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a b s t r a c t

In this paper, we study bifurcation of limit cycles from the equator of piecewise
polynomial systems with no singular points at infinity. We develop a method for
computing the Lyapunov constants at infinity of piecewise polynomial systems. In
particular, we consider cubic piecewise polynomial systems and study limit cycle
bifurcations in the neighborhood of the origin and infinity. Moreover, an example is
presented to show 11 limit cycles bifurcating from infinity.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

One of the well-known mathematical problems is the second part of Hilbert’s 16th problem, which
considers the maximal number and relative positions of limit cycles bifurcating in polynomial vector fields
of degree n, given by

ẋ = fn(x, y), ẏ = gn(x, y), (1)

where the dot denotes differentiation with respect to time t. Since Hilbert proposed the problem in 1900,
a great deal of works has been done in studying this problem, for example see [1–8]. Let H(n) denote the
upper bound of the number of limit cycles that system (1) can have. Chen and Wang [1], and Shi [2] proved
the existence of 4 limit cycles with {3, 1} distribution, i.e., H(2) ≥ 4. However, this problem is even not
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completely solved for n = 2. For cubic systems, Yu and Han [4,5], Liu and Huang [6] proved H(3) ≥ 12
by studying Hopf bifurcation. Later, Li et al. [7] constructed a Hamiltonian system and applied proper
perturbations to prove H(3) ≥ 13. On the other hand, Liu and Li [8] investigated the cyclicity problem for a
Z2-equivariant cubic system, and showed that this system can have 13 limit cycles, with a large-amplitude
limit cycle at infinity, surrounding 12 small-amplitude limit cycles around two symmetric foci.

To completely study bifurcation of limit cycles in system (1), it is necessary to include studying the
bifurcation of limit cycles at infinity. The bifurcation of limit cycles at infinity was studied by Shi [2]
30 years ago, and later the birth of a unique limit cycle at infinity is shown by Sotomayor [9]. In order to
find maximal number of limit cycles bifurcating from infinity for cubic systems, Blows and Rousseau [10]
computed the first five Lyapunov quantities at infinity for a class of cubic systems:{

ẋ =λ1x− ηy +Ax2 + (B + 2D)xy + Cy2 + λ2x(x2 + y2) − y(x2 + y2),
ẏ =ηx− λ1y +Dx2 + (E − 2A)xy −Dy2 + x(x2 + y2) + λ2y(x2 + y2),

(2)

and studied the limit cycles bifurcating from the origin and infinity. Liu and Chen [11] constructed an
example of cubic system with 6 limit cycles bifurcating from infinity. Liu and Huang [12] proved that a
cubic polynomial system can have 7 limit cycles near infinity. Actually, studying the bifurcation of limit
cycles at infinity is quite similar to studying Hopf bifurcation at the origin, via a transformation based on
Poincaré return map. However, a uniform upper bound of the number of limit cycles bifurcating at infinity
for polynomial vector fields is still unknown.

Recently, increasing interest has been focused on bifurcation of limit cycles in discontinuous or non-
differentiable, i.e., non-smooth dynamical systems. In this paper, we consider the piecewise polynomial
system (or the so-called switching polynomial system) with a switching line on the x-axis, given in the form
of

(ẋ, ẏ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(+∞∑
k=1

X+
k (x, y, λ),

+∞∑
k=1

Y +
k (x, y, λ)

)
, for y > 0,(+∞∑

k=1
X−

k (x, y, λ),
+∞∑
k=1

Y −
k (x, y, λ)

)
, for y < 0,

(3)

where X±
k (x, y, λ) and Y ±

k (x, y, λ) are homogeneous polynomials of degree k in x and y , λ ∈ Λ ⊂ Rs is
a parameter vector. System (3) includes two systems: the first one is called the upper system, defined for
y > 0, and the second one is called the lower system, defined for y < 0.

