Unconditional Means or Intercept-only MLM model

Level 1:

$$y_{ij} = \beta_{0j} + e_{ij}$$

where β_{0j} is the mean* for group j and e_{ij} (others use r_{ij}) represents residual individual differences from the mean of group j.

Level 2:

$$\beta_{0j} = \gamma_{00} + \mu_{0j}$$

where γ_{00} is the grand mean and μ_{0j} is the deviation between the group means and the grand mean.

With substitution:

$$y_{ij} = \gamma_{00} + \mu_{0j} + e_{ij}$$

Level 2 Model Addresses 3 Questions (Kahn, 2011)

- 1. What are the average intercepts and slopes across groups? (fixed coefficients)
- 2. How much do the intercepts and slopes vary across groups? (random coefficients)
- 3. How useful are group-level variables for predicting group intercepts and slopes?

Peugh (2010) Example

Table 1 Model summaries: cross-sectional examples.

Parameters	Unconditional	Level-1: fixed	Level-1: random	Interaction
Regression coefficients (fixed effec	ts)			
Intercept (γ_{00})	18.90 (.07) **	18.89 (.07) **	18.89 (.07)**	18.90 (.07) **
Student SES (γ_{10})	_	2.00 (.06) **	2.00 (.07) **	2.00 (.07) **
Student-to-Teacher Ratio (\gamma_{01})	_	_	_	10 (.01)**
Interaction (γ_{11})	_	_	_	04 (.02)**
Variance components (random effe	ects)			
Residual (σ^2)	18.67 (.25) **	17.16 (.23) **	16.97 (.24)**	16.97 (.24) **
Intercept (τ_{00})	4.18 (.28) **	4.41 (.28) **	4.45 (.28) **	4.15 (.27) **
Slope (τ_{11})	_	_	.54 (.21) **	.49 (.21)**
Covariance (τ_{01})	-	-	.68 (.19) **	.59 (.18)**
Model summary				
Deviance statistic	71,308.01	70,394.40	70,374.06	70,310.45
Number of estimated parameters	3	4	6	8

Parameter estimate standard errors listed in parentheses.

From: Peugh, J. L. (2010). A practical guide to multilevel modeling. Journal of School Psychology, 48, 85-112.

^{**} p<.01.

Peugh (2010) Example Random Coefficients (intercepts only in this example)

Level-1

In the example below we add a level-1 predictor SES that has been group-mean centered

$$Y_{ij} = \beta_{0j} + \beta_{1j} (SES_{ij} - \overline{SES}_{j}) + e_{ij}$$

Level-2

$$\beta_{0j} = \gamma_{00} + \mu_{0j}$$

(same as in intercept model; the first term is the grand mean, and the second term is a residual that represents the variation in achievement means across schools).

$$\beta_{1j} = \gamma_{10}$$

Fixed coefficient – the impact of student SES on Ach does not vary across schools (lacks a μ_{1j} term)

Peugh (2010) Example

Combined

$$Y_{ij} = \gamma_{00} + \gamma_{10} \left(SES_{ij} - \overline{SES}_{j} \right) + \mu_{0j} + e_{ij}$$

Regression coefficient (fixed coefficients)

 γ_{00} = 18.89 (grand mean or the mean of the school Achievement means) γ_{10} = 2.00 (impact of SES on Achievement)

Variance components (random coefficients)

 $var\ of\ \mu_{0j} = \tau_{00} = 4.41$ (variance of group/school mean Ach scores) $var\ of\ e_{ij} = \sigma^2 = 17.16$ (residual variance in Ach scores across students)

Peugh (2010) Example Adding a Random Slope Coefficient

Level 1

$$Y_{ij} = \beta_{0j} + \beta_{1j} (SES_{ij} - \overline{SES}_{j}) + e_{ij}$$

Level 2

$$eta_{0j} = \gamma_{00} + \mu_{0j}$$

 $eta_{1j} = \gamma_{10} + \mu_{1j}$

Combined

$$Y_{ij} = \gamma_{00} + \gamma_{10} \left(SES_{ij} - \overline{SES}_{i} \right) + \mu_{0j} + \mu_{1j} \left(SES_{ij} - \overline{SES}_{i} \right) + e_{ij}$$

The variance estimate for μ_{1j} is τ_{11}

Although not specified in the equation there is also a covariance term between the intercepts and the slopes (when both of these are random). This term is labeled τ_{01} . (In the example, the positive covariance estimate indicates that schools with higher SES-Ach slopes tend to have higher Ach means.)

