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In this paper, the theory of regular chains and a triangular decomposition method relying on
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systems. Based on the focus values for dynamic systems obtained by using normal form theory,
this method is applied to compute the limit cycles bifurcating from Hopf critical points. In
particular, a quadratic planar polynomial system is used to demonstrate the solving process and
to show how to obtain center conditions. The modular computations based on regular chains are
applied to a cubic planar polynomial system to show the computation efficiency of this method,
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1. Introduction

In the field of dynamical systems, an interesting
topic is the study of the number of limit cycles of a
given system. For example, Hilbert’s 16th problem
asks for an upper bound of the number of limit
cycles for the system

x:F(Can)v y:G(x,y), (1)

where F(z,y) and G(z,y) are degree k polyno-
mials of variables x and y, with real coefficients.
The second part of Hilbert’s 16th problem is to
find the upper bound, called Hilbert number H(n),
on the number of limit cycles that system (1)
can have. This problem has not been completely
solved even for quadratic systems (the case n = 2).
Although the existence of four limit cycles was
proved 30 years ago for quadratic systems [Chen &
Wang, 1979; Shi, 1980], despite H(2) = 4 being still
open. For cubic polynomial systems, many results
have been obtained on the low bound of the Hilbert
number. So far, the best result for cubic systems is
H(3) > 13 [Li et al., 2009; Li & Liu, 2010; Yang
et al., 2010]. This number is believed to be below
the maximal number which can be obtained for
generic cubic systems. Some recent developments on
Hilbert’s 16th problem may be found in the review
articles [Li, 2003; Leonov, 2008] and the references
therein.

In the case of finding small-amplitude limit
cycles bifurcating from an elementary center or a
focus point based on focus value computation, the
problem has been completely solved only for generic
quadratic systems [Bautin, 1952], which can have
three limit cycles in the vicinity of such a singular
point. For cubic systems, James and Lloyd obtained
[1991] a formal construction, via symbolic compu-
tation, of a special cubic system with eight limit
cycles. In 2009, Yu and Corless [2009] showed the
existence of nine limit cycles with the help of a
numerical method for another special cubic system.

Very recently, Lloyd and Pearson [2012] claimed
to be the first to obtain a formal construction, via
symbolic computation, of a new cubic system with
nine limit cycles. A key step of their derivation is
to show that two bivariate polynomials R and Ro
have real solutions. They found that the resultant of
R; and Ry had a real solution and then concluded
that R1 and Ry would have a real common solution.
This is not always true. In fact, the existence of a
real solution of the resultant of two bivariate poly-
nomials does not necessarily imply the existence of

a common real solution for the original two polyno-
mial equations. For example, given Ry = y> +x + 1
and Ry = y? + 2z + 1 with # < y, the resultant
of Ry and Rs in y is 22, which has a real solution
r = 0. However the two equations R1 = Ry = 0
actually do not have common real solutions. In
addition, a similar flawed conclusion was made by
the authors when they claimed that the existence of
real solutions for R; = Ry = 0 implied the existence
of real solutions for trivariate polynomial systems
V) = Wy = U3 = (. Therefore, the proof given by
Lloyd and Pearson [2012] is not complete.

In the present paper, we formally prove that
a specific cubic dynamical system has nine limit
cycles. Our strategy is as follows. Given a cubic
dynamical system, we deduce the fact that this
system has (at least) nine limit cycles by testing
whether a given semi-algebraic set is empty or not.
This test is based on a symbolic procedure capable
of producing an exact representation for each real
solution of any system of polynomial equations and
inequalities. Once one such real solution has been
found, then this procedure can be halted, and non-
emptiness has been formally established. Therefore,
our approach does not have the flaws of [Lloyd &
Pearson, 2012].

The symbolic computation of small limit cycles
involves finding the common roots of a nonlin-
ear polynomial system consisting of n focus val-
ues o (Y1y -+ s Ym)s -« -y Un—1(71,- -+, ¥m), where the
variables 71, ...,V are the parameters of the orig-
inal system. With the help of algorithmic and
software tools from symbolic computation, we are
able to compute nine limit cycles symbolically, using
the same system as that used by Yu and Corless
[2009]. Unlike the methods used in previous stud-
ies which usually depend on good choices of free
parameters and the values of dependent parameters,
the new method introduces a systematic procedure
to symbolically find the maximum number of limit
cycles for a given system. It also provides a symbolic
proof on the existence of the computed number of
limit cycles. In addition, center conditions may be
obtained as a by-product.

Symbolic methods for studying and solving
nonlinear polynomial systems are of great interest
due to their wide range of applications, for example,
in theoretical physics, dynamical systems, biochem-
istry, to name a few. They are very powerful tools
that surpass numerical methods by giving exact
solutions, whether the number of solutions is finite
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or not, and by identifying which solutions have real
coordinates.

There are two popular families of symbolic
methods, based on different algebraic concepts:
Grobner bases [Becker, 1993; Buchberger & Win-
kler, 1998; Buchberger, 2006], and regular chains
[Kalkbrener, 1991; Yang & Zhang, 1991; Moreno
Maza, 1999; Aubry et al., 1999; Chen et al., 2007].
Grobner bases methods have gained much attention
during the past four decades due to their simpler
algebraic structure: the input polynomial system,
say F', is replaced by another polynomial system,
say G, such that both F' and G have the same solu-
tion set and geometrical information (dimension,
number of solutions) can easily be read from G.

Methods based on regular chains are rela-
tively new, and have many advantages compared to
Grobner bases methods. For example, they tend to
produce much smaller output [Dahan et al., 2012;
Chen & Moreno Maza, 2011] in terms of number
of monomials and size of coefficients. In addition,
regular chain methods can proceed in an incremen-
tal manner, that is, by solving one equation after
another, against the previously solved equations.
This allows for more efficient implementation and
makes the processing of inequality constraints much
easier. These advantages will be further explained
later in this paper.

Given a multivariate polynomial system F' in
a polynomial ring, for example Q[x] over Q, regu-
lar chain methods compute the algebraic variety (or
zero set — the set of common complex solutions)
of F' in the form of a list of finitely many polyno-
mial sets. Each of these sets is a polynomial system
of triangular shape and with remarkable algebraic
properties; for these reasons, it is called a regular
chain. The algebraic variety of the input system F
is given by the union of the common complex roots
of the output regular chains. The notion of a reg-
ular chain was introduced independently by Kalk-
brener [1991] and, by Yang and Zhang [1991] as
an enhancement for the notion of a triangular set.
Indeed, the regular chain is a special type of tri-
angular set which avoids possible degenerate cases
that lead to empty solution [Chen & Moreno Maza,
2011].

One of the main successes of the Computer
Algebra community in the last 30 years is the
discovery of algorithms, called modular methods,
that allow to keep the swell of the intermediate
expressions under control. Even better: with these

methods, almost all intermediate (polynomial or
matrix) coefficients fit in a machine word, making
these methods competitive in terms of running time
with numerical methods. Modular methods have
been well developed for solving problems in linear
algebra and for computing greatest common divi-
sors (GCDs) of polynomials [Von Zur Gathen &
Gerhard, 2003]. They extend the range of accessi-
ble problems that can be solved using exact algo-
rithms. In the area of polynomial system solving,
the development of those methods is quite recent.
They have been applied to Grébner bases [Trinks,
1984; Arnold, 2003] and primitive element repre-
sentations [Giusti et al., 1995; Giusti et al., 2001].
Thanks to sharp size estimates [Dahan et al., 2012],
the application of modular methods to polynomial
system solvers based on regular chains has been very
successful in both practice and theory, see [Dahan
et al., 2005], opening the door to using fast poly-
nomial arithmetic [Li et al., 2011] and parallelism
[Moreno Maza & Pan, 2012] in the implementation
of those solvers. The modular method of [Dahan
et al., 2005] is available in the RegularChains pack-
age in MAPLE.

The rest of the paper is organized as follows.
The advantages of incremental solving are further
explained in the next section. The theory of regular
chains and a modular method for solving polyno-
mial systems by means of regular chains are pre-
sented in the third section, together with a number
of examples and related MAPLE commands. The
relationship of limit cycles and focus values is
presented in the fourth section, with an example
of focus value computation using a perturbation
method. Then, in the fifth section, the regular
chains method is applied to a generic quadratic
system to show three small-amplitude limit cycles
around the origin and to obtain center conditions.
Moreover, with a modular method based on regular
chain theory, a special cubic system is presented to
show nine small-amplitude limit cycles in the vicin-
ity of the origin.