The investigation of the more general piecewise systems, described by

(ẋ, ẏ) =
{

(X+(x, y), Y +(x, y)), for y > 0,
(X−(x, y), Y −(x, y)), for y < 0,

(4)

started a half century ago [13–15]. Here, X±(x, y) and Y ±(x, y) are real analytic functions in a neighborhood
of the origin. Note that system (4) is usually considered as a differential system with discontinuous right
sides, and simply called discontinuous system. Such systems can exhibit rich complex dynamical phenomena.
Since the analytic functions X±(x, y) and Y ±(x, y) in (4) can be expanded into the form of (3) with the
coefficients treated as parameters, researchers generally consider them equivalent and use either one as they
wish. Filippov established some basic qualitative theory in [15] for such discontinuous systems. In the study
of analytic system (4), the cyclicity problem is fundamental in the qualitative analysis. Coll et al. [16]
developed a method for computing the Lyapunov constants to study bifurcation of small-amplitude limit
cycles. They derived the explicit formulas for computing the first three Lyapunov quantities. Let P (n)
denote the maximal number of limit cycles for system (3) of degree n. Gasull and Torregrosa [17] obtained
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P (2) ≥ 5, showing that quadratic piecewise polynomial systems have two more limit cycles than that of
quadratic smooth polynomial systems. Moreover, center conditions have been obtained for piecewise Kukles
system [17], piecewise Liénard system [18] and piecewise Bautin system [19]. Note that planar smooth linear
systems cannot generate limit cycles, but piecewise smooth linear systems can. In fact, Han and Zhang [20]
proved P (1) ≥ 2. Further, Huan and Yang [21], and Freire et al. [22] respectively proved P (1) ≥ 3. Buzzi
et al. [23] studied the limit cycles that bifurcate from a linear center using a piecewise linear perturbation in
two zones. They proved that the maximal numbers of limit cycles that can appear with up to a Nth order
perturbation are 1, 1, 2, 3, 3, 3, 3 when N = 1, 2, . . . , 7. Llibre et al. [24,25] studied the limit cycles that
bifurcate from the quadratic and cubic isochronous centers when the systems are perturbed within the class
of piecewise quadratic and cubic polynomial differential systems, respectively. Chen et al. [26] constructed a
class of piecewise quadratic Bautin systems to show P (2) ≥ 8. Recently, Tian and Yu [27] gave a complete
classification for the quadratic Bautin system with a singular point being a center, and proved P (2) ≥ 10.
Li et al. [28] considered a piecewise cubic polynomial system to show that P (3) ≥ 15.

So far, there are very few studies on bifurcation of limit cycles at infinity for piecewise polynomial systems.
Llibre et al. [29] obtained one limit cycle bifurcating from infinity in planar piecewise linear vector fields. Li
et al. [30] presented a piecewise cubic polynomial system which can have 7 limit cycles in the neighborhood
of infinity. In this paper, we develop a recursive algorithm to compute the Lyapunov constants at infinity
for piecewise polynomial systems, and apply it to study bifurcation of limit cycles in the following piecewise
cubic polynomial system,

(
ẋ
ẏ

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
A1x+A2y +A3x

2 +A4xy +A5y
2 + (µx− y)(x2 + y2)

A6x+A7y +A8x
2 +A9xy +A10y

2 + (x+ µy)(x2 + y2)

)
, for y > 0,(

B1x+B2y +B3x
2 +B4xy +B5y

2 + (µx− y)(x2 + y2)
B6x+B7y +B8x

2 +B9xy +B10y
2 + (x+ µy)(x2 + y2)

)
, for y < 0,

(5)

where (A1, . . . , A10, B1, . . . , B10) ∈ R20.
The rest of the paper is organized as follows. In the next section, we introduce a recursive procedure to

compute the Lyapunov constants at the origin of system (6), which can be carried out by using a computer
algebraic system such as Mathematica, Maple. Using this method, we study the center conditions and limit
cycle bifurcation for one class of system (5) in Section 3. In Section 4, we develop a recursive procedure
for computing the Lyapunov constants at infinity for piecewise polynomial systems. In Section 5, we give a
complete calculation of the Lyapunov constants at infinity for a special case of system (5) and investigate
possible simultaneous Hopf bifurcations at the origin and infinity. We will show that 13 limit cycles with
either {9, 4} or {4, 9} distribution at the origin and infinity can exist in this system. In Section 6, we
present another example of system (5) to show 11 limit cycles bifurcating from infinity, with a concrete
numerical example to illustrate the existence of 11 limit cycles. This is a new lower bound on the number
of large-amplitude limit cycles for such polynomial cubic systems near infinity.