Peugh (2010) Example Adding a Level 2 Predictor (Intercepts and Slopes as Outcomes Model)

Predictors at level-2 can be added to explain the variation in intercept and slope variance. In the Ach example, the level-2 predictor is ST_Ratio. I will label it STR. The level-2 equations are:

Level 1

$$Y_{ij} = \beta_{0j} + \beta_{1j} (SES_{ij} - \overline{SES}_{j}) + e_{ij}$$

Level 2

$$\beta_{0j} = \gamma_{00} + \gamma_{01} (STR_j - \overline{STR}) + \mu_{0j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} (STR_j - \overline{STR}) + \mu_{1j}$$

Combined

$$Y_{ij} = \gamma_{00} + \gamma_{01} (STR_j - \overline{STR}) + \gamma_{10} (SES_{ij} - \overline{SES}_j) + \gamma_{11} (SES_{ij} - \overline{SES}_j) (STR_j - \overline{STR}) + \mu_{0j} + \mu_{1j} (SES_{ij} - \overline{SES}_j) + e_{ij}$$

Peugh (2010) Example Adding a Level 2 Predictor (Intercepts and Slopes as Outcomes Model)

$$Y_{ij} = \gamma_{00} + \gamma_{01}(STR_j - \overline{STR}) + \gamma_{10}(SES_{ij} - \overline{SES}_j) + \gamma_{11}(SES_{ij} - \overline{SES}_j)(STR_j - \overline{STR}) + \mu_{0j} + \mu_{1j}(SES_{ij} - \overline{SES}_j) + e_{ij}$$

Table 1 Model summaries: cross-sectional examples.

Parameters	Unconditional	Level-1: fixed	Level-1: random	Interaction
Regression coefficients (fixed effec	ts)			
Intercept (γ_{00})	18.90 (.07) **	18.89 (.07) **	18.89 (.07)**	18.90 (.07) **
Student SES (y10)	_	2.00 (.06) **	2.00 (.07) **	2.00 (.07) **
Student-to-Teacher Ratio (γ_{01})	_	_	_	10 (.01)**
Interaction (y ₁₁)	_	_	_	04 (.02)**
Variance components (random effe	ects)			
Residual (σ^2)	18.67 (.25) **	17.16 (.23) **	16.97 (.24)**	16.97 (.24) **
Intercept (τ_{00})	4.18 (.28)**	4.41 (.28) **	4.45 (.28) **	4.15 (.27) **
Slope (τ_{11})	_	_	.54 (21) **	.49 (.21) **
Covariance (τ_{01})	_	_	.68 (.19) **	.59 (.18)**
Model summary			\	
Deviance statistic	71,308.01	70,394.40	70,374.06	70,310.45
Number of estimated parameters	3	4	6	8

Parameter estimate standard errors listed in parentheses.

** p<.01.

From: Peugh, J. L. (2010). A practical guide to multilevel modeling. Journal of School Psychology, 48, 85-112.

Example (from Joop Hox book, Multilevel Analysis, 2010)

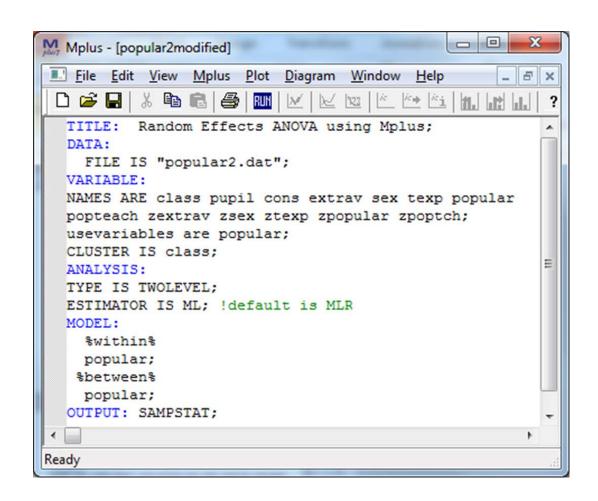
DATA

Level 1: pupils (2000 in total)

Level 2: Classes (100 classes of approx 20 pupils each)

Outcome variable:

pupil popularity (scale 0-10)


Predictor variables at pupil level (level 1)

pupil gender (1=girl 0=boy)

pupil extraversion (scale 1-10)

