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1. Introduction

One of the well-known mathematical problems is the second part of Hilbert’s 16th problem, which
considers the maximal number and relative positions of limit cycles bifurcating in polynomial vector fields
of degree n, given by

i':fn(xvy)7 y:gn(xﬂy)> (1>

where the dot denotes differentiation with respect to time t. Since Hilbert proposed the problem in 1900,
a great deal of works has been done in studying this problem, for example see [1-8]. Let H(n) denote the
upper bound of the number of limit cycles that system (1) can have. Chen and Wang [1], and Shi [2] proved
the existence of 4 limit cycles with {3,1} distribution, i.e., H(2) > 4. However, this problem is even not
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completely solved for n = 2. For cubic systems, Yu and Han [4,5], Liu and Huang [6] proved H(3) > 12
by studying Hopf bifurcation. Later, Li et al. [7] constructed a Hamiltonian system and applied proper
perturbations to prove H(3) > 13. On the other hand, Liu and Li [8] investigated the cyclicity problem for a
Za-equivariant cubic system, and showed that this system can have 13 limit cycles, with a large-amplitude
limit cycle at infinity, surrounding 12 small-amplitude limit cycles around two symmetric foci.

To completely study bifurcation of limit cycles in system (1), it is necessary to include studying the
bifurcation of limit cycles at infinity. The bifurcation of limit cycles at infinity was studied by Shi [2]
30 years ago, and later the birth of a unique limit cycle at infinity is shown by Sotomayor [9]. In order to
find maximal number of limit cycles bifurcating from infinity for cubic systems, Blows and Rousseau [10]
computed the first five Lyapunov quantities at infinity for a class of cubic systems:

{ i =\x —ny + Az + (B +2D)xy + Cy* + Mox(2? +y?) — y(2? +y?), @)

y=nz — Ay + D2* + (E — 24)zy — Dy? + z(2* + y*) + Aay(2? + ¢?),

and studied the limit cycles bifurcating from the origin and infinity. Liu and Chen [11] constructed an
example of cubic system with 6 limit cycles bifurcating from infinity. Liu and Huang [12] proved that a
cubic polynomial system can have 7 limit cycles near infinity. Actually, studying the bifurcation of limit
cycles at infinity is quite similar to studying Hopf bifurcation at the origin, via a transformation based on
Poincaré return map. However, a uniform upper bound of the number of limit cycles bifurcating at infinity
for polynomial vector fields is still unknown.

Recently, increasing interest has been focused on bifurcation of limit cycles in discontinuous or non-
differentiable, i.e., non-smooth dynamical systems. In this paper, we consider the piecewise polynomial
system (or the so-called switching polynomial system) with a switching line on the z-axis, given in the form
of

+oo “+oo
(Z X;j(:vyy,A%ZYJ(w,yJ)) , for y>0,
k=1 k=1

“+oo “+o0
(Z X;Z(f&l/,/\),ZYk_(x,y,/\)) , for y <0,
k=1 k=1

where Xff(;v,y,)\) and Yki(x,y,)\) are homogeneous polynomials of degree k in x and y , A € 4 C R? is

(@,9) = ®3)

a parameter vector. System (3) includes two systems: the first one is called the upper system, defined for
y > 0, and the second one is called the lower system, defined for y < 0.
The investigation of the more general piecewise systems, described by

- (X" (2,9), Y (z,y)), for y>0, A
(#9) = { (X (z,9), Y (xz,y)), for y <0, )

started a half century ago [13-15]. Here, X* (x,y) and Y *(z,y) are real analytic functions in a neighborhood
of the origin. Note that system (4) is usually considered as a differential system with discontinuous right
sides, and simply called discontinuous system. Such systems can exhibit rich complex dynamical phenomena.
Since the analytic functions X*(z,y) and Y*(x,y) in (4) can be expanded into the form of (3) with the
coeflicients treated as parameters, researchers generally consider them equivalent and use either one as they
wish. Filippov established some basic qualitative theory in [15] for such discontinuous systems. In the study
of analytic system (4), the cyclicity problem is fundamental in the qualitative analysis. Coll et al. [16]
developed a method for computing the Lyapunov constants to study bifurcation of small-amplitude limit
cycles. They derived the explicit formulas for computing the first three Lyapunov quantities. Let P(n)
denote the maximal number of limit cycles for system (3) of degree n. Gasull and Torregrosa [17] obtained
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P(2) > 5, showing that quadratic piecewise polynomial systems have two more limit cycles than that of
quadratic smooth polynomial systems. Moreover, center conditions have been obtained for piecewise Kukles
system [17], piecewise Liénard system [18] and piecewise Bautin system [19]. Note that planar smooth linear
systems cannot generate limit cycles, but piecewise smooth linear systems can. In fact, Han and Zhang [20]
proved P(1) > 2. Further, Huan and Yang [21], and Freire et al. [22] respectively proved P(1) > 3. Buzzi
et al. [23] studied the limit cycles that bifurcate from a linear center using a piecewise linear perturbation in
two zones. They proved that the maximal numbers of limit cycles that can appear with up to a Nth order
perturbation are 1, 1, 2, 3, 3, 3,3 when N = 1,2,...,7. Llibre et al. [24,25] studied the limit cycles that
bifurcate from the quadratic and cubic isochronous centers when the systems are perturbed within the class
of piecewise quadratic and cubic polynomial differential systems, respectively. Chen et al. [26] constructed a
class of piecewise quadratic Bautin systems to show P(2) > 8. Recently, Tian and Yu [27] gave a complete
classification for the quadratic Bautin system with a singular point being a center, and proved P(2) > 10.
Li et al. [28] considered a piecewise cubic polynomial system to show that P(3) > 15.

So far, there are very few studies on bifurcation of limit cycles at infinity for piecewise polynomial systems.
Llibre et al. [29] obtained one limit cycle bifurcating from infinity in planar piecewise linear vector fields. Li
et al. [30] presented a piecewise cubic polynomial system which can have 7 limit cycles in the neighborhood
of infinity. In this paper, we develop a recursive algorithm to compute the Lyapunov constants at infinity
for piecewise polynomial systems, and apply it to study bifurcation of limit cycles in the following piecewise
cubic polynomial system,

)
(* +¢%)
)
(=* +y°)

Arz + Aoy + Asa® + Ayzy + Asy® + (ux — )

&\ <A6x + A7y + Aga® + Agxy + Avoy® + (z + py
(y) B Bix + Byy + Bsaz? + Bywy + Bsy® + (ux —y)
(BGCE + Bry + Bsa® 4+ Boxy + Bioy® + (z + py

>7 for y >0,

>7 for y <0,

where (Al, ey A9, By, ... ,Blo) € R%,

The rest of the paper is organized as follows. In the next section, we introduce a recursive procedure to
compute the Lyapunov constants at the origin of system (6), which can be carried out by using a computer
algebraic system such as Mathematica, Maple. Using this method, we study the center conditions and limit
cycle bifurcation for one class of system (5) in Section 3. In Section 4, we develop a recursive procedure
for computing the Lyapunov constants at infinity for piecewise polynomial systems. In Section 5, we give a
complete calculation of the Lyapunov constants at infinity for a special case of system (5) and investigate
possible simultaneous Hopf bifurcations at the origin and infinity. We will show that 13 limit cycles with
either {9,4} or {4,9} distribution at the origin and infinity can exist in this system. In Section 6, we
present another example of system (5) to show 11 limit cycles bifurcating from infinity, with a concrete
numerical example to illustrate the existence of 11 limit cycles. This is a new lower bound on the number
of large-amplitude limit cycles for such polynomial cubic systems near infinity.

