
Between and Within Group Variation

Intra Class Correlation (ICC or ρ)

Random Effect ANOVA

$$\rho = \frac{(MS_B - MS_W)}{[MS_B + (n_{cluster} - 1)MS_W]}$$

Unconditional Means or Intercept-only MLM model

$$\rho = \frac{\tau_{00}}{(\tau_{00} + \sigma^2)}$$

Unconditional Means or Intercept-only MLM model

Level 1:

$$y_{ij} = \beta_{0j} + e_{ij}$$

where β_{0j} is the mean for group j and e_{ij} (others use r_{ij}) represents residual individual differences from the mean of group j.

Level 2:

$$\beta_{0j} = \gamma_{00} + \mu_{0j}$$

where γ_{00} is the grand mean and μ_{0j} is the deviation of the group mean from the grand mean.

With substitution:

$$y_{ij} = \gamma_{00} + \mu_{0j} + e_{ij}$$

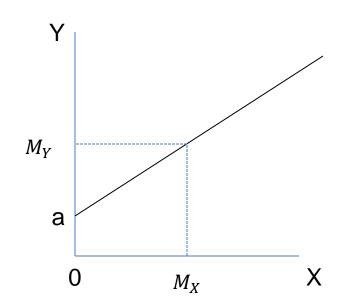
Unconditional Means or Intercept-only MLM model

$$y_{ij} = \gamma_{00} + \mu_{0j} + e_{ij}$$

$$\rho = \frac{var(\mu_{0j})}{var(\mu_{0j}) + var(e_{ij})}$$

$$\rho = \frac{\tau_{00}}{(\tau_{00} + \sigma^2)}$$

ICC and Design Effect


Design effect =
$$1 + (n_c - 1)\rho$$

 n_c = number of observations per cluster ρ = intraclass correlation

$$var_{eff} = var[1 + (n_c - 1)\rho]$$

$$n_{eff} = \frac{n_{total}}{[1 + (n_c - 1)\rho]}$$

Intercepts and Centering

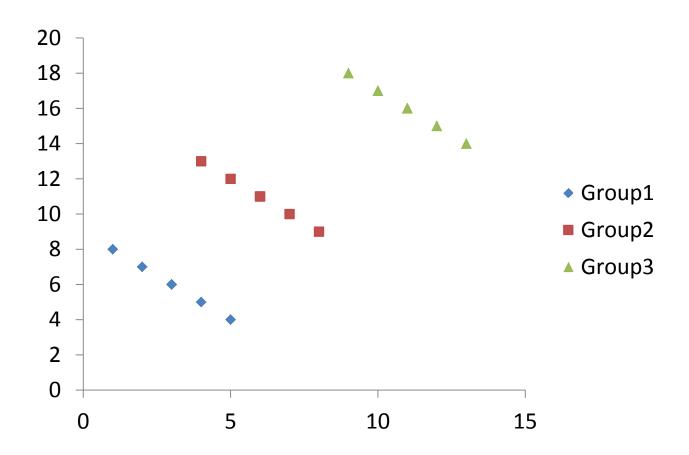
$$Y' = a + bX$$

$$a = Y' - bX$$

$$a = M_Y - bM_X$$

If M_X is 0 (centered), then a = M_Y

Group mean vs. grand mean centering


Ignoring Multilevel Structure

Aggregation

Disaggregation

Ecological Fallacy

Between and Within Groups Correlations

Example (from Joop Hox book on Multilevel Analysis, 2010)

DATA

Level 1: pupils (2000 in total)

Level 2: Classes (100 classes of approx 20 pupils each)

Outcome variable:

pupil popularity (scale 0-10)

Predictor variables at pupil level (level 1)

pupil gender (1=girl 0=boy)

pupil extraversion (scale 1-10)

Predictor variable(s) at class level (level 2) teacher experience (scale 2-25)

