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Mandelbrot Polynomials
Mandelbrot polynomials are de�ned by p0(ζ) = 0
and for k ≥ 0 by

pk+1(ζ) = ζ (pk(ζ))
2
+ 1 .

Properties of pk(ζ)
• The degree of pk(ζ) for k > 0 is 2k−1 − 1.

• The roots of pk(ζ) are periodic points of the
Mandelbrot set with period k.

• The coe�cients of pk(ζ) when expressed in the
monomial basis 1, ζ, ζ2, and so on, are nonneg-
ative integers.

• Derivatives are can be computed from the re-
currence relation by p′0(ζ) = 0 and for all k ≥ 0
by

p′k+1(ζ) = pk(ζ) (pk(ζ) + 2ζp′k(ζ)) .

• pk(ζ) and p′k(ζ) can be simultaneously evalu-
ated via their recurrence relations at a cost of
O(k − 1) operations.

Results
The aim of this work was to compute the roots
of the polynomials pk(ζ), with the ultimate goal
of computing all 220 − 1 = 1, 048, 575 roots of
p21(ζ) shown in Figure 1. Parallel eigenvalue com-
putations were run on Sharcnet taking approxi-
mately 31 serial computing years.

Figure 1: Roots of p21(ζ)

Monomial Basis Coefficients
Theorem 1. The coe�cients of pk(ζ) expanded in

the monomial basis contain both 1 and a number

larger than 22
k−3

, for k ≥ 3. That is, the coe�-

cients of pk(ζ) in the monomial basis grow doubly

exponentially fast with k.

Thus the condition number for evaluation of pk(ζ)
in the monomial basis

Bk(ζ) =

2k−1−1∑
i=0

|ci||ζi| ,

where the c′is are the monomial basis coe�cients,
must also grow doubly exponentially fast with k.
This shows the ill-conditioning of the monomial
basis in this case.

Location of Roots
By considering the perturbed polynomial

pk,ε(ζ) = ζ (pk−1(ζ))
2
+ ε2

we can see the relationship between the location
of the roots of pk(ζ) and pk−1(ζ). Figure 2 shows
the level curve |p5(ζ)| = 1, the roots of p5,0(ζ) as
circles, the roots of p5(ζ) as squares and the small
black dots are the roots of p5,ε(ζ) as ε varies from
0 to 1.
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Figure 2: Level curve |p5(ζ)| = 1 and locations of
roots of p5,0(ζ), p5(ζ) and p5,ε(ζ) with ε ∈ [0, 1]

The complex roots of pk(ζ) can be seen to be very
close to the roots of pk−1(ζ), this is not surprising
as the roots tend to cluster near the boundary of
the Mandelbrot set.

Mandelbrot Matrices
The Mandelbrot polynomials can also be gener-
ated as the characteristic polynomials of a fam-
ily of recursively constructed upper Hessenberg
matrices, Mk, de�ned as follows: let rk =[
0 0 · · · 1

]
and ck =

[
1 0 · · · 0

]T
be

row and column vectors of length 2k−1 − 1. Put

M2 =
[
−1

]
and

Mk+1 =


Mk −ckrk
−rk 0

−ck Mk


for all k > 1. It can be shown by repeatedly ap-
plying Laplace expansion on the 2k−1th column of
(ζI−Mk) and the resulting submatrices that

det (ζI−Mk) = pk(ζ) .

Thus the eigenvalues of Mk are exactly the zeros
of pk(ζ) that we wish to compute.

Krylov Based Solvers
• For values of k > 13 dense eigenvalue methods
become computationally intractable.

• Mk and ζI−Mk are both very sparse, with 2n−
1 and 5/2n− 3/2 nonzero entries respectively.

• We can use Krylov based eigenvalue techniques
to locate the eigenvalues of Mk near a complex
shift σ if we are able to solve (σI −Mk)x = b
e�ciently.

• The roots ξk−1,j 1 ≤ j ≤ 2k−2−1 of pk−1(ζ) are
close to the roots of pk(ζ), and thus we can use
these as shifts σ for a Krylov based eigenvalue
solver.

LU Decomposition
Here we develop the LU decomposition of the re-
solvent matrix (σI−Mk). Firstly let:

Pk =

[
I

1

]
then factor the permuted matrix

LkUk = Pk(σI−Mk)

where Uk is unit-upper triangular and Lk is lower
triangular.

LU Decomposition (continued)
Uk can be de�ned as follows: let r̂k =[
0 0 · · · 1

]
and ĉk =

[
1 0 · · · 0

]T
be row and column vectors of length 2k−1, and
Ûi ∈ C2i−1×2i−1

by

Ûi+1 =

 Ûi σr̂Ti ĉ
T
i + ĉir̂i

Ûi

 , Û1 = 1 .

The LU factors are then

Uk =



Û1 σr̂T1 ĉ
T
2

Û2 σr̂T2 ĉ
T
3

Û3
. . .

. . . σr̂Tk−2ĉ
T
k−1

Ûk−1



Lk =

 I
I

`1 · · · `k−1


where the `i's are blocked conformally with the
Ûi's. The `i's are de�ned as follows: let `1 = σ+1
and for 2 ≤ i ≤ k − 1

`iÛi =
(
r̂i − `i−1σr̂

T
i−1ĉ

T
i

)
.

The cost of one linear solve using this LU decom-
position is 5 · 2k−2 − k − 2 operations.

Largest Roots of pk(ζ)
It was shown in [1] that

pk

(
−2 + 3

2
θ2 · 4−k

)
=

−cos θ+
(
−1

8
θ3 sin θk + θ2b(θ)

)
4−k+O(4−2k)

where

b(θ) = −1

2
+

3

8
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18
θ4 +

127

43200
θ6 + · · ·

satis�es

b(θ) = 4 cos
1

2
θ · b

(
1

2
θ

)
+

1

8
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3

2
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1

2
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This approximately locates several zeros of pk(ζ),
near θ = (2` + 1)π/2, so long as (2` + 1)π/2 <
O(2k/4).
Explicitly the zeros are near

zk,` = −2 +
3

2

(
(2`+ 1)π

2

)2

4−k +O(4−2k) .

Interlacing
The largest roots have a curious interlacing prop-
erty: between every root of pk(ζ) there are two
roots of pk+1(ζ), as can be seen in Figure 3.
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Figure 3: Plot of p10
(
−2 + 3

2θ
2 · 4−9

)
in black and

p9
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)
in blue
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Mandelbrot map iterations

Figure 4: Iterating the Mandelbrot map z 7→ z2+c
starting from the critical point z = 0 with the
parameter c being the roots ξ21,j of p21(ζ)