2. Computation of Lyapunov quantities

In this section, we present a method for computing the Lyapunov constants at the origin of the piecewise
polynomial system,

<5xﬁy+ZX]j(m7y)a Bx+5y+zyk+(xay)> ) for y>07
k=2 k=2

(#,9) = n n
<5z—ﬁy+ZX;(x,y)7 Bm+5y+ZYk_(x,y)>, for y <0,

k=2 k=2
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with 8§ > 0 and § € R. For analytic smooth systems, the computation of Lyapunov quantities is the
classical method of determining the center type equilibria and weak foci. We present some basic formulas
for computing the Lyapunov constants of the general differential system,

o (7)
k=2

where Xy (z,y), Yi(z,y) are homogeneous polynomials of degree k in x and y. Introducing the polar

coordinate transformation, x = rcos 6 and y = rsin @, into (7) yields
dr o+ >, Tr(0)r*

6~ BT 5p, OO ®)

where

7%(0) = cos 0 X (cos 8, sin 0) + sin 0Yy, (cos 6, sin 6),

9
O1(0) = cos 0Y}(cos b, sin 0) — sin 0. X (cos 0, sin 9), ©)

in which Xy and Y} are polynomials in sin 6 and cos §. Further, (8) can be expressed in the power series of

T as

d—g = Ry(0)r, (10)
k=1

where Ry (0) is a polynomial in sin § and cos 6. Note that

EE e S SRR

=ﬁ[5r+kz_2fk(9 1+ i o).

It follows from (10) and (11) that R;(f) = & and

B
k—1
Ri(6) = %[Z(n(e) O i(0) + 68 1(0) + Ti(0)], K >2. (12)
=2

The general solution of (10) can be expressed as

=> w(0)p*, ol <1, (13)

i>1

where v1(0) = 1, v, (0) = 0, VE > 2. Substituting the above solution (13) into Eq. (10), we obtain
v’ (0) = %01(9) and

’Uk/(e) = Rk(t?)()k,k(é)) + Rk_l(é)).()k_lvk(ﬂ) —+ -+ R2(0)027k(9)7 k>2, (14)
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where (2; ;(0) are polynomials in v;(¢), 2 < < j. Further, we have
v1(6) = efog gde
0
w0) = [ Ra)io)s,
0
0al0) = | (Ra(0)08(6) + 2Ra(0)0a(0)01 (6)) 5,
0 (15)
va(0) = /0 (Ra(0)v1(8) + 3R5(0)v2(0)v7 (6) + Rz (8)(v3(6) + 2v3(0)v1(6)))db.

6
vk(H) = /0 (Rk(0)9k7k(0) + Rk—l(g)gk—l,k(e) +---+ Rg(@)(}z,k(ﬁ))d& k> 2.

However, as k grows, computation of vy () becomes more and more involved by direct integration. For
convenience, we present a method developed in [27] to simplify the computation, which only needs the use
of multiplication in the sum formula of trigonometric functions, which can be easily implemented using a
computer algebra system. Then, Eq. (14) can be rewritten as

3k—3
vp(0) = > Ti(0) sin(if) + D;(6) cos(if), (16)

i=0
where T;(0) and D;(0) are polynomials in . Thus, integrating the above equation results in
3k—3

Z / ) sin(i) 4+ D;(0) cos(i6) | d

243
= Z A;(0) cos(i6) + B;(0) sin(if),

where A;(6) and B;(0) are polynomials in 6.
Like for analytic systems, we also need something alike to deal with the piecewise polynomial system (6).
Using the polar coordinates @ = rcosf and y = rsin 8, system (6) can be written as

Or + Yoy T (O)r*
+

for 6 € (0,m),

g — B + Zk 2 @ (O)Tk v (18)
o ) 6 0)rk
FrTE s e

where 7 (6) and 6 () are polynomlals in sin § and cos 0 of degrees k+1. Suppose 1+ (p, ) = Zk>1vk (9)p*
and r~(p,0) = 3,5 vy (0)p" are respectively the solutions of the upper and lower systems of (18), satisfying
r(p,0) = r~(p,m) = p. Although a return map cannot be simply defined for system (6) like that for
smooth systems, we define the positive half-return map II*(p) = r+(p, w) and the negative half-return map
II~(p) = r~(p,2m). Then we can define the displacement function,

d(p) =M(p) —p=T"(IT"(p) —p =" Vir", (19)
E>1
as illustrated in Fig. 1(a). Here, Vj, is calle(% the kth-order Lyapunov constar;t of the piecewise polynomial
207 us
system (6). It is not difficult to get Vi = e # — 1 since IT*(p) = I~ (p) = e # p+ OF(p?). Thus, V; = 0 if
and only if § = 0.
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@) p)

(c)

Fig. 1. (a) Map I1(p), (b) Map II*(p), (c) Map (IT~)""(p).

Another method to compute the Lyapunov constants can be found in [17]. To make the computation
more convenient we substitute (z,y,t) — (x, —y, —t) into the lower system of (6) to obtain a new system,

k=2

n for y >0, (20)
k=2

which defines a new positive half-return map 1" (p) = r*(p,m) = >, < v 1, (7)p", as illustrated in Fig. 1(b).

Let (II7)~1(p) denote the inverse of the negative half-return map II~(p), as illustrated in Fig. 1(c). The

map (I17)"%(p) of (6) is equivalent to the map IT*(p) of (20). Coll et al. [18] proved that the following

expressions are equivalent:

9(f(p)) —p and f(p) —g " (p),

where f and g are analytic functions satisfying that f(0) = ¢(0) = 0 and f/(0) = ¢’(0) = 1. Gasull and
Torregrosa [17] introduced a new function,

o= (p)) —p=T"(p) — (IT7)"(p) = T*(p) = MF(p) = Y Wip". (21)
E>1

Thus, originally computing one positive half-return map and one negative half-return map becomes
computing two positive half-return maps. It has been proved [17] that the conditions V; =0,1<j <k—1,
Vi # 0 for (19) are equivalent to W; =0, 1 < j < k—1, Wy, # 0 for (21). Hence, in the following, we still use
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Vi instead of Wy, for simplicity. We can use the procedure for computing vlj(w) and vfk () to compute the
Lyapunov constants for the positive half-return maps I+ (p) and I (p), so that we obtain the Lyapunov
constants Vj, for piecewise polynomial system (6).

Note that the Lyapunov constant Vj is a polynomial in terms of the coefficients of the original piecewise
polynomial system (6). It is well known that the origin of system (6) is a center if and only if d(p) = 0 for
0 < p < 1, which means that for all integer k, V;, = 0. But the center problem for the piecewise polynomial
system (6) is more complicated. The following lemma can be used for proving the center conditions at the
origin of system (6).

Lemma 2.1 ([31]). If the upper and lower systems in (6) have the first integrals H (x,y) and H™(x,vy)
near the origin, respectively, and either both H'(x,0) and H™(x,0) are even functions in x, or H* (z,0) =
H~(x,0), then the origin of system (6) is a center.

Lemma 2.1 can be used to identify centers in the case that both the upper and lower systems are analytic
and have a center at the origin. In addition, there is another useful result, as given in the following lemma.

Lemma 2.2 (/28]). Assuming that 6 = 0, if system (6) is symmetric with respect to the x-axis, i.e., the
functions on the right-hand side of system (6) satisfy

X, y) = =X (2, —y), Y (x,9) =Y, (z,—y), (22)

or system (6) is symmetric with respect to the y-axis, i.e., the functions on the right-hand side of system (6)
satisfy

(23)

then the origin of system (6) is a center.