2. Incremental Solving

The nature of the algebraic problem posed by this
application to the study of dynamic systems and,
more precisely, the study of limit cycles require that
the supporting algebraic tools provide the following
specifications and properties.
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2.1. Incremental solving of
polynomzial systems

Given a polynomial system of equations, f; =--- =
fm = 0, one would like to solve one equation after
another against the previously solved equations. To
be more precise, we first choose a format for the
solutions. Here we consider regular chains. Thus, we
can assume that the common solutions of f1,..., f;,
for 1 < j < m, are given by finitely many regu-
lar chains 77, ..., T.. Then the common solutions of
fi,..., fj41 are obtained by taking the union of the
regular chains computed by executing a procedure
called Intersect and applied to f;4; and T1,...,T¢
successively.

The advantages of this approach are numerous.
First of all, from a theoretical point of view, if
{f1,..., fm} is a regular sequence, then incremen-
tal solving is known to be a very effective process
[Lecerf, 2003; Sommese et al., 2008; Chen & Moreno
Maza, 2014; Faugere, 2002].

There are also practical reasons. For instance,
information (such as dimension, existence of real
solutions) may be extracted before completing the
solving of the entire system f; =--- = f,, = 0.

2.2. Incremental processing of
inequality constraints

Given a component of the solution set of a system
of polynomial equations, one would like to extract
from that component the points that satisfy an
inequality constraint, either of the type f # 0 or
of the type f > 0. For example, in the application
to limit cycles, one requires the first several focus
values vanish, vg = - -+ = v,_1 = 0, but the last one

Fig. 1.

v, # 0. Regular chains provide this facility [Chen
et al., 2011; Chen & Moreno Maza, 2014]. That is,
for a component encoded by one or several regu-
lar chains, one can extract the points of that com-
ponent that satisfy a given inequality constraint.
Moreover, the output of this refinement process is
again given by a special flavor of regular chains,
called regular semi-algebraic systems [Chen et al.,
2010]. Therefore, incremental solving can also be
used with inequality constraints.

2.3. Practical efficiency

With respect to other algebraic tools for describing
solution sets of polynomial systems, regular chains
have an advantage in terms of size [Dahan, 2009]. In
addition, there are sharp size estimates about the
representation of the solutions of polynomial sys-
tems when this representation is done with regular
chains. This is essential in order to design efficient
algorithms to compute these representations.
Moreover, these efficient algorithms are able to
take advantage of modular techniques. We use a
standard example to introduce the principle of those
techniques. Consider a square matrix A with inte-
ger entries and for which its determinant d is to be
computed exactly. It is well-known that using multi-
precision rational arithmetic will only solve exam-
ples of moderate size due to intermediate expression
swell. Let B be a bound on the absolute value of d
and let p1,...,ps be prime numbers such that their
product exceeds 2B and each of these primes is of
machine word size. One computes the determinant
d; of A modulo the prime number p;. Then, the
determinant d is obtained by applying the Chinese
remainder theorem (CRT) to the residues di, ..., ds

The incremental solving of (2).
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and the moduli pq,...,ps. This approach not only
avoids intermediate expression swell, but it allows
for using efficient algorithms over finite fields and
efficient implementation techniques in fixed single
precision. Last but not least, the complexity of this
modular computation process is less than that of
the direct approach for computing the determinant
of A via Gaussian Elimination (or LU decomposi-
tion, etc.) [Gathen & Gerhard, 1999).

The following example is introduced to demon-
strate the idea of incremental solving. Given the
system

xz,
y7237

we wish to find the real common roots. The incre-
mental solving algorithm processes one additional
equation at a time. So it takes the first equation
2 = 0 and find the real roots, in this case the whole
y—z plane (left graph of Fig. 1). In the second step,
the next equation z + 32 — 22 is taken into consid-
eration to obtain the common roots x = 0,y = +=
(middle graph of Fig. 1). At the last step, y — 2°
is added to compute the final answer {z = 0,y =
0,z=0}{z=0,y=1,z=1}{zr =0,y =—-1,2z =
—1} (right graph of Fig. 1).

3. The Regular Chains Method

Similarly to a linear system which can be trans-
formed to a triangular system by Gaussian elim-
ination, a nonlinear polynomial system can be
transformed into one or finitely many systems, such
that each of them is in a triangular shape. Such a
system is called a triangular set, in that the main (or
leading) variables of different polynomials are dis-
tinct. The notion of a triangular set was introduced
in [Ritt, 1932; Wu, 1987], with the purpose of repre-
senting and computing the set of common zeros of
a given polynomial system. Since a triangular set is
already in triangular form, it is ready to be solved
by evaluating the unknowns one after another using
a back-substitution process, as for triangular linear
systems. For example, the system

x3 — 2x3 + 771,
T3 + 229,
x%xl — 2z + 3,

222 + 171,

with ordered variables 1 < 19 < X9 < x4, is a
triangular set since the polynomials in it have dis-
tinct main variables, which are here x4, z3,x9, 21,
respectively.

The backward solving process of a triangular
set could sometimes lead to an empty solution set.
In the above example, one solution of the last equa-
tion is x1 = 0, which leads to no solution for x5. To
avoid such degenerate cases, the notion of a regular
chain was introduced. A regular chain is a type of
triangular set which guarantees the success of the
backward solving process. Regular chains are con-
structed by the insight that every algebraic variety
is uniquely represented by some generic points of
their irreducible components [Aubry et al., 1999)].
These generic points are given by certain polyno-
mial sets, called regular chains. The common com-
plex roots of any given multivariate polynomial
system can be described by some finite union of reg-
ular chains. Such a family of regular chains is called
a triangular decomposition of the input system.

3.1. Some definitions and examples
for triangular decomposition

Before demonstrating the regular chains method,
some definitions are given, followed by illustrative
examples. Throughout this section, let @Q denote
the rational number field and C the complex num-
ber field. Let Q[x] denote the ring of polynomials
over Q, with ordered variables x = z1 < --- < x,,.
Let p be a polynomial of the polynomial ring Q[x]
and let F' C Q[x] be a finite subset. We denote by
V(F) the algebraic variety defined by F, that is,
the set of points in C" which are common solutions
of the polynomials of F'.

Definition 1. If the polynomial p € Q[x] is not a
constant, then the greatest variable appearing in
p is called the main variable (or leading variable)
of p, denoted by mvar(p). Furthermore, the leading
coefficient and leading monomial of p, regarded as
a univariate polynomial in mvar(p), are called the
initial and the rank of p, denoted by init(p) and
rank(p), respectively.

Example 1. Let p := (z1 + 1)z + 1 € Q[z1, 79,
where z1 < x2. Then, mvar(p) = x2, init(p) = x;+1

and rank(p) = 2.

Definition 2. Let T' C Q[x] be a triangular set, that
is, a set of nonconstant polynomials with pairwise
distinct main variables. The quasi-component of T,
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denoted by W (T), is the set of points in C™ which
vanish all polynomials in 7', but none of the initials
of polynomials in 7. The minimal algebraic vari-
ety containing W(T'), denoted by W (T, is called
the Zariski closure of W(T'). Note that W (T') is a
subset of V(T'), but may not equal V(T).

Example 2. Consider the polynomial ring Q[z, v,
z], where © < y < z. Then, the set T := {y — «x,
yz% — x} is a triangular set. The quasi-component
W(T) is {(z,y,2) € C*|x # 0,y = x,22 — 1 = 0}.
The Zariski closure W (T) is {(z,y,2) € C?|y = =,
2?2 —1 = 0}. The variety V(T) is {x = 0,y = 0} U
W(T).

Definition 3. Let 7" be a triangular set. A polyno-
mial p is said to be zero modulo T if W(T') C V(p)
holds. A polynomial p is said to be regular modulo
T if the dimension of the variety V(p) N W(T) is
strictly less than that of W(T).1

Example 3. Let T := {y —z,yz%2 —2}. The polyno-
mial y — x is zero modulo 7" since we have W (T") C
V(p). On the other hand, the polynomial z — x is
regular modulo 7" since V' (p) N W(T') is the set of
points {(z,y,2) € C*|22~1 =0,y = x,2°—1 = 0},
whose dimension is zero, that is, less than the
dimension of W(T).

