consistency.
Across clusters: eventual consistency.

Application can implement optimistic (using CAS) or
pessimistic concurrency control.

Graph databases

Neo4J

No partitioning (cache sharding only). Master—slave, butheantlle write requests on all server Eventual consistency.
nodes. Write requests to slaves must synchronously

propagate to master.

Write locks are acquired on nodegetattbnships
until committed.




Hyper GraphDB

Graph parts can reside in different P2P nodes. Builds dfulti-master, asynchronous replication. Eventual consistency.

autonomous agent technologies. Agent style communication based on Extensible Messaging
and Presence Protocol (XMPP) .

MVCC.

Allegro Graph

No partitioning (federation concept which aims to Master—slave. Eventual consistency.

integrate graph databases is abstract at the moment).

Unclear how locking is implemett®9% Read
Concurrency, Near Full Write Concurrency”.

NewSQL

VoltDB Consistent hashing. Users define whether stored Updates executed on all replicas at the same time. ongtonsistency. Single threaded model (no concurrencyotontr
procedures should run on a single server or on all servers.

Spanner Data partitioned into tablets. Complex policies determi@obal ordering in all replicas (Paxos state machine  Strong consistency. Pessimistic locking in read-wréegactions. Read-
in which tablet the data should reside. algorithm). only transactions are lock-free (versioned reads).

Clustrix Consistent hashing. Also partitions the table indicésgusUpdates executed on all replicas at the same time. ongtonsistency. MVCC.
the same approach.

NuoDB No partition. The underlying key-value store can partitidulti-master (distributed object replication). Asynchrosdtventual consistency. MVCC.

the data, but it is not visible by the user.




Partitioning

Most NoSQL and NewSQL data stores implement some sort ofontaizpartitioning or

sharding, which involves storing sets or rows/records into differegrhesets (or shards)
which may be located on different servers. In contrast, veqanitioning involves storing
sets of columns into different segments and distributing them angbrdiThe data model is
a significant factor in defining strategies for data storgitwaing. For example, vertical
partitioning segments contain predefined groups of columns; therdfiee stores from the
column-family category can provide vertical partitioning in addition horizontal

partitioning.

The two most common horizontal-partitioning strategies are naagioning and consistent
hashing.Range partitioningassigns data to partitions residing in different servers based on
ranges of a partition key. A server is responsible for thhegé and read/write handling of a
specific range of keys. The advantage of this approach is fiwtived processing of range
gueries, because adjacent keys often reside in the same node. Hdhisvapproach can
result in hot spots and load-balancing issues. For example, if theadaprocessed in the
order of their key values, the processing load will alwaysdmeentrated on a single server
or a few servers. Another disadvantage is that the mapping asramgartitions and nodes
must be maintained, usually by a routing server, so that thet ciéa be directed to the
correct server. BerkeleyDB, Cassandra, HBase, and MongoDBnmepk range partitioning
as depicted in Table 2.

In consistent hashinghe dataset is represented as a circle or ring. Thesrigigided into a
number of ranges equal to the number of available nodes, and each megpeés to a point
on the ring. Figure 2 illustrates consistent hashing on an examtpléour nodes N1 to N4.
To determine the node where an object should be placed, the systees bi@de object’'s key
and finds its location on the ring. In the example from Figum@bjgcta is located between
nodes N4 and N1. Next, the ring is walked clockwise until therimde is encountered, and
the object gets assigned to that node. Accordingly, objéam Figure 2 gets assigned to
node N1. Consequently, each node is responsible for the ring region etseteand its
predecessor; for example, node N1 is responsible for data range N2 éaledata range 2,
and so on. With consistent hashing, the location of an object carhchéatad very fast, and
there is no need for a mapping service as in range partitionirgapproach is also efficient
in dynamic resizing: if nodes are added to or removed from the oimlg neighbouring
regions are reassigned to different nodes, and the majornigcoids remain unaffected [16].
However, consistent hashing negatively impacts range queries beesgisgouring keys are
distributed across a number of different nodes. Voldemort, Riak, @hsseDynamoDB,
CouchDB, VoltDB, and Clustrix implement consistent hashing.

Figure 2 Consistent hashing.

The in-memory stores analyzed, Redis and Memcache, do not implenyeparitioning

strategy and leave it to the client to devise one. Amazon SiBpldi2 NoSQL solution
which is provided as a service, offers its clients simple, manaehanisms for partitioning
data, as described in Table 2. However, the service provider mightnmapt additional
partitioning to achieve the throughput capacity specified in the servidealgneement.

Partitioning graph databases is significantly more challentjagy partitioning other NoSQL
stores [50]. The key-value, column-family, and document data storn#gopattata according



to a key, which is known and relatively stable. In addition, data aessed using a lookup
mechanism. In contrast, graphs are highly mutable structures, whiatt tiave stable keys.
Graph data are not accessed by performing lookups, but by explogisigpons among
entities. Consequently, graph partitioning attempts to achieve a-dficbetween two
conflicting requirements: related graph nodes must be located @artie server to achieve
good traversal performance, but, at the same time, too many graphshodé&snot be on the
same server because this may result in heavy and concentatedAl number of graph-
partitioning algorithms have been proposed [50], but their adoption in prdEgdeen
limited. One of the reasons is the rapid pace of changes in grapitd) may trigger
intensive rebalancing operations. For this reason, the graph skdainaestigated, Neo4J,
HypergraphDB, and AllegroGraph, do not offer partitioning in thaditional sense.
However, Neo4J offers cache sharding, while HypergraphDB @lie@gitonomous agents to
provide communication among graphs residing in different peer nodesjesasized in
Table 2.