Lemma 2.2 redefines symmetry of piecewise polynomial systems, which can be used to derive the center
conditions for such systems. Moreover, the isolated zeros of d(p) = 0 near p = 0 correspond to the limit
cycles around the origin. The origin of system (6) is called 4-order (k € N) weak focus if there exists A, € 4
such that

It is well known that for the nonzero Lyapunov constant Vi of smooth polynomial systems, k£ must be an
odd number. However k can be any positive integer for piecewise polynomial systems. Based on Lemma 4
of [27], we have the following lemma, which gives the sufficient conditions for proving the existence of limit
cycles.

Lemma 2.3. If there exists a critical point \* = (aic, Gac, - - ., ake) such that Viy (A\*) = Viy,(A*) = -+ =

Vi (\) =0, Vi, (N) £ 0, with 1 =iy <iy < - < iy, and

a(‘/;17‘/i27"'7‘/;k)

det
a(alcz A2¢y -« - - 7akc)

(A9 | #0, (25)

then small appropriate perturbations about A = \* lead to that system (6) has exact k limit cycles bifurcating
from the origin.



T. Chen et al. / Nonlinear Analysis: Real World Applications 41 (2018) 82—-106 89

3. An example for limit cycle bifurcation at the origin

In this section, we apply the results presented in the previous section to consider an example of system
(5). We study the center conditions and the number of bifurcating limit cycles for a family of piecewise
cubic polynomial systems, obtained by setting A1 = Ay = By = By =9, Ao = By = —1, Ag = Bg =1 and
Ay = Ayp = By = Byp =0 in system (5), as

0z —y + Asa® + Asy® + (px — y)(a® +y°)
) ) NE for y >0,
(x) x + 0y + Agx® + Agzy + (x + py)(z” + y°) (26)
y 5z —y + Bsa® + Bsy® + (ux — y)(2® + ¢?)
9 9 5, |» for y <O0.
x + 0y + Bga® + Boxy + (x + py)(z” 4+ y°)

With the aid of a computer algebra system, symbolic computations are carried out to find the Lyapunov
constants associated with the origin of system (26), which is summarized in the following theorem.

Theorem 3.1. Assume p = 0. System (26) has a center at the origin if and only if 6 = 0 and one of the
following conditions holds:
I: Ag=Bg =0,
II: Ag— Bg =2A3+ A9 =2B3+ By =0, (27)
IIT: As— Bs = A3+ B3 = A5+ Bs = Ag+ By = 0.

Proof. For system (26), the Lyapunov constants with u = 0 are obtained by using the algorithm described
in the previous section:

‘/'1 — 6267'( _ 17
2
Vo = 3(148 — By),
1
V3 = _§A8(2A3 + Ag +2B3 + By),

2
Vy= _Z5A8<2A3 + Ag)(15A3 + 2A5 + 15B3 + 2B5),

5
Vs = @A8(2A3 + Ag)(Ag + B3)(49A3 4+ 12A5 + Ag + 4333)71'.

We compute the common zeros of Vi, k = 1,...,5, and consequently obtain the necessary conditions
I, IT and III. Letting Vi = V5 = 0 yields § = Ag — Bg = 0. Then, setting V3 = 0 we have Ag = 0 or
2A3 + Ag + 2B3 + Bg = 0. If Ag = 0, we obtain condition I, otherwise we have By = —2A35 — Ag — 2Bs.
Further, letting V4 = 0 yields (243 + Ag)(15A3 + 2A5 + 15B3 + 2B5) = 0. If 245 + Ag = 0, we obtain
condition II. Otherwise, we have Bs = —A5 — %(Ag + Bj3). Taking A3 + B3z = 0 yields V5 = 0, we obtain
condition III.

Now, we assume Az + B3 # 0 and let A5 = _49A;,.+A1x7§+43337 for which V5 = 0. Then we get
Ve = _ﬁAS(QAg + Ag)(As + B3)Fy,
Vi = 12901700‘48(2143 + A9)(Az + By) Fom,
Ve — _mAg(2A3 + Ag)(As + By)Fy,
Vo — _WMAS(QA;), + Ag)(As + Bs)Fy,
Vig 1 As(245 + Ag)(As + Bs)F,

~ 131407996059648000
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where

Fy = —10979A3 + 315042 4+ 275A3Ag + T6 A% — 22042A3 B3 + 2949 Bs — 1122583,

Fy = —142800043 + 5079237 A3 — 71400049 + 6271596 A% Ag — 90153 A3 A3 — 15024 A3
+ 1785078143 B3 + 12728596 A3 Ag B3 + 9A3 B3 + 2051021543 B3 + 6451920A9 B3
+ 7704375B3,

Fy = 975884378112A3 — 2350928519168 A3 — 277995110400 A2 — 578642190336 A3 A2
+ 279620812800 A5 — 39467409408 A3 Ag + 107337293824 A3 Ag + 42830143488 A3 A3 Ag
— 1604645683243 — 31414665216 A3 A3 + 54402121728 A2 AZ + 2283864064 A3 A3
+ 757891072 A3 + 1900941557760 A3 B3 — 9409968816128 A3 By — 112059437875 A3 A% B3
— 24718417920 Ag B3 — 13346193408 A2 Ag B3 + 174778343424 A2 A9 B3
— 49995276288 A3 AZ B3 + 3779264512A3 By + 99063336960083 — 14454233186304A3% B3
— 446693990400 A% B2 — 339699941376 A3 Ag B3 — 26928463872A2 B3
— 10085791268864 A3 B3 — 236149809152 A9 B — 2697406423040 B5 + 21861252000 A3 Ag
+ 156952867239 A3 Agm — 67341229200 A3 A3 7 + 10930626000 A5 Agm
+174951476532A3% Ag Agm — 79429215600 A3 Agm — 7178885091 A3 Ag A7
— 1686385008 Ag A3 + 516913738047 A2 Ag By — 91517202000 A3 Ba7w
+352331144172A3 Ag Ag By — 2939424957 Ag A3 By + 566367043725 A3 Ag B3
+ 183430396800 A5 Ag B3 + 208174546125 As B3,

Fy = 722478248755200 A2 Ag — 1519825046208512A3 Ag — 206009008128000 A3
— 148378343178240A3 A3 + 116530348032000A43 — 27711630213120A3 Ag Ag
+ 7066276593664 A3 Ag Ag + 39753005137920 A3 A3 Ag — 10947510927360 Ag A3
— 45644557320192A2 Ag AZ + - -,

F5 = —7401962187325440000A43 + 46486215725497712640 A% — 92550580964698357760 A3
+2068016746070016000A2 + 14697869051080212480 A2 A2 — 27162659432913960960 A3 A2
— 6378965932179456000 A5 — 2163878587851079680 A2 Ag 4 2543799232364544000 A%
+290191499164385280 A3 Ag + - - -.

Since the five polynomial equations contain only four independent parameters, As, B3, Ag and Ag with
the restriction Az + Bs # 0, there in general exist solutions such that Fy = Fo, = F3 = F, = 0 but Fj5 # 0.
We first consider the four polynomial equations: F} = F, = F3 = F; = 0 to find all real solutions of these
equations, and then verify if they satisfy the equation F; = 0. If none of the solutions does, then there do
not exist real solutions satisfying F} = Fo, = F3 = F, = F5 = 0, and thus the best result obtained from
Fy = F, = F3 = F; =0 yields maximal number of limit cycles.