Definition 4. A triangular set ' C Q[x] is a regular
chain if one of the following two conditions holds:

(i) T is empty or consists of a single polynomial;
(il) T\{Tmax} is a regular chain, where Ty, is
the polynomial in 7" with largest main vari-
able, and the initial of T,y is regular modulo

T\{Tmax }-

Example 4. The triangular set T := {y—x,yz*>—2}
is a regular chain since {y — z} is a regular chain
and y is regular modulo {y — x}.

Definition 5. Let F' C Q[x] be finite, and ¥ :=
{T1,...,T.} be a finite set of regular chains of Q[x].
We call T a triangular decomposition of V (F) if we
have V(F') = (J;_, W(T;). We denote by Triangular-

ize a function for computing such decompositions.

Example 5. Let F = {y — z,y2? — 2}, T} =
{y —z,22 — 1} and Ty = {z,y}. Then, {T1,T5}
is a triangular decomposition of V(F').

!The dimension of the empty set is defined as —1.

The corresponding MAPLE program is as follows:

with(RegularChains) :

F:=[y-x,y*z"2-x];
R:=PolynomialRing([z,y,x]);
dec:=Triangularize(F,R,output=lazard);
map (Equations, dec, R);

which returns,
[[z-1, y-x], [z+1, y-x], [y, x1]

Definition 6. Let 7" be a regular chain, and p be
a polynomial of Q[z]. Let ¥ := {T1,...,T.} be a
finite set of regular chains of Q[x]. We call T a reg-
ular split of T w.r.t. p if (1) W(T) = U;_y W(T3)
and (2) the polynomial p is either zero or regular
modulo 73, for i = 1,...,e. We denote by Regularize

a function for computing such decompositions.

Example 6. Let p:=z—1and T := {y—x,yz>—x}.
Let Ty == {y —z,z+ 1} and Ty := {y —z,z — 1}.
Then {T},T} is a regular split of T w.r.t. p.

The MAPLE program for this example is given by,

with(ChainTools):

p:=z-1;

T := Chain([y-x, y*z"2-x], Empty(R), R);
reg, sing := op(Regularize(p, T, R));
map (Equations, reg, R);

map (Equations, sing, R);

which returns,

[[z+1, y-x]]
[[z-1, y-x]]

3.2. Triangular decomposition
algorithm

In this section, we illustrate how to obtain a trian-
gular decomposition of an input polynomial system.

Given an input set of polynomials F' = [Py, ...,
P,] C Q[x], we would like to compute a triangu-
lar decomposition of V' (F'), that is, regular chains
Ty,...,T. C Q[x] such that we have V(F) =
W(Ty)U---UW(T,). The algorithm presented here
works in an incremental manner, that is, by solving
one input equation after another, against the solu-
tions of the previously solved equations. The core
routine of this algorithm is denoted as Intersect. It
takes a regular chain 7" and a polynomial P as input,
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and returns regular chains 77, ...,T,, such that we

have

V(P)NW(T) C W(T})U---UW(T)

€ V(p) nW(T). (4)

We choose a polynomial p; with minimum rank
from F' and remove it from F'. Then, it is inter-
sected with the empty regular chain, and obtain
the regular chain T as p; itself. Next, the polyno-
mial po with minimum rank from the remaining F
is chosen and removed. Then, ps and the regular
chain T are the input for Intersect, which returns a
list of regular chains 71, ..., T, that satisfy (4). Fur-
ther, ps with the minimum rank from the remaining
input F'is intersected with each T;,72 € 1,...,¢e, and
will give more regular chains which also satisfy (4).
The algorithm will go on until F' is empty. A more
detailed description of the algorithm can be found
in [Chen & Moreno Maza, 2011].

In order to illustrate this triangular decompo-
sition process, we compute the triangular decom-
position of V(F) for the following example. Let
F = [p1,p2, p3], where

P1 ::z+y+x2—1,
pri=z+y +a—1, (5)
p3i=22+y+a—1,

with a order z < y < z.

Firstly, p; is picked and removed from F' as
the lowest rank polynomial within the three poly-
nomials, and then is a regular chain Ty = p; by
definition.

Secondly, po with the lowest rank is chosen from
the remaining two polynomials. Now po and Ty are
the input of Intersect, which computes V(z + y +
22 — 1,z + y> + o — 1). The procedure Intersect
works as follows. By computing the resultant of
z+y+2>—1and z4+y?>+x — 1, z is eliminated and
we obtain a bivariate polynomial (y —x)(y +x —1).
Then T} := {(y —2)(y + = — 1),z +y + 22 — 1} is
a regular chain,? with V(z +y + 22 — 1,2z + ¢y +
x — 1) = W(T1). Since the GCD of z +y + 22 — 1
and z + 32 + 2 — 1 modulo (y — z)(y +x — 1) is
z 4y + x? — 1, which is obtained by MAPLE’s com-
mand RegularGed. Note that (y — z)(y + = — 1) has

two factors. By factorizing it,> we obtain two reg-
ular chains Ty; = {y — 2,2 + y + 22 — 1} and
Ty = {y+x—1,2z+y+ 2% — 1} such that we
have V(z+y+a2? — 1,z +y*+a2—1)=W(T1;) U
W (T12).

In the third step, the variety V(p1,p2,ps3) is
finally computed. This is equivalent to computing
the union of V(p3) N W(T11) and V(p3) N W (T12).

Let us consider how to compute V(ps3) N
W (T11). To this end, we first compute the resultant
of 224+ y+ax—1and z+y+ 22 — 1 and obtain
resultant(z?2 +y+ 2 — 1L, z+y+22—1,2) = (y +
22+ 2 —1)(y+ 2% — ). We then compute the resul-
tant of (y + 22 +2 — 1)(y + 22 — 2) and y — =,
and obtain resultant((y + 22 + 2 — 1)(y + 22 —
r),y — x,x) = (22 + 2x — 1)22. Since the GCD
of (y+ 22 +2—1)(y +22—2) and y — 2 mod
(2?2 + 22 — 1)2? is y — x, and the GCD of 22 +y +
r—1and z +y+ 22 -1 mod {(2? + 22 — 1)22,
y—a}is z +y+ 2% — 1, we know that V(p3) N
W (Ty1) is the union of zero sets of {x? + 2z — 1,
y—z,z2+y+22—1}and {z,y —z, 2z +y+2% -1},
which could be further simplified as {z% + 2z — 1,
y—x,z—x} and {x,y,z — 1}.

Similarly, V' (ps) N W(T12) can be decomposed
into a union of zero sets of two regular chains
{z,y — 1,2z} and {z — 1,y, z}.

To summarize, we have the following triangular
decomposition to represent the zero set of F:

z—T = z=0
Yy—r= ) Y= )
22 4+2c—1= r—1=
(6)
z = z—1=0
y—1=0, y=20
rz=0 z=0

3.3. A method based on modular
techniques for computing
triangular decomposition

For challenging input polynomial systems, the
method described in the previous section may
require vast amounts of computing resources (time

2For this particular regular chain, one can check that W (T1) = V(T1). But this does not always hold unless the regular chain

is zero-dimensional.

3Trreducible factorization over @ is not necessary for computing triangular decomposition. However, factorization often helps
to improve the practical efficiency of polynomial system solvers based on triangular decomposition.
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and space). This situation can be improved in a
spectacular manner by means of so-called modular
techniques, which, broadly speaking, means com-
puting by homomorphic images instead of comput-
ing directly in the original polynomial ring. We
present below such an improvement for the case of
input zero-dimensional systems whose coefficients
are in Q.

Let F = {p1,...,pn} C Q[x]. Recall that x
stands for n ordered variables x7 < < Tp.
We assume that the variety V(F') is finite and
that the Jacobian matrix of F' is invertible at any
point of V(F'). This latter assumption allows the
use of Hensel lifting techniques. The algorithm pro-
posed in [Dahan et al., 2005] computes a triangular
decomposition of V(F') via the following two-step
process:

(1) For some prime number p, compute a triangu-
lar decomposition of V(F mod g),

(2) Apply Hensel lifting to recover a triangu-
lar decomposition of V(F) from that of
V(F mod p).