The NewSQL data stores investigated also use diverse pariistrategies. VoltDB uses a
traditional approach in which each table is partitioned using a skeyeand rows are
distributed among servers using a consistent hashing algorithmd $tareedures can be
executed on a single partition or on all of them; however, the dréawbabat the user is
responsible for selecting between these options. The Clustrix da¢aadso partitions the
data using a consistent hashing algorithm over a user-defined yrkagr In addition,
Clustrix also partitions the table indices using the indexed colastise keys. Theoretically,
this strategy enables parallel searches over these indices, leadistptaytiery resolution.

Google’s Spanner uses a different partitioning model. A Spanner depibyontains a set
of servers known aspanserverswhich are the nodes responsible for serving data to clients.
A spanservemmanages hundreds to thousandgatfets each of which contains a set of
directories. A directory is basically a set of rows that ehaa common key prefix, as
specified by the user-defined table hierarchy mentioned in dde¢ata Models”. A
directory is also considered to be the basic unit of placement aaatimn, which is used to
define constraints for data partitioning and replication among théablatablets. Some of
the criteria that can be defined are the datacentres wheimsegtould reside, the number of
replicas, the distance of the data to their clients, and the distanong replicas. The data
store automatically moves the directories amonggamserverso respect these criteria and
to improve general data access performance.

NuoDB is another NewSQL solution that uses a completely diffeapptoach for data
partitioning. A NuoDB deployment is made up of a number of Storage d¢esn@SM) and

Transaction Managers (TM). The SMs are the nodes responsible ifaimag the data,

while the TMs are the nodes that process the queries. Each Skl dmnplete copy of the
entire data, which basically means that no partitioning takese plaithin the SM.

Nevertheless, the underlying key-value store used by the &Mpartition the data by itself,
although this is neither controllable nor viewable by the user.

Replication
In addition to increasing read/write scalability, replication atsproves system reliability,

fault tolerance, and durability. Two main approaches to replicationbeadistinguished:
master—slave and multi-master replication.



In master—slave replicatigrshown in Figure 3.a, a single node is designated as a master and
is the only node that processes write requests. Changes are peddagatthe master to the
slave nodes. Examples of data stores with master—slave repliead Redis, BerkeleyDB,
and HBase. Imulti-master replicationillustrated in Figure 3.b, multiple nodes can process
write requests, which are then propagated to the remaining nodesa#/hemaster—slave
replication the propagation direction is always from masterldges, in multi-master
replication, propagation happens in different directions. CouchDB and Coucbdrase are
examples ofmulti-master data storesThree other data stores, Voldemort, Riak, and
Cassandra, supponhasterlessreplication, which is similar to multi-master replication as
multiple nodes accept write requests, but as highlighted by thertesterlessall nodes play
the same role in the replication system. Note that all thréleeoflata stores with masterless
replication use consistent hashing as a partitioning strategystiidiegy for placing replicas

is closely related to node position on the partitioning ring, as shown in Table 2.

Figure 3 Replication models.

NewSQL replication schemes can be considered as multi-masterasterless schemes
because any node can receive update statements. In VoltDB andrixClus
transaction/session manager receives the updates, which asrdedwo all replicas and
executed in parallel. On the other hand, Google Spanner uses the fabessachine
algorithm [29] to guarantee that a sequence of commands wikdoeited in the same order
in all the replica nodes. Note that Paxos is a distributed digostithout central arbitration,
which differs significantly from the other solutions. Finally, in Ni&DOhe table rows are
represented as in-memory distributed objects which communicatehasiyaasly to replicate
their state changes.

The choice of replication model impacts the ability of the datee to scale read and write
requests. Master—slave replication is generally useful daling read requests because it
allows the many slaves to accept read requests — examplBgrkeleyDB and MongoDB.
However, some data stores such as HBase do not permit reastseguéhe slave nodes. In
this case, replication is used solely for failover and disastavery. In additionmaster—
slave data storeslo not scale write requests because the master is the onlythmetde
processes write requests. An interesting exception is the NtdbBase, which is able to
handle write requests on the slave nodes also. In this case requests are synchronously
propagated from slaves to master and therefore are slower titenregquests to master.
Finally, multi-masterand masterlesgeplication systems are usually capable of scaling read
and write requests because all nodes can handle both requests.