Note that F» does not contain Ag and Fy contains only one term A2. So, we first solve A2 from F; =0
to obtain

Az = ﬁ [10979A43 + 22042A3 B3 + 1122583 — Ag(76Ag + 275A5 + 29Bs)],
which is used to simplify F3 and Fy. Then, we perform a symbolic computation on Fb, F3 and Fj to
eliminate As to obtain a solution,

Az = A3(Bs, Ay),
and two resultants:
Fy3 = I3(B3, Ag), Fay = F24(Bs, Ag).
Next, we again perform symbolic computation on Fb3 and Fb4 to eliminate Bjs to obtain the final resultant:
Fysoq = Fas04(A3),

which is a single-variate, 24th-degree polynomial in A2. Today the technique for solving single-variate
polynomial is mature, and all real and complex solutions of such a polynomial can be found. Here, we
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are only interested in real solutions. In fact, with a computer algebra system such as Maple or Mathematica,
we can perform interval computation to identify the real solutions in intervals with arbitrary accuracy as
one wishes.

Four sets of solutions from F5304 = 0 have been obtained as follows:

A3z =+£136.2014111281- - -, Ag = +2.0625751157- - -,

28
B3 = F 138.0681608497- - -, Ag = £79.3892644835- - -, (28)

and
Az =+ 138.0681608497- - -, Ag = +2.0625751157- - -,

29
Bs = F 136.2014111281- - -, Ag = +75.6557650402- - -. (29)

For these four solutions, Fy} = Fy = F3 = Fy = 0, but F5 # 0. Hence, for the solutions given in (28) and
(29), system (26) may generate maximal number of limit cycles around the origin.

Now we prove the sufficiency of conditions I, IT and ITI. When the condition I is satisfied, system (26)|s—0
can be rewritten as

—y+ Aza® + Asy? — y(2® + )
) 9 , for y >0,
(:c) x+ Agzy + x(z° + y°) (30)
y —y+ Bsa® + Bsy® — y(2® +y°)
0 ) , for y <O.
x + Boxy + x(z* + y*)
Obviously, system (30) is symmetric with respect to the y-axis. Hence, by Lemma 2.2 the origin of system

(26)|s=0 is a center.
If the condition IT holds, system (26)|s—o becomes

—y+ Asz® + Asy® — y(2® + )
) ) ) , for y >0,
(m) x + Agx” — 2Azxy + x(z° 4+ y°) (31)
(] —y + Bsz? 4 Bsy? — y(a? +4°)
) 9 ) , for y <O0.
x + Agx® — 2B3xy + x(x” + y°)

The upper and lower systems in (31) are Hamiltonian systems, having respectively the Hamiltonian functions:

1 1 1 1 a1 1 1

H (z,y) = —-2? — y” — S Asa® + AgzPy + D Asy® — <ot — Syt — ot
2 2 3 3 4 2 4 (32)
1 1 1 . 1 a1 1 1

H™ (z,y) = *512 - 592 - §A8$3 + Bsa®y + §B5y‘3 - 1:174 — §z2y2 - Zy‘l.

Thus, the condition HT(z,0) = H~(x,0) in Lemma 2.1 is satisfied, which implies that the origin of system
(26)]s=0 is a center.
If the condition IIT holds, system (26) can be rewritten as

—y+ As2® + Asy® — y(2® + )
) ) ) , for y >0,
(;1;) B x + Agx” + Agxy + x(2° + y°) (33)
) —y— Asz® — Asy® — y(2® +¢7)
, for y <O0.

r + Agz? — Agay + x(2? + y?)
It is easy to see that system (33) is symmetric with respect to the z-axis. Hence, the origin of system (26)|s5—0

is a center.
Therefore, the conditions I, IT and IIT are sufficient for the origin of system (26)|s—¢ being a center. [
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From the proof of Theorem 3.1, if the following conditions
0= AS 7B8 =N =F= F3 =F = O,A8(2A3 +Ag)(A3 +B3) }é 0,

1545 +245 +15B; 49A5 + Ag + 43B; (34)
y 445 = —
2 12

Bg = *2A3 *Ag *233,35 = -

are satisfied, we have V; = 0,71 =1,2,...,9, Vig # 0, indicating that the origin of system (26) is a 4.5-order
weak focus. For our purpose, we choose one of the solutions in (28),
Az =2 —136.2014111281---, Ag = —2.0625751157- - -,

35
B3 =138.0681608497- - -, Ag = —79.3892644835- - -, (35)

to prove the existence of 9 limit cycles. Then, we have Vip = —3.4990999739 x 10°. A direct calculation
shows that the determinant,

8(‘/27 ‘/37 ‘/21, ‘/57 V67 V77 ‘/87 VQ)
0(As, As, As, Ag, B3, Bs, Bs, By) | (34

det = —9.8120724589- - - x 1026 £ 0. (36)

+(35)

Hence, we can take appropriate perturbations on d, A3, A5, As, Ag, Bz, By, Bg and Bg such that
<MK -VMKhh-KInnK - VK],

and so the polynomial equation d(r) = 0 has 9 simple zeros near r = 0. Thus, the following result follows
directly from Lemma 2.3.

Theorem 3.2. For system (26), there exist 9 small-amplitude limit cycles bifurcating from the origin.

4. Lyapunov quantities at infinity

In this section, we consider bifurcation of limit cycles from the equator of the Poincaré sphere in the
piecewise polynomial system (3) of degree 2n + 1. With the ideas taken from [11,32], we suppose that there
exists ¢ > 0 such that

x}/v?%z—&-l(x’y) - yX2:E’L+1($,y) Z U(CC2 + y2)23 (37)

which indicates that the equator I's, on the Poincaré closed sphere is a trajectory of system (3), having no
real singular points. Let I'n, = I'f; U I'y; denote the equator cycle or infinity (on Gauss sphere) of system
(3), where I'f; and I'; represent the semi-equator cycle of the upper and lower systems of (3), respectively.
We apply the polar coordinate transformation, z = cos/r and y = sin 6/r, under which r = 0 corresponds
to the equator. Then, system (3) can be transformed into

2n+1
D ket ‘P;n+2—k(9)7'k

= , for 6 € (0,m),
g _ i:_‘l—l w;n+2—k(0)rk71 (38)
d9_ 2n+1  — 0)rk
it PannckO o g e (r,om),
k=1 ¢2n+27k(9)7‘ B
where
@,il(e) = cos 0 Xj(cos0,sinf) + sin 0Yy(cos 0, sin 9), (30)

1/’ki+1 (0) = sin Xy (cos 0,sin ) — cos OY(cos 6, sin 9),

k=0,1,2---. Particularly, condition (37) implies ¢2in+2 >0 >0.
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Similar to Hopf bifurcation analysis associated with a singular point at the origin of a dynamical system,
we construct the displacement map of (38). Let 7 (p,0) = Zk>1uk (0)p" and 7 (p,0) = >~ uy (0)p*
denote the solutions of the upper and lower systems of (38) with the initial conditions 7+ (p, 0) = 7~ (p, 7) = p,
respectively. Define respectively the positive half-return map I (p) and the negative half-return map I1_(p)
by

¥ (p) = =3 wlph, Ig(p) =7 (p.2m) = g p¥,

k>1 k>1
where uf’s are the coefficients of Taylor expansion. The return map for (38) can now be defined as
o (p) = I (1135 (p) = Zukpk, (40)
k>1

where uy’s are the coefficients of Taylor expansion. Then, the displacement function of (38) is given by

doo(p) = oo (p) — p = (ur — Vp+ Y _up® =" Upp", (41)
k>2 k>1

where Uy, is called the kth-order Lyapunov quantity at infinity (also called kth-order focal values at infinity).
We have the following definitions and results, which are similar to that of Hopf bifurcation analysis around
a singular point at the origin.