Data Structure and Syntax for Intercept-Only Model

```
TITLE: Popularity data using Mplus;
DATA:
  FILE IS "popular2.dat";
VARIABLE:
  NAMES ARE class pupil cons extrav sex texp
  popular popteach zextrav zsex ztexp zpopular zpoptch;
  USEVARIABLES are popular;
  CLUSTER IS class:
ANALYSIS:
  TYPE IS TWOLEVEL random;
  ESTIMATOR IS ML; !default is MLR
MODEL:
  %within%
                                 1 11 1 5 1 24 5.7 5 -.17031 .98881 1.48615 .45102 -.04308
                                 1 12 1 5 1 24 4.8 5 -.17031 .98881 1.48615 -.19996 -.04308
  popular;
                                 1 13 1 5 0 24 5 5 -.17031 -1.01081 1.48615 -.0553 -.04308
  %between%
                                 1 14 1 5 1 24 5.5 6 -.17031 .98881 1.48615 .30636 .66906
  popular;
                                 1 15 1 5 1 24 6 5 -.17031 .98881 1.48615 .66802 -.04308
                                 1 16 1 6 1 24 5.7 5 .62185 .98881 1.48615 .45102 -.04308
OUTPUT: SAMPSTAT;
                                 1 17 1 4 0 24 3.2 2 -.96248 -1.01081 1.48615 -1.35727 -2.17951
                                  1 18 1 4 0 24 3.1 3 -.96248 -1.01081 1.48615 -1.4296 -1.46737
                                 1 19 1 7 1 24 6.6 7 1.41401 .98881 1.48615 1.10201 1.3812
                                  1 20 1 4 0 24 4.8 4 -.96248 -1.01081 1.48615 -.19996 -.75523
                                  2 21 1 8 1 14 6.4 6 2.20617 .98881 -.04014 .95734 .66906
                                  2 22 1 4 0 14 2.4 3 -.96248 -1.01081 -.04014 -1.93592 -1.46737
                                  2 23 1 6 0 14 3.7 4 .62185 -1.01081 -.04014 -.99561 -.75523
                                  2 24 1 5 1 14 4.4 4 -.17031 .98881 -.04014 -.48929 -.75523
                                  2 25 1 5 1 14 4.3 4 -.17031 .98881 -.04014 -.56162 -.75523
                                  2 26 1 5 0 14 4 4 -.17031 -1.01081 -.04014 -.77861 -.75523
                                  2 27 1 4 1 14 3.8 5 -.96248 .98881 -.04014 -.92328 -.04308
                                  2 28 1 5 0 14 4.2 5 -.17031 -1.01081 -.04014 -.63395 -.04308
                                  2 29 1 6 1 14 5.1 4 .62185 .98881 -.04014 .01703 -.75523
                                  2 30 1 4 1 14 4.1 4 -.96248 .98881 -.04014 -.70628 -.75523
                                  2 31 1 6 1 14 4.6 5 .62185 .98881 -.04014 -.34462 -.04308
```

Intercept Only Model

SUMMARY OF DATA

Estimated Intraclass Correlations for the Y Variables

Variable	Intraclass Correlation	(0.695/(0.695	+ 1.222) = .362	
POPULAR	0.362				
MODEL RESULTS				Two-Tailed	
Within Level	Estimate	S.E.	Est./S.E.	P-Value	
Variances POPULAR	1.222	0.047	26.199	0.000	
Between Level					
Means POPULAR	5.078	0.087	58.394	0.000	
Variances POPULAR	0.695	0.108	6.421	0.000	

Influence of Design on Standard Error

Syntax including clustering

```
TITLE: Popularity data using Mplus;
DATA:
  FILE IS "popular2.dat";
VARIABLE:
  NAMES ARE class pupil cons extrav sex texp
 popular popteach zextrav zsex ztexp zpopular zpoptch;
 USEVARIABLES are popular;
  CLUSTER IS class:
ANALYSTS:
  TYPE IS TWOLEVEL random:
                                                        Syntax ignoring clustering
  ESTIMATOR IS ML; !default is MLR
MODET :
  %within%
                                                     TITLE: Popularity data using Mplus;
 popular;
                                                     DATA:
 %between%
                                                       FILE IS "popular2.dat";
 popular;
                                                     VARIABLE:
OUTPUT: SAMPSTAT CINTERVAL;
                                                       NAMES ARE class pupil cons extrav sex texp
                                                      popular popteach zextrav zsex ztexp zpopular zpoptch;
                                                       USEVARIABLES are popular;
                                                       !CLUSTER IS class:
                                                     ANALYSIS:
                                                       !TYPE IS TWOLEVEL random:
                                                       ESTIMATOR IS ML; !default is MLR
                                                     MODEL:
                                                       !%within%
                                                       popular;
                                                      !%between%
                                                       !popular;
                                                     OUTPUT: SAMPSTAT CINTERVAL;
```

Influence of Design on Standard Error

MODEL RESULTS including clustering

	•	_		
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Within Level				
Variances POPULAR	1.222	0.040	30.822	0.000
Between Level				
Means POPULAR	5.078	0.087	58.390	0.000
Variances POPULAR	0.695	0.107	6.489	0.000

MODEL RESULTS ignoring clustering

	Estimate	S.E. Est./S.E.		Two-Tailed P-Value
Means POPULAR	5.076	0.031	164.252	0.000
Variances POPULAR	1.910	0.060	31.623	0.000

Standard error lower than it should be

Influence of Design on Standard Error

including clustering

CONFIDENCE INTER	CONFIDENCE INTERVALS OF MODEL RESULTS						
	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
Within Level							
Variances POPULAR	1.120	1.144	1.157	1.222	1.287	1.299	1.324
Between Level							
Means POPULAR	4.854	4.907	4.935	5.078	5.221	5.248	5.302
Variances POPULAR	0.419	0.485	0.519	0.695	0.871	0.904	0.970

ignoring clustering

CONFIDENCE INTERVALS OF MODEL RESULTS							
	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
Means POPULAR	4.997	5.016	5.026	5.076	5.127	5.137	5.156
Variances POPULAR	1.755	1.792	1.811	1.910	2.010	2.029	2.066

Confidence intervals narrower than should be