Another replication characteristic with a great impact on skatiges throughput is how write
operations are propagated among nodes. Synchronization of replicas ©arcihenous or
asynchronous. Isynchronou®r eager replicationchanges are propagated to replicas before
the success of the write operation is acknowledged to the dlil@stmeans that synchronous
replication introduces latencies because the write operation ipletaoh only after change
propagation. This approach is rarely used in NoSQL because iesalh in large delays in
the case of temporary loss or degradation of the connectioasyinchronousor lazy
replication the success of a write operation is acknowledged before timgecheas been
propagated to replica nodes. This enables replication over largecdistdut it may result in
nodes containing inconsistent copies of data. However, performamde gaeatly improved
over synchronous replication. As illustrated in Table 2, the majorityeotiata stores studied
use asynchronous replication. Typically, NoSQL solutions use this appmadhieve the



desired performance, yet CouchDB uses it to achieve off-lineatiper In CouchDB,
multiple replicas can have their own copies of the same data,fymibdim, and then
synchronize these changes at a later time.

Consistency

Consistency, as one of the ACID properties, ensures that a transkgngs the database
from one valid state to another. However, this section is concernedovisistency as used
in the CAP theorem, which relates to how data are seen amosgrtlez nodes after update
operations. Basically, two consistency models can be distinguistredg sand eventual
consistencyStrongor immediate consisten@nsures that when write requests are confirmed,
the same (updated) data are visible to all subsequent read re@yestsronous replication
usually ensures strong consistency, but its use can be unaccept®dd&QL data stores
because of the latency it introduces. Among the observed NoSQL data storegpheiltioa,
HBase is the only one exclusively supporting strong consistendye gvéntual consistency
model, changes eventually propagate through the system giveciesffime. Therefore,
some server nodes may contain inconsistent (outdated) data for a péridche.
Asynchronous replication, if there are no other consistency-ensuringamsais, will lead to
eventual consistency because there is a lag between writentatndn and propagation.
Because NoSQL data stores typically replicate asynchronaustlyeventual consistency is
often associated with them, it was expected that the reviewe@INaSlutions provide
eventual consistency. Nevertheless, as illustrated in Table 2 agjoetynof these data stores
allow configuration of the consistency model using alternate densisensuring
mechanisms; however, choosing strong consistency may have a performarate impa

The data stores with consistent hashing and masterless replicspecifically Voldemort,
Riak, and Cassandra, use a quorum approach in their consistency mottessapproach, a
read or write quorum is defined as the minimum number of repiasmust respond to a
read or write request for it to be considered successful androedfito the requestor. Even
though these data stores are designed for eventual consistencycathechieve strong
consistency by choosinigead quorum + write quorumarger than the number of replicas.

MongoDB can achieve strong consistency using two different technigusts.a connection
can be set to read-only from the master, which removes thestda¢s: ability to scale read
requests. The second option is to sewthiee concernparameter toReplica Acknowledgéd
which ensures that a write succeeds on all replicas befang benfirmed. This makes the
data store into a synchronous replication system and degrades its performance.

Finally, it is important to note that the NewSQL solutions analyrath the exception of
NuoDB, are strongly consistent, fully transactional data stores.

Concurrency control

Concurrency control is of special interest in NoSQL and NewS@. stares because they
generally need to accommodate a large number of concurrentasgevsry high read and/or
write rates. All the solutions studied facilitate concurrebgymplementing partitioning and

replication. However, this section focuses on concurrency contralraeans of achieving

simultaneous access to the same entity, row, or record on a single server node.



The main concurrency-control schemes can be categorized as pBssonioptimistic.
Pessimistic concurrency contrar pessimistic lockingassumes that two or more concurrent
users will try to update the same record or object at the BamaeTo prevent this situation, a
lock is placed onto the accessed entity so that exclusive ascgssranteed to a single
operation; other clients trying to access the same data raitgintil the first one finishes its
work. The entity that is locked depends on the underlying data modeexBorple, key-
value stores lock records consisting of key-value pairs, column-fataitgs lock rows, and
document stores enforce locking at document level. In graph datahzeaically in Neo4J,
locks are acquired on nodes and their relationships. BerkeleyDB andgoi8 implement
readers-writer locks which allow either multiple readers tess data or a single writer to
modify them. Pessimistic locking techniques can lead to perfoerdegradation, especially
in write-intensive scenarios.

Optimistic concurrency contrar optimistic lockingassumes that conflicts are possible, but
rare. Therefore, instead of locking the record, the data stockshethe end of the operation
to determine whether concurrent users have attempted to modify the sardelfecoonflict

is identified, different conflict-resolution strategies can bedusuch as failing the operation
immediately or retrying one of the operations. Several of the slat@s investigated,
including Voldemort, Riak, HBase, CouchDB, Clustrix, and NuoDB, impleroptimistic
concurrency control witimulti-version concurrency contrdMVCC). In MVCC, when the
data store needs to update a record, it does not overwritedtdatal but instead adds a new
version and marks the old version as obsolete. Multiple versions agd,sbort only one is
marked as current. With the MVCC approach, a read operation sedatéhthe way they
were when it began reading, even if the data were modified or diégtether operations in
the meantime.