2. Computation of Lyapunov quantities

In this section, we present a method for computing the Lyapunov constants at the origin of the piecewise
polynomial system,

(ẋ, ẏ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
δx− βy +

n∑
k=2

X+
k (x, y), βx+ δy +

n∑
k=2

Y +
k (x, y)

)
, for y > 0,(

δx− βy +
n∑

k=2
X−

k (x, y), βx+ δy +
n∑

k=2
Y −

k (x, y)
)
, for y < 0,

(6)
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with β > 0 and δ ∈ R. For analytic smooth systems, the computation of Lyapunov quantities is the
classical method of determining the center type equilibria and weak foci. We present some basic formulas
for computing the Lyapunov constants of the general differential system,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = δx− βy +
n∑

k=2
Xk(x, y),

ẏ = βx+ δy +
n∑

k=2
Yk(x, y),

(7)

where Xk(x, y), Yk(x, y) are homogeneous polynomials of degree k in x and y. Introducing the polar
coordinate transformation, x = r cos θ and y = r sin θ, into (7) yields

dr
dθ =

δr +
∑n

k=2 Υk(θ)rk

β +
∑n

k=2 Θk(θ)rk−1 , (8)

where

Υk(θ) = cos θXk(cos θ, sin θ) + sin θYk(cos θ, sin θ),
Θk(θ) = cos θYk(cos θ, sin θ) − sin θXk(cos θ, sin θ),

(9)

in which Xk and Yk are polynomials in sin θ and cos θ. Further, (8) can be expressed in the power series of
r as

dr
dθ =

∞∑
k=1

Rk(θ)rk, (10)

where Rk(θ) is a polynomial in sin θ and cos θ. Note that

δr +
∑n

k=2 Υk(θ)rk

β +
∑n

k=2 Θk(θ)rk−1 = 1
β

[
δr +

n∑
k=2

Υk(θ)rk
][

1 +
∞∑

i=1

(
−

n∑
k=2

Θk(θ)
β

rk−1
)i]

= 1
β

[
δr +

n∑
k=2

Υk(θ)rk
][

1 +
∞∑

k=1
Θ̃k(θ)rk

]
.

(11)

It follows from (10) and (11) that R1(θ) = δ
β and

Rk(θ) = 1
β

[k−1∑
i=2

(Υi(θ)Θ̃k−i(θ) + δΘ̃k−1(θ)) + Υk(θ)
]
, k ≥ 2. (12)

The general solution of (10) can be expressed as

r(ρ, θ) =
∑
i≥1

vk(θ)ρk, |ρ| ≪ 1, (13)

where v1(0) = 1, vk(0) = 0, ∀k ≥ 2. Substituting the above solution (13) into Eq. (10), we obtain
v1

′(θ) = δ
β v1(θ) and

vk
′(θ) = Rk(θ)Ωk,k(θ) +Rk−1(θ)Ωk−1,k(θ) + · · · +R2(θ)Ω2,k(θ), k ≥ 2, (14)
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where Ωi,j(θ) are polynomials in vl(θ), 2 ≤ l ≤ j. Further, we have

v1(θ) = e

∫ θ

0
δ
β

dθ
,

v2(θ) =
∫ θ

0
R2(θ)v2

1(θ)dθ,

v3(θ) =
∫ θ

0
(R3(θ)v3

1(θ) + 2R2(θ)v2(θ)v1(θ))dθ,

v4(θ) =
∫ θ

0
(R4(θ)v4

1(θ) + 3R3(θ)v2(θ)v2
1(θ) +R2(θ)(v2

2(θ) + 2v3(θ)v1(θ)))dθ,

· · ·

vk(θ) =
∫ θ

0
(Rk(θ)Ωk,k(θ) +Rk−1(θ)Ωk−1,k(θ) + · · · +R2(θ)Ω2,k(θ))dθ, k ≥ 2.