Some precautions need to be taken before the
algorithm produces correct answers. In fact, extra-
neous factorizations or recombinations could occur
when working modulo some “unlucky” prime num-
bers. Since the same input system F' could admit
different triangular decompositions, it is possible
that a regular chain obtained modulo ¢ does not
match the modular image of any regular chains in
a triangular decomposition 771,...,T, of V(F). In
[Dahan et al., 2005], the following example is con-
sidered. Let F' = [p1,p2] where p; = 326x; —
102§ + 513 + 1725 + 30623 + 10229 + 34, po =
x4+ 625 + 223 4+ 12, with x1 < 29. We have the fol-
lowing triangular decomposition of V' (F), that is,
over Q:

T —1=0, 2 +2=0,
Ti=4 4 =1 5 (7)

Ty +6=0, x5 +x1 = 0.
Computing the regular chains that describe

V(F mod 7) yields
73 + 62927 + 229 + 11 = 0,
a 73 + 627 + 51 +2 =0,

To+6 =0,
to =
1 +6=0,

which are not the images of 73,75 modulo 7.
In order to overcome this difficulty, the notion
of equiprojectable decomposition was introduced in
[Dahan et al., 2005].

For a given ordering of the coordinates,
the equiprojectable decomposition of a zero-
dimensional (that is, with finitely many points)
variety V is a canonical decomposition of V into
components, each of which being the zero set of a
regular chain. This notion can be defined as fol-
lows. Consider the projection 7 := V C A"(k) —
A"~1(k) that forgets the last coordinate, say x. We
define N(a) := #7r (n(a)), a € V, that is, the
number of points that share the same coordinate
with a in the z-axis.

The variety V is split into Vi, ..., V, such that
each V;,i = 1,...,d, consists of the point § € V
such that N(8) = ¢. Then, a similar decomposi-
tion process is applied to each V; by considering the
second last coordinate. Continuing in this manner
yields a partition of C; U---U Cy = V, which is
a equiprojectable decomposition. The key point is
that each equiprojectable component C is the zero
set of a regular chain T}, which can be made unique
by requiring that each of its initials is equal to one.
Together, those regular chains 11, ..., T, form now
a canonical triangular decomposition of V.

In the last example, the triangular decomposi-
tion, t1,t2 of V(F mod 7), is not an equiprojectable
decomposition, as shown in the left graph of Fig. 2,
since for the points which share the same x1 coor-
dinate, only the left and middle columns have the
same number of points (which is two), while the
right column has three points. So the decomposition
is rearranged such that the left and middle columns
are represented by one regular chain t}, and the
last column is another regular chain ¢} (the right
graph of Fig. 2). One can use the MAPLE’s proce-
dure EquiprojectableDecomposition to compute the
regular chains t}, ¢, from ¢,ts, and thus to obtain
the equiprojectable decomposition of the input
system.

/
4
(;/' tz té ".\\
,,,,,,, - —— - |
o 7 o i
I L] | I e
\ ot ! ey
'@ | ) Lol
I (| I | ‘\.1
\\7777!777‘1 l,,,,g =
Fig. 2. Equiprojectable decomposition.
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r1—1= 2+ 2=
taz{ e t’zz{ )
5+ 6 =0, 5 +x1 = 0.
It is obvious that t,t, are equal to T, T, mod 7.
Now the modular triangular decomposition will
only be lifted after the equiprojectable decomposi-
tion is applied. Another key feature of this approach
based on modular techniques is the size of the
prime number p. The following theorem provides

an approach for selecting good primes so as to avoid
unlucky reductions.

Definition 7. The height of a nonzero number
a € Z,is H(a) := log(la]). For a rational num-
ber P/Q € Q, GCD(P,Q) = 1, the height is
max(H (P), H(Q)). Finally, the height of a poly-
nomial system F € Z[zi,...,%,] is the maxi-
mum height of a nonzero coefficient in a polynomial

of F.

Theorem 1 (Theorem 1 in [Dahan et al., 2005]).
Let F = [p1,...,pm] C Q[x]| where each polyno-
mial has degree at most d and height at most h,
let T'=1Ty,...,T, be the equiprojectable decompo-
sition of V(F). There exists an A € N — {0}, with
H(A) <a(m,d,h), and, for m > 2,

a(m,d, h) = 2m2d*™ 1 (3h + Tlog(m + 1)
+ 5mlog d + 10),

such that, if a prime number p does not divide A,
then ¢ cancels none of the denominators of the
coefficients of T, and the reqular chains T1,...,T,
reduced mod g define the equiprojectable decompo-
sition of V(F mod p).

Therefore, the set of unlucky primes is finite.
Moreover, one can always find a large enough @
that guarantees the success of the modular algo-
rithm sketched above.

Once the equiprojectable decomposition using
some good prime g is computed, the result is ready
to be lifted in the sense of Hensel lifting. According
to Hensel’s lemma [Eisenbud, 1995], a simple root
r of a polynomial f mod ¥ can be lifted to root
s of f mod EFT™, which also holds in the multi-
variate case. Using this lemma, given a polynomial
system F', its modular triangular decomposition
t = t1,...,t. over V(F mod p) is lifted to t¥ =
t’f e ,t’;, which is the triangular decomposition of
V (F mod @) [Schost, 2003]. Then, rational recon-
struction is used to recover the regular chains with
coefficients in Q.

Here, a probabilistic method is implemented
which uses two primes @1, o that satisfy the con-
dition of Theorem 1. The use of a probabilistic
algorithm is a very common technique to com-
pute values modulo primes, and then reconstruct
the result to integers or rationals. It is very useful
when the deterministic bound is not available or,
like in our case, very high. The algorithm usually
terminates when the result does not change for sev-
eral primes. The output could be incorrect, but the
probability of such failure is very small and control-
lable. In MAPLE many procedures are implemented
using, probabilistic algorithms including the com-
mands Determinant, LinearSolve, CharacteristicPoly-
nomial, Eigenvalues, resultant etc.

In our case, the algorithm works as follows.

(1) Compute the equiprojectable triangularizations
T and U for g1 and g9, respectively.

(2) Lift T to TF = T%,...,T% in Z(F mod p*),
where k starts from 1.

(3) T* is taken as the input of the rational recon-
struction to obtain N¥ = N¥ ... N¥ over Q.

(4) The algorithm terminates if N¥ mod gy equals
U, and N* is returned as the triangular decom-
position of F over Q.

(5) Otherwise, k is incremented by 1 and computa-
tions resume from Step 2.

Assume that N is the correct equiprojectable tri-
angular decomposition of the input system F. The
algorithm fails when N* mod gy equals U (the
modular image of N¥ w.r.t go), but N*¥ #£ N. It
is also possible that either one of @i, 0o divides
A or both, so N*¥ modulo gy may never agree
with N modulo po. However, the choices of @1, po
that lead to those bad cases are finite and con-
trollable. See Theorem 2 in [Dahan et al., 2005]
for details. In MAPLE, the Triangularize command
offers this modular method. With the option “prob-
ability” ="prob”, the algorithm applies the prob-
abilistic approach using the input probability of
success “prob”, which controls the size of the prime
numbers @1, po2.

3.4. Isolating real roots of a regular
chain

In this section, we briefly review how to obtain the
real roots of a regular chain. Let T be a regular
chain of Q[z; < -+ < x,). A Cartesian product of
n intervals is called a box of Q[z; < -+ < x,]. Let
L be a list of boxes. We say L isolates the real roots
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of T if

e The boxes in L are pairwise disjoint;
e Each real root of T" belongs to one element of L;
e Every element of L contains a real root of 7.

Example 7. Let T := {2? — 2,y? — 2}. Then, the
MAPLE output of a real root isolation of 7' is as
follows:

{ 19 { -19
{y=I[--, 5/4] {y=[-5/4, ——-]

{ 16 { 16

{ , { ]
{ 181 91 { 181 91
{x=[-—, --] { x= [, --]

{ 128 64 { 128 64

There are several existing algorithms and
implementations [Lu et al., 2005; Xia & Zhang,
2006; Cheng et al., 2007; Boulier et al., 2009] for
isolating the real roots of regular chains. However,
they all rely on Maple’s univariate real root iso-
lation routine, which is not efficient enough for
our particular problem. Instead, we adapt a hybrid
routine. The univariate polynomial in the regular
chain T is isolated by a parallel and cache optimal
Collins—Akritas algorithm implemented in Cilk++
[Chen et al., 2012]. The obtained intervals are used
to isolate the rest of the polynomials in T by
a sleeve-polynomials-like algorithm [Cheng et al.,
2007], implemented in MAPLE.