A number of NoSQL solutions allow applications to implement optimistncurrency
control by providing primitives such afieck and seCAS) in Memcached and Couchbase
Server. The CAS method ensures that a write will be performeadifonb other client has
changed the record since it was last read. In Redis, theGMATrimitive performs a similar
function. Optimistic concurrency-control implementations use variapproaches to
determine whether a record has been changed. For example, Methcges version stamps
and AmazonDB incrementing version numbers. Often it is hard tatéth approach a data
store uses internally to achieve check and set functionality bssety on the system
documentation.

Cassandra has been recognized for its ability to handle large rauofherite requests [19],
and therefore architecture characteristics contributing tsdbDdsa’s write scalability are
highlighted. Although the storage structure in typical relationtdldeses and a number of
NoSQL data stores including MongoDB and CouchDB relies on a 8-Tassandra takes
advantage of a log-structured merge tree. When a write occussar@@ha stores the changes
in two places: in the memory structure called memtable, and inaifmenit log on disk by
appending to the existing data. When the memtable reachessholdrethe memtable data
are flashed to SSTables (sorted string tables) on disk, andirdatiae commit log
corresponding to the flushed memtable are purged. When flashing thalreentassandra
writes entire sectors to disk using sequential I/O instead offymaglirows in place. This
approach eliminates locking of data on disk for concurrency contralibecnrite operations
only append data and do not modify existing data on disk. Consequentsan@eas is
especially suitable for applications with high write volume or thibse require very fast
writes.



Some of the NewSQL solutions analyzed also implement innovative appsoao
concurrency control. For example, Google’s Spanner uses a hybrid eppmoahich read-
write transactions are implemented through read-write locks, bdtaely transactions are
lock-free. This is possible because Spanner stores multiple vediaeta, and a read
transaction is basically a read at a “safe” timestampth@rontrary, VoltDB implements an
interesting alternative to concurrency control. This data steuarees that the total available
memory is large enough to store the entire data store. Moreba&p iassumes that all user
transactions are short-lived and can be very efficiently ex¢@wer in-memory data. Based
on these assumptions, all transactions are then executed sequémtalbngle-threaded,
lock-free environment.

Security

Security is an important aspect of data stores that is overlobkednany NoSQL
implementations. In this section, the data stores surveyed are enimpitin regard to the
following features:

» Authentication: mechanisms that enable verification of the identity of usersrevho a
accessing the data. This is usually achieved through a password assoclatedseits
login, but more sophisticated mechanisms are also possible, such as useatesttFior
many enterprises, an important requirement for authentication is thetgagactegration
with enterprise user-directory systems such as Lightweight Dire8tmogss Control
(LDAP) / Active Directory and Kerberos servers.

» Authorization: this refers to the capability to ensure access control to #istded
resources. Authorization is usually performed through association of each tisarset
of permissions. For example, some data stores might require specific pernfsreasl
and write requests on tables, creation of users, and execution of administratia$unc
Authorization information might also be included in directory systems.

» Encryption: this refers to mechanisms that encrypt data so that they canead iy
attackers and others unauthorized parties. A complete encryption solution should be
present in at least three different levels:

o Data at rest: data stored on disks can be read if an attacker has accessrigethe
file systems. A data-at-rest encryption mechanism guarantees thagttiedasa are
automatically encrypted when written to these files and unencrypted whexeaeir

o Client-to-server communication: Most data stores allow remote conneofiossrs
and applications so that stored data can be obtained. This data flow must also be
encrypted to guarantee private and secure communication.

0 Server-to-server connections: because many NoSQL and NewSQL datansiocks
some sort of replication and distributed processing functionalities, communications
among the server nodes can also be eavesdropped to obtain unauthorized access to
data. A server-to-server encryption mechanism guarantees that thesedlovot be
read.

* Auditing: auditing functionalities are usually related to the creation otidi @ail that
logs records of events that occurred in a data stores. This is especiallamhport
forensic analysis of security events. Many security standards, such-&SBJ5b1] and
HIPAA [52], require the existence of audit trails.

Table 3 shows a summary of the security features found in the solutions survesearthi
mentioning that very often the system documentation mentions nothing about some of the



criteria analyzed, especially server-to-server communication andetat encryption. In
these cases, the corresponding cells in the table contain “NA”