Predictor variable(s) at class level (level 2) teacher experience (scale 2-25)

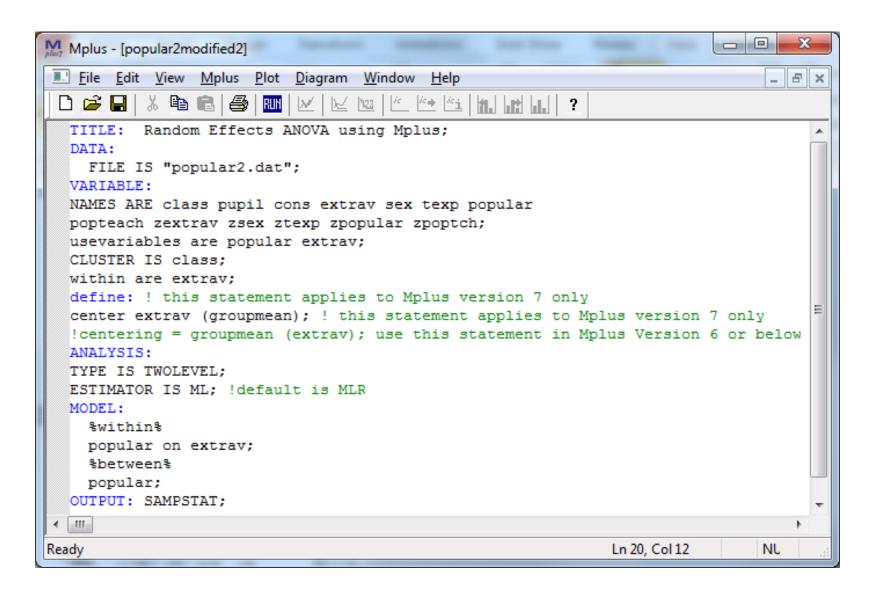
Mplus Syntax: Intercept Only Model

Mplus output: Intercept Only Model

SUMMARY OF DATA

Estimated Intraclass Correlations for the Y Variables

Intraclass

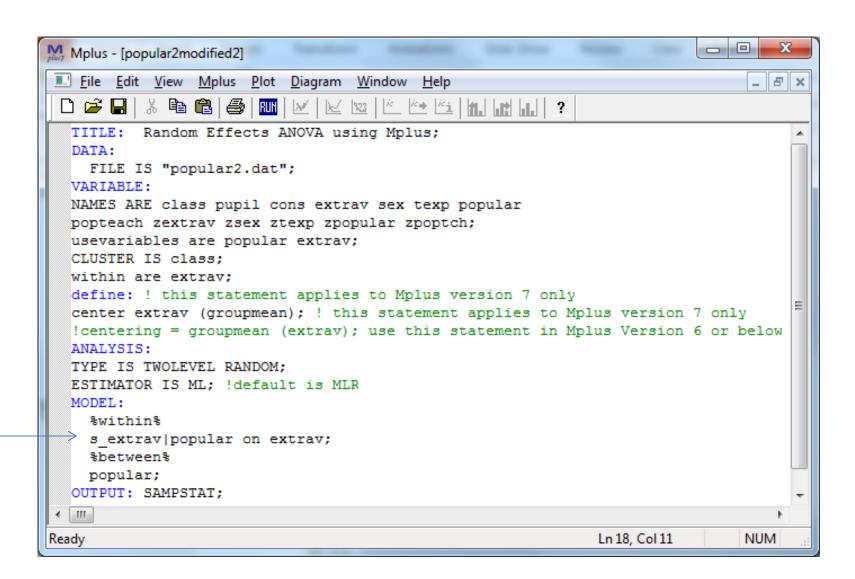

Variable Correlation

POPULAR 0.362

0.695/(0.695 + 1.222) = .362

MODEL RESULTS				Two-Tailed
Within Level	Estimate	S.E.	Est./S.E.	P-Value
Variances POPULAR	1.222	0.047	26.199	0.000
Between Level				
Means POPULAR	5.078	0.087	58.394	0.000
Variances POPULAR	0.695	0.108	6.421	0.000