4. Limit Cycle and Focus Value

In system (1), suppose that F'(z,y) and G(z,y) con-
tain m parameters 7y, ..., Vm, and there is a Hopf
critical point at the origin, then the normal form of
the system can be written in polar form up to the
(2n + 1)th order as [Yu, 1998].
dr
dt

do d¢o
T =T <1+ E)

=r(l+w+ tr? +tort 4+ + tnr2n), (11)

=r(vo + nr? fogrt 4+ UM“Q"), (10)

where each vi, £ = 0,1,...,n is the kth order
focus value of the origin. Note that there are only
r?* (k = 0,1,...,n) terms, since the odd power
terms vanish. Each of the focus values vy, is a poly-
nomial of the parameters v; (j = 1,2,...,m) of the
original system.

The small-amplitude limit cycles near the ori-
gin can be determined from the equation,

% =0=r(vg+v1r> +vort + -+ 0™, (12)
then the right-hand side of Eq. (10) needs to be
manipulated such that there are n (and at most n)
positive real roots for 2.

Assuming the first n+ 1 focus values vg, v1, ...,
VUn_1,V, are computed, we will find a combination
of parameters such that the first n focus values
Vg, U1, ..., Usp—1 all vanish except v,. This can gen-
erate at most n limit cycles. Then, proper perturba-
tions on the zeros of the n focus values yield n limit
cycles. More precisely, a theorem on the relation-
ship between the number of limit cycles and the
focus values has been established in [Yu & Chen,
2008], which is given here for convenience.

Theorem 2. Suppose the origin is an elementary
center of (1). If the first n focus values associated
with the origin depend on n parameters {v;},j =
1,2,...,n such that

on £0,  (13)

then there are at most n small-amplitude limit
cycles in the vicinity of the origin. Further suppose
that v (), k =0,1,....,n—1,T ={y1,..., Y}, has
some positive real solution I' = C,C = {cy1,...,cn}
such that vp(C) = 0 and the following condition
holds,

U0=U1=~~~=Un_1=0,

det 9(vg, v1, . .

"”"‘”] £0,  (14)

8(717'727 e 7'7n>

r=c

then there are exactly n small-amplitude limit cycles
around the origin.

Accordingly, in order to compute n small limit
cycles near the origin, one needs to find the common
roots of a multivariate polynomial system:

7'7n) =0, (15>

where the variables ~1,...,7, are parameters of
the original system. Once the common roots of
Vg, -+ ., Up_1 are computed, the next focus value v,
will be evaluated at these roots. If some of the com-
mon roots does not make wv,, vanish, then this set
of roots will lead to n limit cycles, given their Jaco-
bian to be nonzero. Otherwise, the common roots
leading to v, = 0 will be the candidate conditions
for the origin to be a center.

vo(Y1, - Ym) = = Up—1 (71, -
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There are many commonly used methods to
compute focus values, including the perturbation
method based on multiple time scales [Yu, 1998,
2001, 2002, 2006; Nayfeh, 1973, 1993], the singular
point method [Liu & Li, 1990; Liu & Huang, 2005;
Chen & Liu, 2004; Chen et al., 2008], and Poincare—
Takens method [Yu & Chen, 2008]. In this article,
we apply the perturbation method to compute the
focus values.

5. Application to Limit Cycle
Computation

In this section, we apply the results presented in
previous sections to compute limit cycles bifurcat-
ing from an isolated singular point (the origin of
the system). Without loss of generality, suppose sys-
tem (1) has at most n limit cycles. Then the first
n—+1 focus values need to be computed. vy, ..., v,_1
are taken as the input for the triangular decompo-
sition and wv,, is used to verify if the output regu-
lar chains represent limit cycles. Two examples are
given in this section. In the first example, we use
the general quadratic system (16) to illustrate how
to use the regular chains method to find the limit
cycle conditions and center conditions, respectively.
It is actually a simple case where small limit cycles
have already been thoroughly studied [Yu & Cor-
less, 2009] using variable elimination method. The
regular chains method computes all the possibleI

= (é) bc+1)

common complex roots of the input system, and
provides a systematical procedure of analyzing the
properties of the outputs. If a regular chain 7" makes
v, vanish, then it is a candidate of center condition;
if v, does not vanish on 7' then it is a limit cycle
condition. This can be checked by calling the built-
in MAPLE procedure Regularize.

In the second example, we follow the work of
[Yu & Corless, 2009] on a special cubic system that
yields nine limit cycles with the help of numeri-
cal computation. Unlike the case of quadratic sys-
tem, the existence of nine limit cycles for this cubic
system has not been confirmed by purely symbolic
algorithm. Due to the large input focus value sys-
tem, the modular method based on regular chain
theory is applied.

5.1.

Consider the general quadratic system [Yu & Cor-
less, 2009], which is the system (23) truncated at
third-order terms,

t=ar+y+ 22+ (b+2d)zy + cy?,
U= —x+ay+de? + (e — 2)zy — dy?,

Generic quadratic system

(16)

where «,b,c,d and e are independent parameters.
It has been proved [Bautin, 1952] that this system
has three small-amplitude limit cycles near the ori-
gin. « is set to zero to make the zero-order focus
value vg = 0, then the remaining focus values up to
vy are obtained using the perturbations method,

1
vy = — <@> (¢ +1)(20bc? + 19bce — 18bc + 30dce + 18b + 5b® + 3be + 56d°b — 6de?

— be? + 34b%d + 30de)

V3 = —
<663552

) (c 4+ 1)(112800dec? — 33564bec? + 68944b%dc® + 1054be®c + 10224dc? e 4 151200dce

+ 4746be? ¢ — 52320de’ ¢ + 238080d3ec — 1400b%de? + 7776dce’ + 26409be?c? + 104160dc3e

+ 71500bc®e + 98304bd> ¢ + 1764bce + 130176bd? e — 15568bd>e? + 22510b%ec + 36288b%de
+250112bd?c* — 82464b%dc + 267136bd%ec + 126464b%dce + 87156b + 88344bc* — 1071be>

— 30132be 4 292608d%b — 99792de? + 142560de + 118800b%d — 82128b¢> — 35526b° ¢

— 37248d3€? + 276406 d + 127536b%d% — 94b%e? + 222208bd* — 1968de* — 83be* + 270208b d>

+4756bc + 798503 c? + 1110be> 4 7014b%e + 238080d° e + 24096de® + 40176bc 4 4473b% + 2293b°),

(17)
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1
= | 590050501 1)(2 2 4 21 2203 — 20490129602 ¢t d — 413 2 2
4 (238878720> (c+ 1)(258892800d" be + 82198656b° c*d” — 204901296b”c*d — 56338704b° c*d

+ 83170203 ce® + 263761920bcd* — 119804160bc* d? + 8476608b° 2 e? — 29882016b* ¢*d

+ 183891453 c®e + 3850887b° ce — 17649bce® + 31704606bc* e — 10436580bc” e + 7987025bc> €3

+ 742995bc% et + 344856de?b? 4+ 157049280dec? — T783989eb’ ¢? — 12255624bec® — 59918688b% dc>

— 2618973be> ¢ — 83645568dc? e? + 150426720dce — 3031152¢%bc® — 179620608b2 cd® + 208343040bd* ¢
+ 7007904be’ ¢ — 129060864de? c + 881619¢3bc? — 21854976d be? + 845184d>be? + 228864000d° ec
+307564800d> ec® — 116280de*b? — 3741696d°b%e® — 1332000d%be* — 3115008d° 22

+19222272d3 €3¢ + 31738560de? ¢* + 65987040dec® + 534120de” ¢ + 10858872de> ¢ — 911400de™ ¢

+ 522720000d° ec — 115056768dch* — 263984400 de? + 46163304dce® + 68285280edc* + 3137580be ¢
+111913920dc? e — 3016411200 cd? — 105235956ebc? — 1264968bc> e + 296421120bd? ¢ — 1935048e2b>c
— 427123200dc3b? — 19519380bce + 98286048bd? e — 96552720bd%e? — 16922112¢%dc?