Table 3 Security features

NoSQL Data Stores Encryption Authentication Authorization Auditing
Data at Rest Client/Server Server/Server
Key-Value stores Redis No No No Admin password sent in clear text foradmin ~ No No
functions. Data access does not support
authentication
Memcached NA, Memcache does No No Binary protocol supports Simple Authentication iNo No
store data on disk Security Layer (SASL) authentication
BerkeleyDB Yes, the database needSA, embedded data store No No No No
to be created using
encryption
Voldemort Possibly if BerkeleyDB No No No No No
is used as the storage
engine
Riak No REST interface supportsMultiple data-centre replication can beNo No No
HTTPS. done over HTTPS
Binary protocol is not
encrypted
Column Family Stores Cassandra Enterprise Edition only. Yes, SSL based Yes, configurable: all server-to-servéfes, store credentials in a system table. Yes, similar to the SQL Enterprise Edition only. Based on log4j
Commit log is not communication, only between Possible to provide pluggable implementations GRANT/REVOKE approach.  framework.
encrypted datacentres or between servers in the Possible to provide pluggable Logging categories include ADMIN, ALL,
same rack implementations AUTH, DML, DDL, DCL, and QUERY.
Possible to disable logging for specific
keyspaces
HBase No, planned for future Yes Communication of HBase nodes with Yes, RPC API based on SASL, supporting Yes, permissions include read, No, planned for future release
release the HDFS and Zookeeper clusters caiKerberos. write, create and admin.
secured. REST API uses a HTTP gateway, which Granularity of table, column
Not clear whether the HBase nodes authenticates with the data store as one single usenjly, or column
communicate via a secure channel and executes all operations on his/her behalf
Amazon DynamoDB No Yes, HTTPS NA Integration with Identity and Accesaridgement Allow the creation of policies thatntegrates with Amazon Cloud Watch
(IAM) services. The requests need to be signed associate users and operations @ervice. Access information about latencies
using HMAC-SHA256 domains. for operations, amount of data stored, and
Possible to define policies for  requests throughput
temporary access
Amazon SimpleDB ~ See DynamoDB No
Document Stores MongoDB No, a third-party partneryes, SSL-based Yes Yes, store credentials in a sy=idection. Yes, permissions include read, No
(Gazzang) provides an REST interface does not support authentication.read/write, dbAdmin, and
encryption plug-in Enterprise Edition supports Kerberos userAdmin.
Granularity of collections
CouchDB NA Yes, SSL-based Possible using HTTPS connections HEEP authentication using cookies or BASIThree levels of users: server  No
method. admin, database admin, and
Oauth supported database member.
Complex authorization can be
done in validation functions
Couchbase Server  No No No, planned for future release Yes, SASL autherticatieach bucket is No No
differentiated by its name and password.
REST API for administrative function uses HTTP
BASIC authentication
Graph databases Neo4J No Yes, SSL-based No No, developers can create a SeauetgRd No No

register with the server




Hyper GraphDB No NA, embedded data store No No No No

Allegro Graph No Yes, HTTPS NA Yes Yes, permissions include read, A structure audit log can be used to record
write, and delete. specific changes.
Predefined user attributes are usddt clear what types of changes are log
to define special administration nor how to customize this process
capabilities

NewSQL VoltDB No No No Yes, users are defined in a deployment file that Yes, roles are defined at the Yes, logging categories include
needs to be copied to each node schema level, and each stored connections, SQL statements, snapshots,

procedure defines which roles arexports, authentication / authorization, and
allowed to execute it others

Spanner NA

Clustrix NA Yes NA Yes, SQL-like Yes, SQL-like NA

NuoDB Native store does not Yes Yes Yes, SQL-like Yes, SQL-like Yes, logging categaniekide SQL

support it. statements, security events, general

Theoretically, it could
use a pluggable store tt
supports it

statistics, and others




Generally speaking, it is possible to affirm that the sgcteatures of NoOSQL solutions are
not as mature as those included in traditional RDBMSs. Many solutsuich as Redis,
Memcached, Voldemort, and Riak, are designed to be used in secure kedtwor
environments only. Therefore, they assume that it is the netwdrkinstrator's
responsibility to ensure that only authorized applications have acctdss data store, using
mechanisms such as firewalls, operating system configuratiortbe cidoption of virtual
private networks (VPN). In these cases, there is no fine-graicezbs control to the data
store. Furthermore, audit features are not present in most aageshen present, they are
very simple and not customizable. For example, VoltDB can lodgnalbtieries executed on
its data, but it cannot constrain this logging to only a subset of the tables.

Another interesting observation is that MongoDB and Cassandra offdroadtlisecurity

functionalities in their enterprise editions, acknowledging the taat security is a
particularly relevant concern for large companies. For instanta;atlaest encryption and
auditing functionalities are available only in Cassandra Enterprise Edition.

Among the NewSQL solutions, Clustrix and NuoDB use the authorizatidmathentication
schemes of traditional RDBMS by supporting the GRANT / REVGiEements. In its turn,
VoltDB implements access control to execution of stored procedamesno information
regarding Google Spanner security could be found.

Cloud data management systems may also need to handle othéy setated concerns,
such as legal issues associated to the data location, and the complete disersdlivé data
[53], but they are out of scope of this survey.

Use cases

Due to the diversity of NoSQL and NewSQL solutions, making the chafidhe most

appropriate data store for a given use case scenario is langma task. This section
discusses some general guidelines that can be used in thisnthgh@avs examples of
applications that use different data stores. The following discussiorostly focussed on
selecting a specific data model over others, but when relevantalsee examine the
appropriateness of specific data stores.

Key-value stores

Generally speaking, key-value data stores are appropriasednarios in which applications
access a set of data as a whole using a unique value aytlsa#lalage and Fowler [15] use
three examples for this category: storing Web session infammatiser profiles and
configurations, and shopping cart data. In all three cases, theadatalways accessed
through user identification and are never queried based on the daatcdhie Web session
and shopping cart examples are also representatives of anotheordm@yrvalue use case:
the stored information is needed for a limited period of time ahky @uration of the user
session). Indeed, in many simple Web applications, these types ofamatept in the
application server's memory because of their transient natuvertieless, the use of a key-
value store may be appropriate in scenarios where multiple applicservers access the
same session information. This is a commonly used strategyake @application servers
stateless and to implement high availability and scalability requirements



Similarly, key-value data stores are useful in content providing cgtigins. The Riak
documentation [54] uses as examples of this use case an advemtipdgiform that provides
ads based on a campaign identifier and a content provider applidaioretrieves images
and videos based on IDs.