(15)

However, as k grows, computation of vk(θ) becomes more and more involved by direct integration. For
convenience, we present a method developed in [27] to simplify the computation, which only needs the use
of multiplication in the sum formula of trigonometric functions, which can be easily implemented using a
computer algebra system. Then, Eq. (14) can be rewritten as

v′
k(θ) =

3k−3∑
i=0

Ti(θ) sin(iθ) +Di(θ) cos(iθ), (16)

where Ti(θ) and Di(θ) are polynomials in θ. Thus, integrating the above equation results in

vk(θ) =
3k−3∑
i=0

∫ θ

0

[
Ti(θ) sin(iθ) +Di(θ) cos(iθ)

]
dθ

=
3k−3∑
i=0

Ai(θ) cos(iθ) +Bi(θ) sin(iθ),

(17)

where Ai(θ) and Bi(θ) are polynomials in θ.
Like for analytic systems, we also need something alike to deal with the piecewise polynomial system (6).

Using the polar coordinates x = r cos θ and y = r sin θ, system (6) can be written as

dr
dθ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δr +

∑n
k=2 Υ

+
k (θ)rk

β +
∑n

k=2 Θ
+
k (θ)rk−1 , for θ ∈ (0, π),

δr +
∑n

k=2 Υ
−
k (θ)rk

β +
∑n

k=2 Θ
−
k (θ)rk−1 , for θ ∈ (π, 2π),

(18)

where Υ±
k (θ) and Θ±

k (θ) are polynomials in sin θ and cos θ of degrees k+1. Suppose r+(ρ, θ) =
∑

k≥1v
+
k (θ)ρk

and r−(ρ, θ) =
∑

k≥1v
−
k (θ)ρk are respectively the solutions of the upper and lower systems of (18), satisfying

r+(ρ, 0) = r−(ρ, π) = ρ. Although a return map cannot be simply defined for system (6) like that for
smooth systems, we define the positive half-return map Π+(ρ) = r+(ρ, π) and the negative half-return map
Π−(ρ) = r−(ρ, 2π). Then we can define the displacement function,

d(ρ) = Π (ρ) − ρ = Π−(Π+(ρ)) − ρ =
∑
k≥1

Vkρ
k, (19)

as illustrated in Fig. 1(a). Here, Vk is called the kth-order Lyapunov constant of the piecewise polynomial
system (6). It is not difficult to get V1 = e

2δπ
β − 1 since Π+(ρ) = Π−(ρ) = e

δπ
β ρ+O±(ρ2). Thus, V1 = 0 if

and only if δ = 0.
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(a) (b)

(c)

Fig. 1. (a) Map Π (ρ), (b) Map Π+
− (ρ), (c) Map (Π−)−1(ρ).

Another method to compute the Lyapunov constants can be found in [17]. To make the computation
more convenient we substitute (x, y, t) → (x,−y,−t) into the lower system of (6) to obtain a new system,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = −δx− βy −
n∑

k=2
X−

k (x,−y),

ẏ = βx− δy +
n∑

k=2
Y −

k (x,−y),
for y > 0, (20)

which defines a new positive half-return map Π+
− (ρ) = r+

−(ρ, π) =
∑

k≥1v
+
−k(π)ρk, as illustrated in Fig. 1(b).