Definition 4.1. For system (3), if there exists A = A, such that

Ur(A) = =Ur(A) =0, Ury1(As) #0, (42)

then infinity is called a weak focus of 7—0rder (k € N); and if Uy, = 0 for all integer k, infinity is a center.
It follows that we must consider the displacement function (41) of system (38), when we are interested
in the limit cycles bifurcating from infinity. The number of fixed points of II.(p) (or zeros of du(p))
corresponds to the maximal number of limit cycles of system (38). If the displacement function (41) satisfies
Uy = =Ug =0, Ugs1 # 0, then any perturbation of (3) has at most k limit cycles bifurcating at infinity.

In the following, we consider a particular case of system (3) with higher-order terms, given exactly by
Xoni1(2,9) = (nz =) (@ +9)", Yo (2,y) = (2 + py)(@® +4)", (43)

under which system (3) becomes

2n

> X (@) + (pe —y) (@ + yP)"
, for y >0,
> Vi (@y) + (@ + ) (@ +y7)"

k

(@g) =4 ;50 (44)
ZX;Z(%y) + (px —y)(2* + )"
, for y <0.

ZY z,y) + (x + py)(@® + y*)"

For system (44), we alternatively introduce a transformation to change infinity of the system into the origin,
and then use the methods in studying limit cycle bifurcation at the origin to investigate bifurcation of limit
cycles at infinity of system (44). Under the following transformation,

_ £ _ U
GRS GET D )
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and time rescaling,

dt = (22 +y*) " "dr, (46)
we have
dx 1, d¢ d¢
Q@) S (L me@ ) (26 203D,
dr dr dT (47)
@ _(e2 2 71777,% 1 2 j dn
= (@) T (L ) (26 + 2 ),
and thus,
2n
dr dx dt n n
v [ZX;it(w,y) + (px —y)(a® + ) ](wQ +9°)
k=0
2n
2
= (@ +7) T (n+ pE) + (@ )TN (@ )RR EE ),
. k=0 (48)
dy _dydt - n n
b= = [ + e ) )
k=0
2n
2
— (52 +7]2)_1_n(£ +M77) + (52 +772)n+2n 2(52 _’_,'72)—k—nkYk:t(£’n).
k=0
Further, solving g—f and % from (47) and using (48) yields
— 2n
DY 15 —n+ ZP;;L+2+2nk+k(§rn)
k;no , for >0,
—p
% £+ o + 1" + Z Q;rn+2+2nk+k(§7 n)
= 4
d (49)
dr :1)
, for <0,
n _
£+ T Z Qantoronksr(&1)
k=0
where
£ 2n + 2 n
Pzin+2+2nk+k(§v77) = |:("72 “on T 1)X2i717k(§’77) T o T lgn}gifk(ga n) (52 + 772)k( +1)7
(50)
Q:I: (g _ 2 772 2n+2 2 2\k(n+1)
2n+22nirk (6 71) = (€7 — 57 1) an—k(&5m) — TénX onk(Em)| (€ +7%) :

The origin of system (49) corresponds to infinity of system (44). Hence, the origin of system (49) being
a center is equivalent to that infinity of system (44) being a center. We have the following theorem.

Theorem 4.2. Infinity of system (44) is a center if and only if the origin of system (49) is a center.

As discussed in Section 2, we know that the problem to determine the center conditions and bifurcation of
limit cycles at infinity of system (44) can be studied by using the Lyapunov constants at the origin of system
(49). Moreover, the results presented in this section allow us to consider limit cycle bifurcations around the
origin, or near infinity or in both places.
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Definition 4.3. The notation {k1, k2} denotes the configuration of a vector field with k; (small-amplitude)
limit cycles around the origin and ko (large-amplitude) limit cycles near infinity.

5. Simultaneous bifurcations of limit cycles at the origin and infinity

In this section, we study bifurcation of limit cycles at infinity of system (26). We find that the Lyapunov
quantities at infinity of system (26) has a great similarity with that at the origin. Under the transformation,

¢ 7

= Y= 51
@+ VT @y oy
and time rescaling,
dt = (2 +y*) " dr, (52)
system (26) is transformed into
3A3 — A5 — 44 4 1
— D6+ Asy! + TR0 - S Ane® — S Aag!
3 3 3 3
5 5
—n" = o0 =37 = o = 30t — P —ne® — oo,
L i 349 — 44 1 s+ Ao , for 7 >0,
9 — 3 5 9
§=gn+Ast’ + —————n8 — A’ - —o—n%
d§ 7 d 6 5,2 4.3 3,4 2.5 6 J 7
ar 80— g8 38T — 08T+ 38T — 08T + &7 — 3° 53)
dn | ~ L 4 3B3—Bs—4By , ., 4 s 1
bl - Z¢-n+B o8 T P22 — “Bane® — =B
I 56—+ B+ 3 & — 3B — 5 Bsg
5 6
— 0" = 0% = 3% — on'e® = 3¢t — onPe® — e — o,
u ’ 3By — 4B 1 Ayt By » for <0,
€= g0t Bt + =g’ — S B — — %
b b
+& = 3843807 — 6”38 — 680" + &n° — o’

We are interested in identifying the center conditions at infinity of system (26). We will show that they
can be classified as two types: Hamiltonian system or one having symmetry with respect to a line. These
conditions are also the center conditions for the origin of (26). Moreover, we will show that system (26) can
have limit cycles bifurcating simultaneously from the origin and the equator.

Theorem 5.1. Assume 6 = 0. System (26) has a center at infinity (correspondingly system (53) has a
center at the origin) if and only if p = 0 and one of the conditions 1, IT and 111 given in Theorem 3.1 holds.

Proof. When § = 0, we compute the Lyapunov quantities at the origin of system (53) (corresponding to
the Lyapunov quantities at infinity of system (26)), and find that the Lyapunov constants are identically

equal to zero except Usg41. Actually, we have
2um

Uy=e3 -1,

2
Uy = §(A8 — Bg),
1
U7 = —ﬂAg(2A3 + Ag + 233 + Bg)’fr,

2
Uy = @A8(2A3 + Ag)(15A3 + 2A5 + 15B3 + 2Bs),

Uiz = Ag(2A3 + Ag)(As + Bs)(72A3 + 24 A5 — 11 A9 + 86B3) .

1152
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The proof of the necessity of center conditions is similar to the proof for Theorem 3.1, and is thus omitted

here for brevity. Assume that Az + B3 # 0 and let A5 = —w, for which U3 = 0, then we
obtain
= Ag(245 4+ Ao)(As + Bs)F,
Ui 5911300 8(243 + Ag) (A3 + B3) Fg,
1
U= ———— Ag(2A3 + Ag)(As + B3)F
19 = 5080899072000 18 (243 + A9) (A3 + By) o,
1
Uspy = Ag(2A3 + Ag)(As + Bs)F,
22 7 3572072595534643200 8(245 + Ao) (A3 + Ba) Iy,
1
Usps = Ag(2A3 + Ag)(As + Bs) Fy,

© 5426410061612187648000

1
— Ag(243 + Ag)(As + Bs)F
Uss = 1136021 724707171087122814976000 8(243 + A9)(As + Bs) Fro,

where

Fs = —303912A2 + 8820042 — 14472 A3 A9 — 9833 A2 — 66852043 B3 — 24860 A9 B3 — 31430082,

F; = —69995520000A43 + 113754063024 A3 — 34997760000 Ag + 48174235056 A2 Ag
+ 5874190738 A3 A3 + 1876956983 A3 + 216930158640A3 B3 + 106461471640 A3 Ag By
+ 538755116043 B3 + 68844491800 A3 B3 + 47200955900 A9 B3 — 2588670000083,