Key-value data stores are also suitable for object cachingeciely in-memory
implementations. In this case, they are used to store thesredufirocessing intensive
requests such as database queries, page rendering, and AFccadlsample, Memcached is
used as a caching layer for large clusters of MySQL ds¢ésb&n Facebook [55]. The
LinkedIn service also uses a key-value data store (Voldern®r) @ache on top of their
primary storage and also to store the results of intensiveitalgps [43]. The use of these
data stores as a caching layer is very common and is often cedsale integral part of
cloud applications [56,57].

It is important to note that some key-value data stores prowidganeed functionalities that
may increase their applicability. For example, Redis canpreesstored values as specific
data types, such as lists, sets, and strings, and also prowadgspmmitives to manipulate
these types. On the other hand, Riak enables the integration cif ss@ines to index the
stored values and the attachment of tags on keys to facilitaigleoosearches. These extra
functionalities are also relevant when choosing the most approgegtealue store for a
particular scenario.

Finally, it is essential to recognize that key-value datees have limitations when dealing
with:

» Highly interconnected data, because all relationships need to be exphcitliet! in the
client applications.

» Operations that manipulate multiple items, as data are often accessed sisigig key
and most data stores do not provide transactional capabilities.

Document stores

Document stores can be seen as key-value stores in which thesvabieompletely opaque
and therefore can be examined [15]. As mentioned in the “Data Medelion, these data
stores manage data that can be represented as documents, anhidelf-describing

hierarchical data structures which may contain nested olgedtdist attributes and do not
require adherence to a fixed schema.

The first use cases for document stores are for applicationsgleath data that can be
easily interpreted as documents, such as blogging platformoateht management systems
(CMS). Both Sadalage and Fowler [15] and the MongoDB documentatigrug@sSthese
applications as canonical examples. A blog post or an item in a @¥Sall related content
such as comments and tags, can be easily transformed into a dofommenteven though
different items may have different attributes. For exampigges may have a resolution
attribute, while videos have an associated length, but both shaseamhauthor attributes.
Moreover, these pieces of information are mainly manipulatedg@egates and do not have
many relationships with other data. Finally, the capability toygdecuments based on their
content is also important to the implementation of search functionalities.



A second significant use case for document data stores itoforgsitems of similar nature
that may have different structures. For example, document tiats <an be used to log
events or monitor information from enterprise systems. In this, @@sh event is represented
as a document, but events from different sources log different ifformdhis is a natural
fit for the flexible document data model and enables easy extesim@mw log formats. This
contrasts with the relational approach, in which a new table nedmscreated for each new
format or new columns needs to be added to existing tables. Asaaple, Liuet al. [58]
used CouchDB for storing and analyzing log data from a Phatfas a Service (PaaS).
Similarly, document data stores have also been used to stoser seetwork data, as
suggested by Ramaswarmatyal.[59].

Document data stores have also been chosen in scenarios in whicldeviglopment
productivity and low maintenance cost are essential. The fleyilwlitthe data model
mentioned in the previous paragraphs, in tandem with easy mappinguoheits to object
oriented constructs [60], makes these data stores especiakyl doit fast application
development. Moreover, many modern applications provide services using iRteSaces
based on JSON representations that can be directly mapped to document data stores.

Finally, it is also worth mentioning that CouchDB has beesdua scenarios, such as in
Havlik et al. [61], which specifically explore its off-line replication cédaies. CouchDB
allows the co-existence of multiple instances of a databaseahdte updated independently
and be synchronized only when the instances can communicate witho#ech This
characteristic is explored in applications where servers a&mtshre not always on-line and
also to provide low latency and local data access to remote clients.

Document data stores have similar limitations to key-value statas, such as the lack of
built-in support for relationships among documents and transactional iopsratvolving
multiple documents.

Column-family stores

Due to differences in the data models of the analyzed columnyfatoiles, the use cases for
this category will be discussed in two groups. The first group centiata stores which do
not use the column-family concept, namely SimpleDB and DynamoDB, and the geoopd
consists of HBase and Cassandra.

SimpleDB and DynamoDB are both based on a schema-free tabulal, modéich each
row can have different columns and a column can possibly contain marerteavalue. The
expressiveness of this model is similar to the document-store nimdekith the additional
limitation that nested objects are not allowed. Therefore, Siipland DynamoDB are
appropriate for use cases comparable to those mentioned in the ps®gbas - document
stores. In addition, both data stores are managed services, whichtimeakesspecially
suitable for scenarios where the users want to avoid the cosbamglexity of managing a
data store.