Let (Π−)−1(ρ) denote the inverse of the negative half-return map Π−(ρ), as illustrated in Fig. 1(c). The
map (Π−)−1(ρ) of (6) is equivalent to the map Π+

− (ρ) of (20). Coll et al. [18] proved that the following
expressions are equivalent:

g(f(ρ)) − ρ and f(ρ) − g−1(ρ),

where f and g are analytic functions satisfying that f(0) = g(0) = 0 and f ′(0) = g′(0) = 1. Gasull and
Torregrosa [17] introduced a new function,

Π−(Π+(ρ)) − ρ = Π+(ρ) − (Π−)−1(ρ) = Π+(ρ) − Π+
− (ρ) =

∑
k≥1

Wkρ
k. (21)

Thus, originally computing one positive half-return map and one negative half-return map becomes
computing two positive half-return maps. It has been proved [17] that the conditions Vj = 0, 1 ≤ j ≤ k− 1,
Vk ̸= 0 for (19) are equivalent to Wj = 0, 1 ≤ j ≤ k−1, Wk ̸= 0 for (21). Hence, in the following, we still use
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Vk instead of Wk for simplicity. We can use the procedure for computing v+
k (π) and v+

−k(π) to compute the
Lyapunov constants for the positive half-return maps Π+(ρ) and Π+

− (ρ), so that we obtain the Lyapunov
constants Vk for piecewise polynomial system (6).

Note that the Lyapunov constant Vk is a polynomial in terms of the coefficients of the original piecewise
polynomial system (6). It is well known that the origin of system (6) is a center if and only if d(ρ) = 0 for
0 < ρ ≪ 1, which means that for all integer k, Vk = 0. But the center problem for the piecewise polynomial
system (6) is more complicated. The following lemma can be used for proving the center conditions at the
origin of system (6).

Lemma 2.1 ([31]). If the upper and lower systems in (6) have the first integrals H+(x, y) and H−(x, y)
near the origin, respectively, and either both H+(x, 0) and H−(x, 0) are even functions in x, or H+(x, 0) ≡
H−(x, 0), then the origin of system (6) is a center.

Lemma 2.1 can be used to identify centers in the case that both the upper and lower systems are analytic
and have a center at the origin. In addition, there is another useful result, as given in the following lemma.

Lemma 2.2 ([28]). Assuming that δ = 0, if system (6) is symmetric with respect to the x-axis, i.e., the
functions on the right-hand side of system (6) satisfy

X+
k (x, y) = −X−

k (x,−y), Y +
k (x, y) = Y −

k (x,−y), (22)

or system (6) is symmetric with respect to the y-axis, i.e., the functions on the right-hand side of system (6)
satisfy

X+
k (x, y) = X+

k (−x, y), Y +
k (x, y) = −Y +

k (−x, y),
X−

k (x, y) = X−
k (−x, y), Y −

k (x, y) = −Y −
k (−x, y),

(23)

then the origin of system (6) is a center.

Lemma 2.2 redefines symmetry of piecewise polynomial systems, which can be used to derive the center
conditions for such systems. Moreover, the isolated zeros of d(ρ) = 0 near ρ = 0 correspond to the limit
cycles around the origin. The origin of system (6) is called k

2 -order (k ∈ N) weak focus if there exists λ∗ ∈ Λ

such that

V1(λ∗) = V2(λ∗) = · · · = Vk(λ∗) = 0, Vk+1(λ∗) ̸= 0. (24)

It is well known that for the nonzero Lyapunov constant Vk of smooth polynomial systems, k must be an
odd number. However k can be any positive integer for piecewise polynomial systems. Based on Lemma 4
of [27], we have the following lemma, which gives the sufficient conditions for proving the existence of limit
cycles.