Fy = 1841255300707909632A3 — 1144863919341305856 A5 — 394121451877171200A2
— 1719043246824357888 A3 A2 + 527079896933990400 A3 + 773005929741287424 A3 Ag
—972617423970631680A3 Ag — 78090684271165440A3 A2 Ag + 277301306147733504 A2
— 424557724494200832A% A3 — 43170343811022848 A2 A3 — 53498864134520832 A5 A3
— 14395905788608512 A3 + 3437504648901033984 A3 B3 — 4471175657023340544 A3 B3
— 3759486934506799104 A3 A2 B3 + 336199294849646592 A9 B3
— 2647999461030100992A2 Ag B3 — 94590690972925952 A2 Ag B3
—953419734762651648 A3 A2 B — 61668382174347264 A3 B3 + 1404448665816268800 B3
— 6251270020043636736 A2 B2 — 1735543253526118400A2 B2
—2221924006383058944 A3 Ag B3 — 449066278613680128 A2 B3
— 3584100795873755136 A3 B3 — 544296089627394048 Ag B3 — 700203548918415360 B3
+307061120830464000 A3 Agm — 1059156131672214576 A3 Agm + 162559052645109120 A3 A3
+ 153530560415232000 Ag Agm — 669882531931717104A3 Ag Agm
+ 125337019129882560 A3 Agm — 64457741654788482 A3 Ag A3 — 22207193163442287 Ag A3
— 2487394347692894640 A2 Ag By + 88114985614656000 A3 By
— 1477312740939835800 A3 Ag Ag B3 — 68785417325865240 Ag A2 B3
— 1549165231431057240 A3 Ag B2m — 678537883273870620 Ag Ag B2 7
—200435510879604000 As B3,

Fy = 10234966178002894848000A43 Ag — 5804035746587348041728 A3 Ag
— 2354895499988828160000 A3 — 3718181749765617745920A2 A3
+ 1268445739638325248000A3 + - - -,

Fio = —2076062815991659957626234470400 A2 + 3023696197447835097631649955840 A3

— 1318280420985192788330859724800 A5 + 195757790001546870040559616000A3
4 6276469725372565177768838430720A2 A2 + - - -.
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Here, similarly following the proof for Theorem 3.1, we can show that the four polynomial equations

Fs = F; = Fg = Fy = 0 have 8 sets of real solutions given below:

Ay = +1.1935491673: - -, By = F1.9598517046- - -
Ag = +0.8583332974- - -, Ag = +0.4170129068- - -
Ag = F1.0820295512- - -, By = +0.3530483910- - -
Ag = +1.2580741376- - -, Ag = +0.6980676134- - -
Ay = +0.3530483910- - -, By = F1.0820295512. - -
Ag = +£1.2580741376- - -, Ag = +0.7598947069- - -
Ay = F1.9598517046- - -, By = +1.1935491673. - -
Ag = +0.8583332974. - -, Ag = +1.1155921675.

(54)

Under these solutions, Fg = F; = Fg = Fy = 0, but Fig # 0. So these solutions may yield maximal number

of limit cycles.

Next, we prove the sufficiency of the center conditions I, IT and III. When the condition I is satisfied,

system (53)|,—o can be rewritten as

dg
dr

dr

Obviously, system (55) is symmetric with respect to the n-axis. So by Lemma 2.2 the origin of (

3
+ &7+ 3807 + 38t + &,

center, and hence system (26)],=o has a center at infinity.

Aty P T e Ly
—n" =376 =3’ — e’

¢4 Mo ;4A3n€3 S Mt Ay

+ €T30 + 3% + &,

—n+ Bsn' + WU%Q - %ng‘*
—n" =3 =3¢ — e’

- 339;4337753 _ABs By

If the condition IT holds, system (53)|,—¢ can be rewritten as

d¢
dr

dr

1145 — As
—77+A5774++ 2

—n' = 3% = 3¢t — e’
Bt = e e -
+ET 436807 + 38" + &,
—n+ Bsn* + %n% -
—n" =3n°¢ = 3¢t — e,
O LU
+ &7+ 380 + 38" + &,

4 1
n 52 - 5387753 - §A3§4

4A5 — 2A
53 3773§

4 1
—Bgné3 — - Bs¢?
3 8n§ 3 3§

4Bs — 2B
— =0’

3

)

)

Y

?

for n >0,

for n <O.

for n >0,

for n <O.

ER

[9]9)

)is a



98 T. Chen et al. / Nonlinear Analysis: Real World Applications 41 (2018) 82—-106

The upper and lower systems in (56) have an integral factor,
M(z,y) = (€ +1°)7",

and first integrals:

H (6m) = 3 —4A5m3 4 61° — 124302 + 18n*¢2 + 4453 + 1812+ + 6¢6
e 36(€2 + 172)° ’

3 — 4Bsn® 4 605 — 12B3n€? 4 18n*¢2 + 44583 — 18n%¢* + 6¢6
36(£2 4 7?)° '

(57)

H™(&n) =

Thus, the condition H*(£,0) = H~(£,0) in Lemma 2.1 is satisfied, which implies that the origin of (56) is
a center. Hence, infinity of system (26)|,—o is a center.
If the condition IIT holds, system (53)],=0 becomes

345 — As — 44,

—n+ Asn* + e - §A8"§3 - %A3§4

T - 377552A_ 3773i1 — e’ o , for >0,
i« €+ A&t + %nﬁ?’ - %Asnzf - 457;97735
ar | _ ) \ & +38 + 38" + e, (58)
% L= Agy — Mn%? - §A877§3 + %A3§4

T = 3Pe? — 3iPEt — ped, for 1 <0,

€+ At — wng?’ - %A87]2€2 + 41457;1497735 |

+ €7+ 3652 4 363t + &,

It is seen that system (58) is symmetric with respect to the {-axis, showing that infinity of system (26)],=0
is a center.
Therefore, the conditions I, IT and III are also sufficient for infinity of (26)|,—¢ being a center. O

Theorem 5.2. Assume § = p = 0. The cubic system (26) has the configuration
{4,9} and {9,4},

which give the mazximal number of limit cycles that system (26) can have simultaneously around the origin
and infinity.

Proof. We have two cases.

(1) First, we try to obtain the maximal number of limit cycles bifurcating near infinity. We take one of the
real solutions from (54),

Az = —1.1935491673---, Bz = 1.9598517045- - -,
Ag = —0.8583332973- - -,  Ag = —0.4170129068- - -.

Then under the conditions,

15A3 + 2A5 + 15B3

Ag —Bg =0, Bg = —2A3 — Ag — 2B3, Bs = — 5 ;
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Ay = —W and the solution given in (59), we have Uspy1 = 0, &k = 0,1,2,...,8, but
Usg # 0, indicating that infinity of system (26) is a 13.5-order weak focus. Further, it is easy to show
that

9(Uy, Uz, Urg, Urs, Uss, Urg, Uza, Uss)

det — 0.8120724589- - x 107 # 0, 61
0(As, As, As, Ag, B3, Bs, Bs, By) | 59) (60) ? oy

implying that system (26) has 9 large-amplitude limit cycles bifurcating from infinity. From the proof
of Theorem 3.1, we obtain
65 9
Vs = ﬁAS(QAS + Ag)" (A3 + Bs)m # 0
when A5 = —w. Hence, simultaneously, the origin of system (26) is a 2-order weak focus.
In addition, we obtain that

det |: 8(V27 ‘/?n ‘/21)

= —261.2058994389- - - # 0. 62
9(As, As,Ag)} (59) 7 (62

Thus, system (26), in addition to 9 large-amplitude limit cycles bifurcating from infinity, has 4 small-
amplitude limit cycles simultaneously bifurcating from the origin, yielding a distribution {4, 9}.