Regarding the second group of column-family stores, both HBaseCamssandra have
flexible data models, and it is difficult to choose only a f@pli@ations as representatives of
their use cases. Sadalage and Fowler [15] cite event logging, &M®logging platforms as
column-family use cases, which are once again similar to docwstaeetexamples. On the



other hand, we opt to show applications and benchmarks which are dowgradaich help to
show the strengths and limitations of these data stores.

As mentioned in the “Concurrency Control” section, Cassandra itassttae optimized for
handling a large number of write requests, and different benchmavks donfirmed this
capability. In Coopeet al. [62], Cassandra achieved the highest update throughput on an
update heavy workload in comparison to HBase, MySQL, and Yahoo's PNBJ]S
Similarly, Rablet al. [64] showed that Cassandra can achieve good throughput on 50% / 50%
read-write workloads and 99% write workloads, and most importantlysezde linearly as a
function of the number of nodes in the cluster. On this benchmark, HBassirhiar
scalability results, but at the cost of a much smaller throughpeitin addition, both Cooper

et al. [62] and Rablet al. [64] stated that generally HBase can handle write requasis
latency orders of magnitude faster than Cassandra, even though thageopappens when
comparing read latency. Nevertheless, a different performamoparison performed by
Altoros Systems [65] showed that Cassandra and HBase hadr datelecy and throughput

in both reads and writes and that HBase had slightly better results in mast case

The flexibility, scalability, and high performance of theseadstbres, in conjunction with
MapReduce support, make them a good fit for analytics scenariosx&mple, Changt al.
[20] demonstrated the use of BigTable in two applications thategresentative of this use
case: Web analytics and personalized search. In the first djgpljoaebmasters instrument
their pages to keep track of how visitors use them. All user adiensgged to the database,
and a MapReduce task is run to aggregate and transform thesetadatiatistics useful for
the Web page administrator. In the personalized search applicdtiasen searches and
actions in diverse Google services are stored, and a MapRedkagetesates profiles that
are used to personalize the user interaction experience.

It is also worth mentioning that Cassandra was originally dedigo fulfill the storage

requirements of the inbox search application [19], which Facebook’s caensse to search
for conversations with specific friends or using specific terirhis application also has a
write-intensive workload, but at the same time requires lowdataesults when these
indices are queried. More recently, Facebook has revealedhthatare using HBase in
applications that require high write throughput and efficient randzadsr [55], but they do

not discuss the limitations of Cassandra in addressing theseeraquis. They justify the

choice of HBase based on their confidence in addressing missinigeteasing their own

engineering team and in the resiliency of the system against disk failures

Finally, the limitations of column-family data stores ammikir to those of other NoSQL
categories, such as the lack of built-in support for relationshipsranslactional operations
that involve more than one row. In addition, HBase and Cassandratavery appropriate

for scenarios where queries are highly dynamic because ehamgueries may impact the
column-family design.

Graph databases

Graph databases are a suitable choice for the following bfpesplications: location-based
services, recommendation engines, and complex network-based appdicatioding social,
information, technological, and biological networks [15,66]. For instance, lasation
history data which are used to generate patterns that aespeiople with their frequently
visited places could be efficiently stored and queried using Neoltation-based socio-



spatial network applications [67]. Similarly, recommendation-basstémsg in which users
are provided directed content based on their preferences couldcoendif built using graph
databases. As an example, news broadcasters could create egasgghglobal profile of a
user, link it with their preferences for events and news, aedtefély feed personalized RSS
feeds to users using a graph database like Allegrograph [68].

Moreover, graph databases are being increasingly used sinces¢hefrlarge social
computing platforms like YouTube, Flicker, LiveJournal, and Orkut [69].s&h&plutions
offer graph data storage and a graph processing system which proxddgsg on nodes
and edges, making them very efficient in storing closely rbldéga and performing highly
complex queries similar to those involving multiple joins in relatiodatabases [69].
Another interesting application of graph databases was proposed bydS8ri@ma [70] for
memory leak detection in distributed applications. To detect meteaks, a leak cause
analysis was required, which involved finding the shortest path fromntpaMijects to
garbage collection roots with the intention of detecting the olbgsgionsible for holding the
references which are no longer used. However, their use caseedemuplementing custom
graph database solutions over existing ones due to the high rediarstertest-path search
over other kind of traversals.

NewSQL

Generally speaking, the use of NewSQL data stores is appeogmiascenarios in which
traditional DBMS have been used, but which have additional scalaaildyperformance
requirements.

First, NewSQL data stores are appropriate for applicatiohnkhwrequire the use of
transactions that manipulate more than one object, or have strongteocgirequirements,
or even both. The classical examples are applications in tiamcial market, where
operations such as money transfers need to update two accountsataaiy and all
applications need to have the same view of the database. Mbst ahalyzed NoSQL data
stores do not support multi-object transactions, and many of thenvemtually consistent
solutions, which make them inappropriate for these use cases.

Second, the relational model is appropriate in scenarios whemataestructure is known
upfront and unlikely to change. The overhead of creating a schefoaetmnd is
compensated by the flexibility of querying the data using SQQ],[a very powerful
mechanism that can be used to implement almost any kind of data manipulation.

Finally, when selecting the most appropriate solution for an aalic it is essential to
consider the investment already made in tools and personneingraim this regard,
NewSQL data stores are especially attractive becauseathegompatible with most DBMS
tools and use SQL as their main interaction language.