Level-1 Predictor Fixed

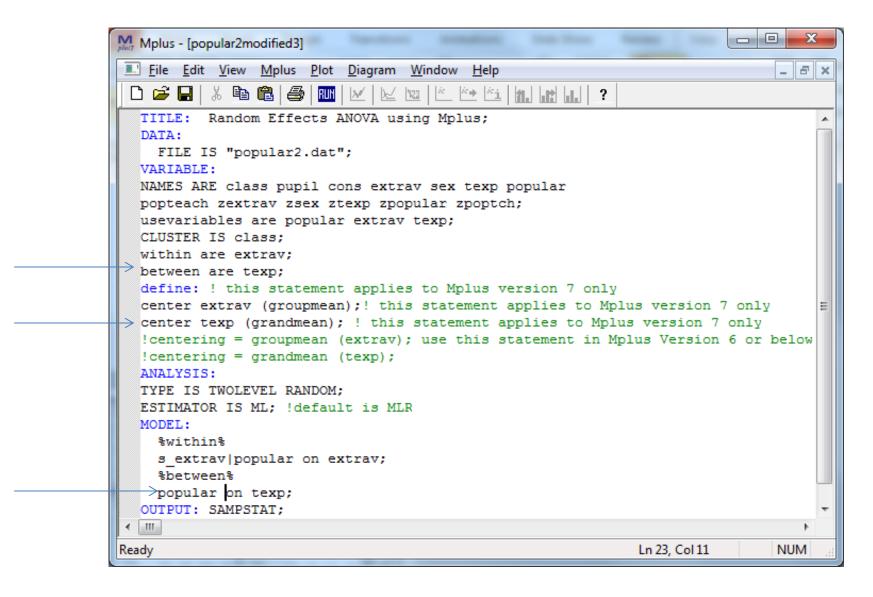


Level-1 Predictor Fixed

MODEL RESULTS

		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
	Within Level				
γ ₁₀	POPULAR ON EXTRAV	0.498	0.020	24.430	0.000
e_{ij}	Residual Variances POPULAR	0.930	0.030	30.822	0.000
	Between Level				
γ ₀₀	Means POPULAR	5.078	0.087	58.378	0.000
μ_{0j}	Variances POPULAR	0.710	0.107	6.627	0.000

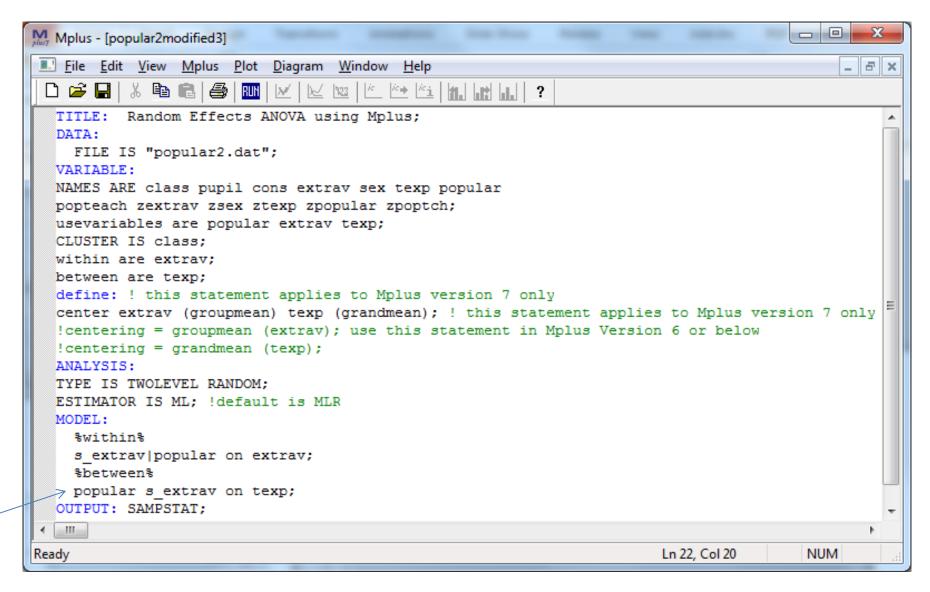
Level-1 Predictor Random



Level-1 Predictor Random

MODEL RESULTS

		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
	Within Level				
e_{ij}	Residual Variances POPULAR	0.892	0.030	30.018	0.000
	Between Level				
	Means				
γ_{00}	POPULAR	5.078	0.087	58.389	0.000
γ ₁₀	S_EXTRAV	0.497	0.027	18.236	0.000
	Variances				
μ_{0i}	POPULAR	0.711	0.107	6.648	0.000
$\mu_{0j} \ \mu_{1j}$	S_EXTRAV	0.033	0.010	3.103	0.002