— 325651200bd? ¢® + 20525499b° ec — 145720320e% d3 ¢ + 604638¢*be + 210635283 dc? — 7734480 de
+ 35263080b% de 4 218522880bd%c? — 209088002 de + 493843200ed> ¢ + 341404704bd> ec

+ 146193336b% dce — 62052000 bd?c 4 342006432¢bd? ¢? + 65831736eb*dc? — 18987024¢2 b dc

+ 158803248b° cd?e + 338098944b? cd>e 4 38615568b* cde + 508351202 cde® + 59250288bc? d?e?

+ 368805984bc> d%e + 393851904bcd* e 4+ 13093680bcd? e® + 37870296b% 2 de? + 130825704b° 2 de
+4543992b% de® + 1621747200 d>e 4 6932510403 d?e + 17444112b* de + 21348144d%be? + 599238000
+ 66397320bc* + 15739110be® — 48688452be + 299427840d%b — 123591744de* + 102993120de
+98507664b%d + 66713760bc> — 27441504b° ¢ — 201636864d°e? — 23445216b*d + 162983520 d>

— 46397520 €* 4 371957760bd* — 15410088de* 4 685611be* + 263984256b% d°> + 148406760bc

— 30238380b%c? — 3321567be® + 13493385b% ¢ 4 336441600d° e 4 61004664de® — 59586960bc”

— 1009560483 ¢® — 13151334b° ¢ — 3304704d3e* 4 23561376d2b° + 92370176d>b* + 209773824d* b
—103128de® + 3281784db5 + 142458880d°b + 262901760d°b* — 4431e*b> + 6355¢5h + 30825¢2b°
—29515776d° e? — 4126049463 ¢ — 3141747b°¢? — 75978440bc° + 624246€>b> — 103137¢°b

+ 1883415eb” + 44268288d° e 4 1981416de® + 228864000d° e + 49163760bc — 5071734b°

— 4189203b° + 193675b"). (18)

The existence of three small-amplitude limit cycles requires that the focus values vy, v1,vo vanish, while
vs # 0 [Yu & Chen, 2008]. Since vy is already zero, the triangular decomposition of v; and vy gives the

following regular chains.
d =0, e =0, e—bc—5=0,
c+1=0, (19)
b=0, b=0, b=0.
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Note that these regular chains represent the
common roots of v; and wve. They are candidates
of center conditions or the conditions for the exis-
tence of three limit cycles, depending on whether
vy vanishes on them or not. In this case, it is easy
to check by directly substituting each regular chain
into v3. However, in a more general case with a large
input system, regular chains obtained by triangu-
lar decomposition are not simple. It cannot be sub-
stituted into higher-order focus values. Therefore,
two different methods are introduced to verify the
properties of the regular chains. The first method
involves the triangular decomposition using one or
few more higher-order focus values, while the sec-
ond method uses the Regularize procedure to check
whether the input regular chains make the next
focus value vanish implicitly.

In the first method, another triangular decom-
position using all three focus values vy, vy and vg is
conducted. The newly generated regular chains are
then compared with the ones obtained using only v;
and ve. The triangular decomposition of v1,vs and
v gives the new regular chains,

d=0, e=0,
c+1=0,
b=0, b=0,

d2+2c2+c:O, (20)
e—95c—5=0,
b=0.

Comparing with the regular chains in (19) gener-
ated from vy and wvs, the first three regular chains
{c+1 =0}{d = 0,b = 0},{e = 0,b = 0} are
identical. This indicates that on these three regular
chains v3 vanishes as well, therefore they are center
conditions. Now consider the fourth regular chain,
d? + 2¢? 4+ ¢ must also be zero in order to make
vs vanish on {e — 5¢ — 5 = 0,b = 0}. Therefore
{e —5c—5=10,b=0,d*+2c* + ¢ # 0} is a con-
dition for the existence of three limit cycles, while
{e—5c¢—5=0,b=0,d?+2c®+c = 0} is a possible
center condition.

To further verify the result, one can conduct the
triangular decomposition with one additional focus
value vy, which yields,

d=0, e=0,
c+1=0,
b=0, b=0,

d?> +2c¢% +c=0,
e—5c—5=0,
b=0.
(21)

These are exactly the same regular chains as that
given in (20). So vy vanishes on the regular chain
{e —5¢—5=0,b =0,d*+ 2 + ¢ = 0}, which
confirms that it is a center condition.

The advantage of this method is easy to see
how the results are verified. However, the trian-
gular decomposition computation with additional
higher-order focus values could be very heavy, and
sometimes impossible to compute. Therefore, we
introduce another method which is less illustrative
but computationally efficient.

The second method uses the built-in MAPLE
procedure Regularize. Recall from Example 6, Reg-
ularize takes a polynomial p and a regular chain T’
as input, in this case the polynomial is v3, and T’
is chosen from (19). It returns two lists. The first
one consists of the regular chain 7). such that p is
regular modulo 7;.. The second list consists of the
regular chain 7T, such that p is zero (or singular)
modulo T7,. If the first list is empty, then p is zero
modulo the input regular chain 7', implying that
T will make vg vanish. If the second list is empty,
then p is regular modulo 7', which implies that this
regular chain will make p # 0.

After the triangular decomposition of v; and
vy the regular chains in (19) are then used to reg-
ularize v3. The Regularize process shows that for
the first three regular chains in (19), the first out-
put list is empty, implying that the first three reg-
ular chains make wvs vanish. For the last regular
chain, the second output of the Regularize proce-
dure is empty, indicating that the last regular chain
makes vs # 0. One can also use Regularize on w4
with respect to each regular chain in (19) as well to
further verify, which gives exactly the same result
as that obtained using the first method. Compared
to the first method, the Regularize procedure takes
much less time in computation. We shall apply the
Regularize method in the next subsection to com-
pute nine limit cycles for a special cubic system.

5.2. A spectial cubic system

A general normalized cubic system with a fixed
point at the origin has the form:
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i = a7 + apry + azr? + a7y + apy?

+ azox® + anx?y + ar2wy® + apsy?, (22)
1 = b1ox + bo1y + baox? + by zy + booy?

+ b3ox® + by + biawy® + bosy?®,

where a;;’s and b;;’s are parameters. According to
[Yu & Corless, 2009], the system can be simplified
into
& =ar+y+ax®+ (b+2d)zy + cy?
+ fa? + gty + (h — 3p)ay® + ky?,
U= —x+ay+dr® + (e — 2a)zy — dy? + €3
+(m —h—3f)a*y + (n — g)zy® + py?,

(23)
where a can be an arbitrary nonzero constant, usu-
ally set to a = 1 by a proper scaling.

It has been proved [Liu & Li, 1989] that o =
b=d=e=h=n=m =0 is a center condition
for the origin. In order to find nine limit cycles we
need vy = -+ = vg = 0, but vg # 0. We follow the

set-up of [Yu & Corless, 2009] and set the following
five parameters to be zero:
a=b=d=e=h=0. (24)
By the perturbation method, eight focus values are
computed, with vy given by
m
— 25
:, @)

which obviously indicates that m = 0 to ensure
v1 = 0. With this new condition, the second focus
value vy becomes

1 1

“gm T (26)

Spn’
Note that nf is a factor in vz and all higher-order
focus values. This indicates that either n = 0, lead-
ing to the center condition [Liu & Li, 1989], or a
new candidate condition for center: « = b = d =
e=h=m= f=p=0. So, in the following, we
assume nf # 0. Thus, the only choice of making
ve = 0 for the existence of limit cycles is

p=1r (27)

Under this condition, v3 has the following form:

B 1
192fn(3n + 15¢ — 30c + 45 — 35¢% 4+ 15k)
(28)
Since nf # 0, an easy choice of making v3 vanish is
n = —5(+10c — 15+ ?;)—58 — 5k. (29)
Now there are five free parameters,

e k.l fg, (30)
remaining in the five focus values wvy4,vs,...,vs.