Opportunities

Although NoSQL and NewSQL data stores deliver powerful capabilithe large number
and immense diversity of available solutions make choosing the agpeogolution for the
problem at hand especially difficult. Moreover, such diversity preseh@llenges in
obtaining a perspective on the field and establishing directionsitioref research. Analysis



and comparison of a number of NoSQL and NewSQL solutions in this sasdyevealed the
following opportunities for future research in the field:

A common terminology needs to be established, at least for data B&atieg the same data
model. Different terminology makes comparison of solutions challgngin example of a
terminology discrepancy is Riak’s quorum read and write requebtsh\are referred to as
routing parameters in Voldemort. Establishing a common terminololjyetionly help in
comparing different data stores, but will also help in understandimgdncepts of a new
data store when a user is switching between different NoSQL products.

It is important to create a clear distinction between the temsistencyas used in the ACID
acronym andonsistencyas used in “eventual consistency”. The overloading of this term has
led to the general belief that an eventual-consistency datacstonot be ACID, which Bailis

et al.[71] have already shown is not true.

Possibilities for establishing a standard SQL-like queryinghai@sm need to be explored, at
least for data stores having the same data model. Today, with Nd&&ktores, performing
even a simple query requires significant programming expeatideoften solution-specific
code. Therefore, switching to another data store may requirgiolgatihe majority of the
application code. Solutions such as Hive [72] have provided a great hiip diréction, but
their use is still limited to only a few data stores suchHBRase and Cassandra. Additionally,
some NoSQL data stores such as Cassandra, MongoDB, and Neo4J patvielg SQL-
like querying. Standardizing querying mechanisms based on the d&gmluf their data
models would increase adoption of NoSQL in practice and would easationgamong
different solutions.

» Standardized performance benchmarking is required. The popularity of NoSQLfatores
cloud data management has been growing, especially in the Big Data domaavel{ow
little has been done to compare the performance of different solutions under different
processing loads. Although there have been some attempts to establish benghmarkin
standards, for example the Yahoo Cloud Serving Benchmark (YCSB) [62], the adoption of
these standards in practice has been limited. Establishing a benchmarkinglsiamdia
help in comparing different data stores with a view to selecting one for euerti
application.

* Another consideration arises from modern-day business needs. Businessey now rel
heavily on business intelligence (BI) tools. Although an analysis platforeddait [73]
provides some basic analytical functionalities for NoSQL data stores)ot yet as
powerful as the Bl tools available for RDBMSs. Therefore, Bl tools neecbtade
support for NoSQL data stores to obtain the most benefit from them.

» Sophisticated security and privacy provisions are needed. The review ofuh&y/se
properties offered by NoSQL solutions has revealed that in comparison toralati
databases, the security capabilities of NoSQL solutions are limitedxipéxted that
future development in this area will increase adoption of NoSQL in practice.

* Use of more than one NoSQL data store in a single application needs to bedeXime
consideration arises from the fact that NoSQL is not just one product, but encompasses
several different data stores, each offering features specific tti@fzartype of use case
or data need. Therefore, to cover a wider range of application scenarios, a salgiion m
need to incorporate more than one NoSQL data store to address the need for different
kinds of data. Sadalage and Fowler [15] use the paiyglot persistenceo refer to the
use of different data stores for different purposes within the same applicatian. As



example of this type of work, Atzeat al.[74] recently proposed a common interface for
accessing key-value, document, and column-family data stores.

This list includes the prominent opportunities and illustrates that gretential for future
research in this domain. It can be expected that further rbésdagether with the use of
NoSQL and NewSQL in practice, will lead to emergence of medesolutions for specific
requirements. It is also important to note the significance ctidentation and a user
community: better documentation, a more active user community, or rbajh be the
deciding factors because they can effectively support applicatiaiogenent and ease data
store administration.

Conclusions

In recent years, cloud computing has emerged as a computationagpathdi can be used
to meet the continuously growing storage and processing requirementsday’s
applications. This study has focused on the storage aspect of clopdtogmsystems, in
particular, NoSQL and NewSQL data stores. These solutions hawnfg@shemselves as
alternatives to traditional relational databases, capable of harllge volumes of data by
exploiting the cloud environment.

Specifically, this paper has reviewed NoSQL and NewSQL datasswith the objectives of
providing a perspective on the field, providing guidance to practitionersesedrchers to
choose appropriate storage solutions, and identifying challenges aodumties in the

field. A comparison among the most prominent solutions was performed mmber of

dimensions, including data models, querying capabilities, scaling, andtgattributes. Use
cases and scenarios in which NoSQL and NewSQL data storesbbamneused were
discussed and the suitability of various solutions for differerg sétapplications was
examined. The discussion of the use cases, together with the conpafridata stores, will
assist practitioners in choosing the best storage solution foneeiis. In addition, this work
has identified challenges in the domain, including terminology dtyeasd inconsistency,
limited documentation, sparse comparison and benchmarking criterigja@ammaturity

of solutions and lack of support, and non-existence of a standard query language.
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