Next, we first consider the maximal limit cycles bifurcating from the origin. From the results of Section
3, we know that there exist parameter values satisfying Vi = Vo = --- = Vo = 0, but V39 # 0. This
shows that 9 small-amplitude limit cycles bifurcate from the origin. Then, under the condition (60), we
obtain Uy = Uy = Uy = Uyg = 0. Assume Ag(243 + Ag)(As + Bs) # 0, we have

3
Ag(243 + Ag)* (A3 + B3)m £ 0

U13 = 1153
when A5 = —W. In addition, we obtain that
8(U47 U77 UIO):|
det | ————— = 6.9102089798 - - - # 0. 63
|:8(A37A87A9) (35) 7& ( )

Hence, system (26), besides 9 small-amplitude limit cycles bifurcating from the origin, has 4 large-
amplitude limit cycles simultaneously bifurcating from infinity, yielding the distribution {9,4}. O

6. An example with 11 limit cycles at infinity

In this section, we present a special example of the piecewise cubic polynomial system (5) to show 11 limit

cycles bifurcating from infinity. To achieve this, setting A3 = B3 = Ay = By = Ag = Bg = A19g = B1p =0

and Bg = Ag in system (5), we obtain

Avz + Aoy + Asy® + (px — y)(a® +y°)
) ) o |+ for y>0,
(m) Apz + A7y + Asz” + (z + py)(2” +y7) (64)
y Bz + Bay + Bsy® + (uz — y)(2° + ¢?)
) ) o |+ for y <O
Aez + Bry + Bsz” + (z + py) (2 +y7)
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Under the transformations (51) and (52), system (64) becomes

I 3A; —4A
B Ayt - S - Mg 4 gy 4 2T
5A9 —4A 5A SA Ay — 8A
+ gn5€2 + %n‘lg?’ + %n?’g‘l
A, —4A Ay +4A A
+ %77255 - %7756 - 71573 ‘ 0
b Or 77 > b
L 4A A A 445+ A
&= 5n— =o' = e+ Asgt — ST -
A 74A 8A 5A7 — 8A
+%no£2+72n453+f1n3£4
d 5Ag —4A 3A, —4A
e p 25 L T T by At
d B 4B 3B, — 4B
< — Be—n+ Bt — 2206 — =20l 4 Boy + ST
dr 3 3 3 3
5By — 4A 5B; — 8B By — 8A
4 2 3 677552 4 1 3 ,'74§3 4 2 3 677354
B, — 4B By + 4A B
+ %77255 - %7756 - *1577 ; 0
AB B B 4By + A ;o for <0
§— En— =2 = P+ Begt - Sl — =2
3 3 3 3
B, — 4B A — 8B — 8B
+ 7 ; 1n5§2+ 3 277453 By 3 177354
5A — 4B 3B, — 4B
g e + AT

Then we have the following two theorems.

Theorem 6.1. System (64) has a center at infinity (correspondingly system (65) has a center at the origin)
if and only if one of the following conditions holds:

IV: n=A1+ A7, =B, + B;=AgBs =0,

66
VI[L:A1—|—B1:AQ—BQ:A5—|—B5:A7—|—B7:A8—Bg:0. ( )

Proof. First, we prove that the conditions IV and V are necessary. As discussed in the previous section,
we have p = 0 due to U; = 0. From the 4th Lyapunov constant, Uy = —%(Ag — Bg) =0, we get Bg = Ag.
Then, we obtain U; = f%(Al + A7 + By + By)w. Taking B; = —A7 — Ay — B; yields Uy = 0, and then
Uro = —5- (A1 + A7) (As + Bs).
(i) Letting Ay = —A; yields Uyg = 0, which gives the condition IV.
(ii) If Bs = —As, for which Uy = 0, and then U3 = 1—12(A1 + A7)(—As + Bg)m, which leads to Bs = As
from U3 = 0. Consequently, we have Uyg = 1—25(A1 + A7)Ag(Ay + By).

(ifa) If By = —A;, we obtain the condition V.
(iib) If Ag =0, then we have
1
U19 = _ﬂ(Al + A7)(2A1 + A7 — Bl)(Al + Bl)’f('.

Setting U19 =0 yields Bl = 2A1+A7, and then U22 = — 1152785145(1414-147) (3A1+A7) If A7 = —3A1,
we get By = —A; which is included in condition V. Otherwise, we have A5 = 0 from Uy = 0.
Further, we have Uss = —ﬁ(SAQ —5A46)(A1 + A7)?(3A; + A7)m. Taking Ay = §A6 yields Uss = 0,
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leads to Ugg = U34 = U40 = 0, and

Usp = —— (A + A7)%(3A; + A7) (45A% — 32A2 +126A, A7 + 69A2)T,

1152

Usy = —@AG(AI + A7)%(3A1 + A7) (—266A2 4 3334, A7 + 222A2) 7.

We compute the resultant,

Res(45A7 — 3243 + 126 A, A7 + 6942, —266 A3 + 333A; A7 + 22242, A;)

4 2 42 4 <67>
— 3184020 A% + 2297T00AZ A2 + 554445 A%,

which does not have non-zero real solutions. If Ag = 0, we have Uz, = 1152(A1 + A7)%(3A; +
A7)(45A% + 1264, A7 + 69A%)7T, Us7 =0, and

373

Uss = 103000

Ag(Al + A7) (3A1 + A7)(66A1 + 49A7)7T.
Then, computing the resultant to obtain
Res(45A7 + 1264, A7 + 69A% A7(66A; +49A7), A;) = 1125A7. (68)

Hence, 4514% + 126A1A7 + 69A% = A7(66A1 + 49A7) =0 if and only if A1 = A7 =0.

Next, we prove the sufficiency of the conditions IV and V. When the condition IV is satisfied, system (65)

can be rewritten as

—n+ Ast — %nzﬁ2 s 60 1 ap 7;1 n°¢
i %nfﬁ—é&
f—% g Lonpet 4 Aget 4 Bly - 2 Ao o | S
- 571417755 + A 38A2n4§3 - 13541 et
% ) +%n255 7A177£6+A ¢ o
j—z B *17+B5174*%772§2 14 8n§3+Bn +7§ n°¢
B ;4A6 S 13B1 e 38A6 el
+L§1 - 32—241467756_&57 for n <0
_@35 €4 At 4 317 4B2;—A6 sl ) < 0.
531 e s 3832 St 13;31 el
+M 25‘)7 7Bl77§6+A 57

3
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The upper and lower systems in (69) have an integral factor,
M(z,y) = (& +n°)7,
and first integrals:

1

H* = (3—4A5n> — 6405 — 124,19°6 — 1240 €% + 6 Agn*E>
(5777) 36(52 +772)6( 57 27 1n g 27 5 + 67 g

+ 4468 — 24A10°E% — 6 Agn?Et + 1246776 — 12411° + 6A4£°),

1

H(£,1) = —————(3 —4B5n® — 6Bon® — 12B1n°¢ — 12Bon*€® + 6 Agn*€?
(&mn) 36(& +n2)6( 57) 27) 1m°€ 21 E" + 6461