Using the above results and removing the common
factor nf and a constant factor in the resulting
focus values we obtain

vy = 648 — 162¢ — 516¢% + 720 + 81k + 459 — 30gc — 434¢® + 60¢l + dck — 168¢* + 56¢°0 — 24>

—6gk — Tc?g — 6g¢ — 30kl — 602 + 21kc?,

(31)

vs = 231336 — 265836¢3k + 37350k + 6174¢% gl — 4428kl + 1764¢? gk — 66204gc — 184098¢*¢

+40392gk — 133182¢2g + 2500294 + 74610k¢ — 361344kc? + 270¢%0% — 14448¢* ¢ — 101871 ke

—1944k0? — 7506k>¢ + 24165k>c* — 13587¢t g — 15759 ¢* — 54090 — 8642k

— 13860 f2c* — 86420 — 540¢°k — 3618gk? — 810g¢* — 34296¢3¢ — 156888ck — 135828¢¢

— 459092 ¢ 4 360cl? 4 40104ckl + 6912g¢l — 3348gck — 41580¢ g — 118802 ¢ + 38394ck?

— 49755662 + 655080¢% + 548132¢* + 60525k2 + 1611002 + 187306¢° — 27003 + 541528

— 5832k3 4 688592 + 1782012 — 607122¢ + 115398¢ + 363339k + 131625¢, (32)

vg = 323074872gkc* £ + 46434531132¢% k — 10614656412k ¢ — 4323518316¢° gf + 1747144728kl

— 8537169420¢% gk + ATT367TT6k> 20 — 242856468kc* (% + 512185086kc* ¢ — 42147009 (2

— 1032976269 ¢ — 762314922gkc* — 347956569k¢% — 93514176gk> ¢ + 2345578569k ¢
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+191130624 f2¢*¢ — 80777088 f2kl — 26967924¢% ke? — 33543720¢° kl + 29212704¢° ¢
— 428849856 f2kc? — 189314496 f2 gc? — 18942336 f2 gk — 18942336 f2 g¢ + 3496808634¢° k

— 12158345106g¢ + 494477136gckl — 5648392872¢%( 4 65308296069k — 8063653761c%¢g

+2727654102¢¢ + 5077228878k( — 14369006205kc> — 2308784724¢? (% + 11211047880 ¢

+ 26955499191 kc* + 847752156k(% + 2178967392k ¢ — 10546897392k2 ¢ + 11692092699¢* ¢

— 1454945976¢° 2 + 3247257609 ¢ + 1155995712 f%k — 3206863872f%¢* + 492687360 f2¢

+ 522334332¢° k + 1571957280gk> + 4097825640 + 1168019685k’ — 2094271203

+499013568k% ? — 53343360k3¢ — 22915872k2 0% — 1728185544k c* + 11043864 ¢3

— 527082024¢5%¢ 4 144765594¢1 12 — 26181792¢%k? — 73619284 (% — 296833324° ¢

— 66407040¢k> + 512530473gc® — 768852003 — 11975040 f2¢? — 287005824 f2 ¢*

— 68802048 f2 k> — 15098076¢° ¢® — 3143448 k — 3143448¢>¢ + 617404032¢k>

— 449534652¢° ¢ 4+ 17856001944¢3 ¢ — 4222690272¢% k? — 181543032¢° ¢ + 2704428702¢¢°

— 1408703616 f2¢3 — 31447268118ck — 38578680¢° ¢ — 12575398716¢¢ — 909902808¢° ¢

+1301328¢3 02 + 16674336¢03 — 1886860656¢(% — 10011607128¢k! — 4634256888gck

+ 2332177922 ¢l + 337929408gck? + 13145754963 k(¢ — 247758264ck(? + 365912640ck> ¢

— 561043368¢g¢> ¢ + 150984gcl? — 2608877592g¢> k — 208987776 f2ck + 40376880¢% ¢/

—91362168¢° ck — 251475840 2 gc + 14327069940¢% g + 3772137602 g — 1438591104 f%¢

— 7726593888ck? + 2289369096 + 11186921988¢2 4 49162023090¢> — 4045402440

+ 7440988536k + 19635172740% — 46874362782¢° + 176926680¢> — 195643927965

+1527553728k3 + 13145882044 + 3474845568 f2 — 369870578¢" — 47900160k* + 176215256¢°

— 34700400 + 57868020g° — 17873296866¢ + 4874228136 + 5523913665k + 3624801597¢. (33)

The other two polynomials,

v7:v7(c,f,g,k,€), U8 :U8<Ca f,g,k,ﬁ), (34)

with degrees 10 and 12, are too large to be presented
here. These five focus values are input to the tri-
angular decomposition algorithm. To simplify the
computing process, a better order was generated
before the triangular decomposition (by using the
built-in MAPLE procedure SuggestVariableOrder),

f>9g>0>k>c (35)

According to the size of the input system, a
sufficiently large prime,

p = 304166505300000047, (36)

with 2% bits, is chosen to conduct the modu-
lar triangular decomposition. Note that the prime

|
chosen here guarantees the success of modular

algorithm.

The program was successfully executed to gen-
erate seven regular chains. In order to be lifted, they
are mapped into two equiprojectable regular chains.
The first one is omitted since it contains f = 0. The
second regular chain is

f2 4+ Q1(c) 4+ 109048982804251206,

g+ Qa(c) + 213759544982554218,

¢+ Qs(c) + 212357665370487176, (37)
k + Q4(c) + 235643319065695752,

Qs(c) + 249698644301675923,

where Q1(c),Q2(c),...,Qs(c) are polynomials in ¢
with order 425,425,425,425 and 426, respectively.
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This regular chain is lifted using the same prime
given in (36) to obtain,

Ri(c)f* + Si(e) + P,
Ra(c)g + Sa(c) + Pz,
T = ¢ Rs(c)l + Ss(c) + Ps,
Ry(c)k + Sy(c) + Py,
Ss(c) + s,

where Ry(c),..., Ry(c),S1(c),...,S5(c) are polyno-
mials in ¢, with order 426 in S5(c) and 425 in the
rest; Py,..., P; are big constant terms, and approx-
imately equal to

(38)

P ~ 0.9531642255 - 1027,
Py ~ 0.6286620222 - 101432
Py ~ 0.6286809511 - 101432,
—0.2811943803 - 101428,
~ —0.1285851059 - 10717,

;u
2

o
2

Since these constants are long, only their first 10
digits and their size are presented. In order to check

if vg vanishes or not on the common roots of 1T', one
can follow the quadratic example, and use Regular-
ize procedure. However, since T is very large, we
check this by the following steps instead. Firstly,
we compute T, = T mod g, and check if T}, is
a regular chain which turns out to be true. Sec-
ondly, we take vg mod g and 7}, as the input for
Regularize, and find out that vg mod @ does not
vanish on 7,. According to the specialization prop-
erty of resultants [Mishra, 1993] (or Theorem 4 in
[Chen & Moreno Maza, 2014]), this is a sufficient
condition for vg # 0 on T. Therefore, we have
found the conditions such that v1 = v = -+ =
vg = 0 but vg # 0, indicating that there exist
at most nine limit cycles. Note that one require-
ment during the lifting procedure is for the Jaco-
bian to be nonzero, which satisfies the condition of
Theorem 2. This implies that all the positive real
roots of the second regular chain lead to nine limit
cycles.

