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INTERLACING

Mandelbrot polynomials are defined by py(¢) = 0
and for £ > 0 by

9 Pri1(¢) = C(pr(C)" +1.

PROPERTIES OF py(()

e The degree of pi(¢) for k > 01is 2F~1 — 1.

e The roots of pi(() are periodic points of the
Mandelbrot set with period k.

e The coefficients of px({) when expressed in the
monomial basis 1, ¢, ¢?, and so on, are nonneg-
ative integers.

e Derivatives are can be computed from the re-

currence relation by p((¢) = 0 and for all £ > 0
by

Pr+1(€) = pr(¢) (pr(¢) + 2¢p1(C)) -

e pi(¢) and p) (¢) can be simultaneously evalu-
ated via their recurrence relations at a cost of
. O(k — 1) operations.

Qoasis in this case.

Theorem 1. The coefficients of pr(C) expanded in
the monomaal basis contain both 1 and a number
larger than 22k_3, for k > 3. That is, the coeffi-
cients of pr(C) in the monomial basis grow doubly
exponentially fast with k.

Thus the condition number for evaluation of pg ()
in the monomial basis

gpe—L |

> adl¢’]

=0

Br(¢) =

where the c,s are the monomial basis coefficients,
must also grow doubly exponentially fast with k.
This shows the ill-conditioning of the monomial
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The aim of this work was to compute the roots
of the polynomials pg((), with the ultimate goal
of computing all 22° — 1 = 1,048,575 roots of
p21(C) shown in Figure 1. Parallel eigenvalue com-
putations were run on SHARCNET taking approxi-
mately 31 serial computing years.

Figure 1: Roots of pa1(C)

\_

By considering the perturbed polynomial

Prc(€) = ¢ (pr—1(€))* + €2

we can see the relationship between the location
of the roots of px(¢) and pr_1(¢). Figure 2 shows
the level curve |p5(¢)| = 1, the roots of p5o(¢) as
circles, the roots of p5(() as squares and the small

black dots are the roots of ps .(¢) as € varies from
0 to 1.
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Figure 2: Level curve |p5(¢)| = 1 and locations of
roots of p5,0(C), p5(¢) and ps (¢) with € € [0, 1]

The complex roots of pi(() can be seen to be very
close to the roots of pi_1((), this is not surprising
as the roots tend to cluster near the boundary of
the Mandelbrot set.

The Mandelbrot polynomials can also be gener-
ated as the characteristic polynomials of a fam-
ily of recursively constructed upper Hessenberg

matrices, My, defined as follows: let rp =
(0 0 1 Jander=]1 0 0 ]" be
row and column vectors of length 2¥=! — 1. Put
My =| —1 |
and
I Mk —CLTL |
Mgi1=1| —rp O
- _Ck Mk —

for all K > 1. It can be shown by repeatedly ap-
plying Laplace expansion on the 2¥~1¢h column of
((I — M) and the resulting submatrices that

det (CI — My) = pr(C) -

Thus the eigenvalues of My are exactly the zeros
\Of pr(C) that we wish to compute.
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e For values of £ > 13 dense eigenvalue methods
become computationally intractable.

e M, and (I—M;. are both very sparse, with 2n—
1 and 5/2n — 3/2 nonzero entries respectively.

e We can use Krylov based eigenvalue techniques
to locate the eigenvalues of M near a complex
shift o if we are able to solve (61 — Mg)x = b
efficiently.

e Theroots 1,1 <7< 2F=2 1 of pr._1(¢) are
close to the roots of px(¢), and thus we can use
these as shifts o for a Krylov based eigenvalue

\_ solver.

Kposition is 5282 — k — 2 operations.

U, can be defined as follows: let 1, =
[0 0 1]and & =[1 0 -~ 0]
be row and column vectors of length 2*~! and
Iji c CQi—1X2¢—1 by
. U; oilel + &t )
Ui = . , Up=1.
U;
The LU factors are then
[ U, oiTel |
U,  otdel
Uk — ﬁ3
oty o€
- - _
L, = I
RS lp_1 |

where the #;’s are blocked conformally with the

A

U,’s. The £,’s are defined as follows: let £ = o+1
and for 2 << k-1

Ezﬁz — (f‘z — Ki_la'f';f_lézr) S

The cost of one linear solve using this LU decom-
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Here we develop the LU decomposition of the re-
solvent matrix (oI — Mjy). Firstly let:

el

then factor the permuted matrix
LkUk — Pk(OI — Mk)

where Uy is unit-upper triangular and Ly is lower
triangular.
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It was shown in [1] that

Pk (—2 + 392 - 4"“) =

1
—cos 0+ (—gei” sin Ok + 92b(9)> 47+ 0472

where
1 3 1 127
b(f) = —= +20° — —p* + —¢°
(9) 2 * 8 18 * 43200 i
satisfies
1 1 1 1
b(0) = 4 cos 59 - b (59) + gﬁsine + g(:os2 59 :

This approximately locates several zeros of p((),
near # = (20 + 1)7/2, so long as (20 + 1)n/2 <
O(2F/4).

Explicitly the zeros are near

e 2
Zkp = —2+ ) <(2€+ M) 47F +0(47%).
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The largest roots have a curious interlacing prop-
erty: between every root of pi(() there are two
roots of px11(C), as can be seen in Figure 3.
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Figure 3: Plot of p1g (—2 4 562 - 47?) in black and
Kpg (—2 - %HQ : 4_9) in blue

MANDELBROT MAP ITERATIONS A

Figure 4: Iterating the Mandelbrot map z — z%+c
starting from the critical point z = 0 with the
parameter c being the roots 21 ; of p21(()
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