+4A5E% — 24B1° % — 6Byt + 12467°* — 12B1n¢® + 6A44£°).
Thus, the condition H*(£,0) = H™ (&,0) in Lemma 2.1 holds, which implies that infinity of system (64)],—o

is a center.
If the condition V holds, system (65) can be rewritten as

A 4A 34, —4A
= Asyt = 2P — R0 4 Ag %n%
549 — 4A 54, 8A _y)
2 677552 ; 7 4§3 3 677354
Ay —4A Ay +4A
+%2g5_%56_;57 f ;
4A A A 4Ay+ A o for >0,
_ 75 3£ 8 252 +A8§4 37 7 _ 23 6776£
Ar — 44 Ag — 8A 54, — 8A
+ %nsf + %”4’53 + %’7354
d 546 — 44 3A, — 4A
dj + 6 2 2£5+ 7 1 €6+A6£7
A 4A 34, — 44
dn —n— Asn* + 20 - 87753+A - =%
dr Sy — ddg 5A, Psa 8A3
+ 2 677552 ; 7 453 5 677354
Ay —4A Ay +4A A
- 1f777255 - %7)56 + ?157,
445 A A, 44, + Ag , for n<O.
§+3773§ £+A£+37f6£
Ar — 4A Ag — 8A 547 — 8A
_ %0552 + %,7453 _ %77354
5A¢ — 4A 3A, — 4A
P = e+ Aot

Obviously, system (71) is symmetric with respect to the {-axis. Hence, infinity of system (64)|,—o is a
center. [

Theorem 6.2. If the following conditions:

M:A2=A5=A6=Ag=Bg:B5238:2A1—|—A7—Bl:3A1+2A7+B7:O,

72
45A7 + 12641 A7 + 6942 =0, A1+ A7 #0, A1A7 #0, "

are satisfied, then system (64) can be perturbed to have 11 limit cycles near infinity.
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Proof. It has been shown in Theorem 6.1 that if the conditions in (72) are satisfied, infinity of system (64)

is a 21-order weak focus. Further, it can be shown that

O(Uy, Uz, Uyo, Ur3, Use, Urg, Uz, Uas, Us1, Usy)
0(Az, As, As, A7, Ag, By, By, Bs, By, Bg)

B 37A7(A1 + A7)11(3A1 + A7)5’/T6

— 3 2 2 3
= 16070775840000 (3A1 + 2A7)(231A1 + 645A7 A7 + 513A1A7 + 115A7)

Let Hy = 45A% + 12641 A7 + 69A2. Then, we compute the resultants to obtain that

det

(72)

Res(Hy,3A1 +2A7, A)) = 45A2 £ 0,
Res(Ho, 231 A% + 645A2 A7 + 5134, A2 + 11543, A}) = 91570176 AS # 0,

indicating that Hy = 3A; +2A47; = 0 and Hy = 231A3 + 64542 A7 + 51341 A2 + 115A3 = 0 have no non-zero

real solutions. Therefore,

O(Us, Uz, Urg, U1z, Usg, Urg, Uaa, Uas, Usy, Usy)
a(A27A57A65A75A87B1aBQ7B5aB77BS) (72)

det #0,

which indicates that do,(r) has 11 simple zeros near r = 0. This shows that 11 large-amplitude limit cycles
can bifurcate from infinity of system (64). A concrete numerical example for do (1) to have 11 simple zeros
is given in the next section. [

7. A numerical example realization of the 11 limit cycles

Theorem 6.2 guarantees the existence of 11 large-amplitude limit cycles in system (64) under small
perturbations. In order to obtain 11 large-amplitude limit cycles bifurcating from infinity, one needs to find
exact 11 positive roots solved from the polynomial equation:

doo(r) = Urr + Ugr* + -+ + Usgr® + Uygr®™ = 0. (73)

In general, it is not an easy task to find a set of explicit parameter values to have a numerical realization.
In particular, it is extremely difficult to obtain a numerical set of perturbations for the case of high multiple
limit cycles. However, for our case, since the perturbations can be done one by one, it is possible to obtain
parameter values such that the Eq. (73) can have 11 positive solutions. In the following, we present a concrete
example for illustration. The complete set of critical values of (e, Aic, Ase, - - -, Bre, Bse) are given in (72).
Under these conditions, we have U; =0, 1 = 1,2,...,42, but Uyz # 0. Further, solving A; and A7 from the
equation

45A7 + 1264, A7 + 6942 = 0
yields two real solutions. We choose one of them, given by
A; = 0.37656799869833483520- - -, A7 = —0.50424025103273360438- - -. (74)
Therefore, we need perturbations such that
0<U €« —Us U € Uy €« Uiz € —Uipg < Upg € Uz < U5 < —U3 < Uzy < 1. (75)

We take perturbations in the backward order: on Ag for Usy, on Ay for Uss, on Ag for Uss, on By for Uiy,
on Ag for Uyg, on By for Uyz, on Bs for Uyg, on By for U7, on Bg for Uy, on u for U;. More precisely, we
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choose
p= e + 1.7 x 1078 = 1.7 x 1078,

Ay = Ay, +0.00033333333 = 0.00033333333,

As = As. + 10715 = 10719,

Ag = Ag. +0.0002 = 0.0002,

Ag = Ag. + 1073 =102,

By =Bi,—9x107%
= (.248895746363936066016291164691594557962220996910691649508,

By = By, + 0.00033333333299999999999999999997008184186959518186004 (76)
= 0.00033333333299999999999999999997008184186959518186004,

Bs; = Bs, — 1.0000000000000000000000052869749507672354975752845 x 1015
= —1.0000000000000000000000052869749507672354975752845 x 10717,

By = By, + 8.9999999999999999999999999981 x 102!
= —0.12122349402953729683852907185263420053122835248621,

Bg = Bg, + 9.99999999999999999999999999999955 x 1026
= 9.99999999999999999999999999999955 x 1026,

With the above perturbed parameter values, we obtain the following Lyapunov constants:

Uy = 1.06814150222052970107729875031503 x 107,

Us = —10757,
U; = 10748,
Uip = 1077,
Uz = 10733,

Uis = —1.0647248678081108360917361383756436548140191531415 x 10727,
Usg = 9.4076207516259133434330217147167515034784700337664 x 10~ 23,
Usa = —8.2856120069794437863240270300666625581487535135386 x 1012,
Uss = 6.672734058155054546472804002072488405209027013565 x 1016,
Us; = —3.5587914976826957581188288011053271494449005158177 x 10711,
Usy = 2.6829217281236385925660150873455717155374539666814 x 10,
Uys = —0.20665634791709396362537493136546130186290774390368,

for which Eq. (73) has 11 positive roots:

r1~ 0.0004951057, 7y ~ 0.0009962443, r3 ~ 0.0021544391, 74~ 0.0046561506,
rs~ 0.0096891379, r¢ ~ 0.0226219191, 77 ~ 0.0482546035, 7rg~ 0.1070254815, (78)
9~ 0.1523230384, 7119~ 0.3375260483, 711~ 0.4749986020,

as expected. It should be noted that Uy = Uz = Us = Ug = --- = 0 even under the perturbations.

8. Conclusion

In this paper, we have discussed the center problem and bifurcation of limit cycles for two types of
piecewise cubic polynomial systems. We have developed a computationally efficient method for computing
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the Lyapunov constants at infinity of piecewise polynomial systems. Using our method, we consider a special
piecewise cubic polynomial system to show the existence of 13 limit cycles with either {9,4} or {4,9}
distribution at the origin and infinity. Moreover, we construct a special system to prove the existence of 11
limit cycles bifurcating from infinity, which is a new best result in the direction of this research.

We would like to develop more computationally efficient methodology to study bifurcations of limit
cycles around the origin and infinity simultaneously in piecewise polynomial systems. In particular, finding
the maximal number of limit cycles bifurcating at infinity for general piecewise polynomial systems with no
singular point at infinity is a challenging task.
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