Adding a Level-2 Predictor (Intercept as Outcome Variable Model)

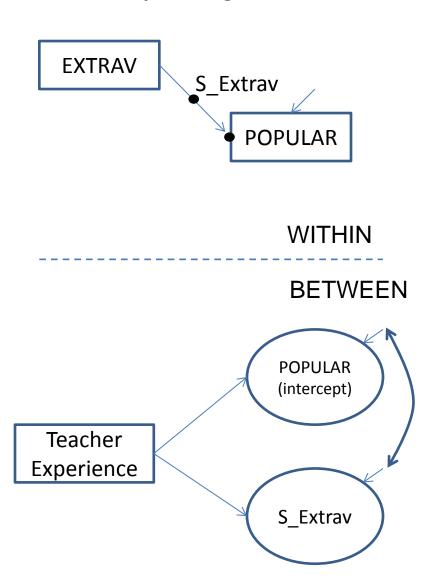
Adding a Level-2 Predictor (Intercept as Outcome Variable Model)

	Two-Tailed	Estimate	S.E.	Est./S.E.	P-Value
	Within Level				
e_{ij}	Residual Variances POPULAR	0.892	0.030	30.019	0.000
	Between Level				
γ ₀₁	POPULAR ON TEXP	0.062	0.012	5.266	0.000
γ ₁₀	Means S_EXTRAV	0.497	0.027	18.236	0.000
γ ₀₀	Intercepts POPULAR	5.076	0.077	65.956	0.000
μ_{1j}	Variances S_EXTRAV	0.033	0.010	3.103	0.002
μ_{0j}	Residual Variances POPULAR	0.547	0.084	6.533	0.000

Adding a Level-2 Predictor (Intercept and Slope as Outcome Variables Model)

Adding a Level-2 Predictor (Intercept and Slope as Outcome Variables Model)

$$Y_{ij} = \gamma_{00} + \gamma_{01}(STR_j - \overline{STR}) + \gamma_{10}(SES_{ij} - \overline{SES}_j) + \gamma_{11}(SES_{ij} - \overline{SES}_j)(STR_j - \overline{STR}) + \mu_{0j} + \mu_{1j}(SES_{ij} - \overline{SES}_j) + e_{ij}$$


	Two-Tailed	Estimate	S.E.	Est./S.E.	P-Value	
	Within Level					
e_{ij}	Residual Variances POPULAR	0.888	0.029	30.145	0.000	
	Between Level					
γ ₁₁	S_EXTRAV ON TEXP	-0.027	0.003	-9.038	0.000	
γ ₀₁	POPULAR ON TEXP	0.062	0.012	5.266	0.000	
γ ₀₀ γ ₁₀	Intercepts POPULAR S_EXTRAV	5.076 0.498	0.077	65.956 24.438	0.000	
$\mu_{0j} \ \mu_{1j}$	Residual Variances POPULAR S_EXTRAV	0.547	0.084	6.535 0.246	0.000 0.806	

(Intercept and Slope as Outcome Variables Model) Allowing residuals to correlate

MODEL:

HODEL:					
%within%	Two-Tailed				
<pre>s_extrav popular on extrav;</pre>		Estimate	S.E.	Est./S.E.	P-Value
%between%					
<pre>popular s_extrav on texp;</pre>	Within Level				
<pre>popular with s_extrav;</pre>	Residual Variances				
\bigwedge	POPULAR	0.888	0.029	30.153	0.000
	I OI OIIIIC	0.000	0.025	30.133	0.000
	Between Level				
	S_EXTRAV ON				
	TEXP	-0.027	0.003	-8.914	0.000
	POPULAR ON TEXP	0.062	0.012	5.267	0.000
	ILAP	0.002	0.012	5.207	0.000
	POPULAR WITH				
$ au_{01}$	S_EXTRAV	-0.017	0.017	-0.999	0.318
	Intercepts				
	POPULAR	5.076	0.077	65.956	0.000
	S_EXTRAV	0.499	0.020	24.360	0.000
	Residual Variances				
	POPULAR	0.547	0.084	6.535	0.000
	S EXTRAV	0.002	0.004	0.289	0.773
	<u></u>	0.002	0.007	0.209	0. 7. 7. 3

Intercepts and Slopes as Outcome Variables Model Mplus Diagram