By isolating the real roots of the obtained reg-
ular chain, we found that it has 78 real roots. The
computer outputs of the intervals for the first sev-
eral ones are shown below:

[f
1

[£

[f

[-11/32, -41/128], g = [-93359084781/1073741824,
[1244408533/67108864, 39821073059/2147483648],
[64099524509/68719476736, 128199049023/137438953472] ,
[-121790475331111530718965725230856466924457099433735144066985116204186867199659306166505138577217\
441/341757925747345613183203472987128338336432723577064443191526657251555156124902488003673933909\
85216, -38059523540972353349676789134642645913892843573042232520932848813808395999893533177032855\
80538045/1067993517960455041197510853084776057301352261178326384973520803911109862890320275011481\
04346828811

-186718169557/2147483648] ,

[41/128, 11/32], g = [-93359084781/1073741824,
[1244408533/67108864, 39821073059/2147483648],
[64099524509/68719476736,128199049023/137438953472] ,
[-121790475331111530718965725230856466924457099433735144066985116204186867199659306166505138577217\
441/341757925747345613183203472987128338336432723577064443191526657251555156124902488003673933909\
85216, -38059523540972353349676789134642645913892843573042232520932848813808395999893533177032855\
80538045/1067993517960455041197510853084776057301352261178326384973520803911109862890320275011481\
04346828811

-186718169557/2147483648] ,

[-19/4, -35/8], g = [-5239003/262144, -83824045/4194304],

[292265139/16777216, 1169060569/67108864] ,

[-247962889/134217728, -991851547/536870912],
[-115680680925314261355705483664130489454918902845080667457220728245158022295965108754679631530185\
579177248617/366959778558411441857731343248333910527450398266924979798014214301907660174157569291\
20296849762010984873984, -14460085115664282669463185458016311181864862855635083432152591030644752\
786995638594334953941273197397156077/458699723198014302322164179060417388159312997833656224747517\
7678773845752176969616140037106220251373109248] ]

The total time used for the modular triangular decomposition is 1622615.24 sec (almost 19 days), on

a computer with Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83 GHz and 8 G of memory. Isolating the real
roots of the regular chain takes about nine hours in Maple on one node of a cluster. The node has four
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processors, each of which is a 12-core AMD Opteron(tm) 6168 @ 0.8 GHz processor, and total memory of

250 GB.

To illustrate the critical focus values, we take one solution with 1000 significant figures (only the first

50 decimals are printed for convenience):

a=b=d=e=h=m=0,
p=1

35
n=—5+10c — 15+ §CQ—5k,

c = —3.5636474286524271074464850122360152178067239603615 . . . ,

f = —0.33257083410940510824128708562052896225706851485676 . . . ,

g = —86.947423200934377419805695811344083098600366046486 . . . ,

[ =18.543132142599506651625032427714327516815314466604 . . . ,

k = 0.93277084686805751726888595860136166253862306463035 . .. .,

which yields the following approximations for critical focus values:

—0.2628637706 - 1071088 g = 0.9410263940 - 10 .

.10—1078

v =0, vy =

v =0, w5 =—0.3957953881

vy =0, wg=—0.5385553132 1071076
v3=0, w7 =—0.5135260069 - 1071074

vg = —0.4251758871

and the determinant of the Jacobian matrix is
—0.4633625957 - 10'2%°, This clearly indicates the
existence of nine limit cycles. By increasing the pre-
cision used to 2000 digits, the size of vy4,...,vg is
reduced to O(107209). These numbers are zero in
actuality. By constructing isolating intervals for the
real root earlier, this was proved. The numerical
computation here merely illustrates the proof.

6. Conclusion

Quantitative analysis of polynomial dynamical sys-
tems, such as determining the number of small-
amplitude limit cycles around the origin, naturally
leads to solve systems of multivariate polynomial
equations and inequalities. Proving formally that
such a semi-algebraic system is consistent, and, if it
is, computing all its solutions or a sample of them,
are goals that make the use of symbolic and exact
methods desirable.

In this paper, we have demonstrated that the
theory of regular chains possesses powerful algorith-
mic tools to achieve those goals. We have applied
to large input focus value systems an algorithm for

. 10—1072

)

computing triangular decompositions of polynomial
systems via modular techniques. From these calcu-
lations, we have obtained conditions for the exis-
tence of limit cycles and potential center conditions.
One example, in particular, exhibiting nine limit
cycles shows the computational power and efficiency
of these tools from regular chain theory.

These tools, available in the RegularChains
library in MAPLE can be applied to solve other poly-
nomial systems arising from real physical or engi-
neering systems.
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# Read in the focus values

:= SuggestVariableOrder(eqs); # Suggest a best order for the variables
# Construct the polynomial ring
dec := Triangularize(eqs, R, output=lazard);

# Display the output which contains four regular chains,

# [[c+1], [d, bl, [e-5%c-5, bl, [e, bll;

# Now we check if $v4$ vanishes on each of the regular chains

#Methodl: using Regularize.
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Regularize(v4, dec[1], R);

# [[0, [regular_chain]]

# This output shows that v4 vanishes on zeros of dec[1];

# This is equivalent to say that dec[1] is a center condition.

Regularize(v4, dec[2], R);
# Same as above

Regularize(v4, dec[4], R);
# Same as above

Regularize(v4, dec[3], R);
# The output is [[regular_chain], [1],
# which says that v4 does not vanish on all the zeros of dec[3]

# Method2:

dec2 := Triangularize([v2, v3, v4], R, output=lazard);

Info(dec2, R);

# [[c+1], [d, bl, [e, bl, [d"2+2*c"2+c, e-5*c-5, bl]

# According the result from dec (v2, v3 only),

# [c+1], [d, bl, [e, bl are center conditions, since v4 vanishes on them.
# d"2+2%c”2+c must be zero in order to make v4 vanishes at [e-5%c-5, b].

# Thus, [e-5*%c-5=0, b=0], but d"2+2%c"2+c<>0 is condition for limit cycle.

dec3 := Triangularize([v2, v3, v4, vb], R, output=lazard);
Info(dec3, R);

# [[c+1], [d, bl, [e, b]l, [d"2+2*c"2+c, e-5*c-5, bl]

# By dec2, all the components from dec2 makes vb5 vanishes,

# which means [d"2+2%c"2+c, e-5*%c-5, b] is a new center condition.

Appendix B
Maple Input for the Cubic Example

read "focusvalues_cubic";

with(RegularChains) ;

F:= [F1, F2, F3, F4, F5];

R:= PolynomialRing[vars]; # Construct the polynomial ring

vars:= SuggestVariableOrder(F); # Suggest a best order for the variables

p := 304166505300000047; # Pick a large enough prime

Rp := PolynomialRing(vars, p); # Construct the polynomial ring mod p

dec := Triangularize(F, Rp); # Compute the triangular decomposition modulo p
map (NumberOfSolutions, dec, Rp);

# Check the number of solutions of each output regular chain
# [474, 214, 112, 34, 18, 1, 1]

ndec := [seq(op(NormalizeRegularChain(rc, Rp, ’normalized’=’strongly’)), rc=dec)];
# Normalize each regular chain

edec := [op(EquiprojectableDecomposition(ndec, Rp))];

# Compute the equiprojectable decomposition, which contains two regular chains

# edec[1], edec[2]
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with(MatrixTools);

jml := JacobianMatrix(F, edec[1], Rp); # Jacobian of edec[1]
MatrixTools:-MatrixInverse(jml, edec[1], Rp);

# Check if the Jacobian is invertable, which returns false
jm2 := JacobianMatrix(F, edec[2], Rp); # Jacobian of edec[2]
MatrixTools:-MatrixInverse(jm2, edec[2], Rp);

# The Jacobian of edec[1] is zero
Equation(edec[1],Rp); # Show the equations in edec[1], which contains f=0
# This is a known center condition

# The Jacobian of edec[2] is non-zero

Lift(F, R, edec[2], 10, p); # Lift the edec[2]

eqn0 := Equations(dec, Rp); # Extract the equations from edec[2]
#check if the five equations is initial is O mod p
expand(Initial(eqnO[1], R)) mod p;

expand(Initial(eqnO[2], R)) mod p;

expand(Initial(eqnO[3], R)) mod p;

expand(Initial(eqnO[4], R)) mod p;

expand(Initial(eqnO[5], R)) mod p;

#check if still a regular chain mod p;
eqp := map(x->expand(x) mod p, eqO);

rc := Empty(Rp);

rc := Chain(eqp[5..-1], rc, Rp); # Reconstruct the regular chain mod p
Regularize(Initial(eqp[4], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp[4..-1]), Empty(Rp), Rp);
Regularize(Initial(eqp[3], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp[3..-1]), Empty(Rp), Rp);
Regularize(Initial(eqp[2], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp[2..-1]), Empty(Rp), Rp);
Regularize(Initial(eqp[1], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp), Empty(Rp), Rp);

# It turns out that it is still a regular chains mod p

read "v9": # Read the next focus value v9

Regularize(v9, rc, Rp); # Check if the regular chain makes v9 vanish
#[[regular_chain], []]

# v9 does not vanish on the regular chain, so the eq0 deals to limit cycles.
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