Lemma 2.3. If there exists a critical point λ∗ = (a1c, a2c, . . . , akc) such that Vi1(λ∗) = Vi2(λ∗) = · · · =
Vik

(λ∗) = 0, Vik+1(λ∗) ̸= 0, with 1 = i1 < i2 < · · · < ik, and

det
[
∂(Vi1 , Vi2 , . . . , Vik

)
∂(a1c, a2c, . . . , akc) (λ∗)

]
̸= 0, (25)

then small appropriate perturbations about λ = λ∗ lead to that system (6) has exact k limit cycles bifurcating
from the origin.
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3. An example for limit cycle bifurcation at the origin

In this section, we apply the results presented in the previous section to consider an example of system
(5). We study the center conditions and the number of bifurcating limit cycles for a family of piecewise
cubic polynomial systems, obtained by setting A1 = A7 = B1 = B7 = δ, A2 = B2 = −1, A6 = B6 = 1 and
A4 = A10 = B4 = B10 = 0 in system (5), as

(
ẋ
ẏ

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
δx− y +A3x

2 +A5y
2 + (µx− y)(x2 + y2)

x+ δy +A8x
2 +A9xy + (x+ µy)(x2 + y2)

)
, for y > 0,(

δx− y +B3x
2 +B5y

2 + (µx− y)(x2 + y2)
x+ δy +B8x

2 +B9xy + (x+ µy)(x2 + y2)

)
, for y < 0.

(26)

With the aid of a computer algebra system, symbolic computations are carried out to find the Lyapunov
constants associated with the origin of system (26), which is summarized in the following theorem.

Theorem 3.1. Assume µ = 0. System (26) has a center at the origin if and only if δ = 0 and one of the
following conditions holds:

I : A8 = B8 = 0,
II : A8 −B8 = 2A3 +A9 = 2B3 +B9 = 0,

III : A8 −B8 = A3 +B3 = A5 +B5 = A9 +B9 = 0.
(27)

Proof. For system (26), the Lyapunov constants with µ = 0 are obtained by using the algorithm described
in the previous section:

V1 = e2δπ − 1,

V2 = 2
3(A8 −B8),

V3 = −1
8A8(2A3 +A9 + 2B3 +B9)π,

V4 = − 2
45A8(2A3 +A9)(15A3 + 2A5 + 15B3 + 2B5),

V5 = 5
384A8(2A3 +A9)(A3 +B3)(49A3 + 12A5 +A9 + 43B3)π.

We compute the common zeros of Vk, k = 1, . . . , 5, and consequently obtain the necessary conditions
I, II and III. Letting V1 = V2 = 0 yields δ = A8 − B8 = 0. Then, setting V3 = 0 we have A8 = 0 or
2A3 + A9 + 2B3 + B9 = 0. If A8 = 0, we obtain condition I, otherwise we have B9 = −2A3 − A9 − 2B3.
Further, letting V4 = 0 yields (2A3 + A9)(15A3 + 2A5 + 15B3 + 2B5) = 0. If 2A3 + A9 = 0, we obtain
condition II. Otherwise, we have B5 = −A5 − 15

2 (A3 + B3). Taking A3 + B3 = 0 yields V5 = 0, we obtain
condition III.

Now, we assume A3 +B3 ̸= 0 and let A5 = − 49A3+A9+43B3
12 , for which V5 = 0. Then we get

V6 = − 1
4725A8(2A3 +A9)(A3 +B3)F1,

V7 = 1
12902400A8(2A3 +A9)(A3 +B3)F2π,

V8 = − 1
65840947200A8(2A3 +A9)(A3 +B3)F3,

V9 = − 1
12641461862400A8(2A3 +A9)(A3 +B3)F4,

V10 = − 1
131407996059648000A8(2A3 +A9)(A3 +B3)F5,
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where
F1 = −10979A2

3 + 3150A2
8 + 275A3A9 + 76A2

9 − 22042A3B3 + 29A9B3 − 11225B2
3 ,

F2 = −1428000A3 + 5079237A3
3 − 714000A9 + 6271596A2

3A9 − 90153A3A
2
9 − 15024A3

9
+ 17850781A2

3B3 + 12728596A3A9B3 + 9A2
9B3 + 20510215A3B

2
3 + 6451920A9B

2
3

+ 7704375B3
3 ,

F3 = 975884378112A2
3 − 2350928519168A4

3 − 277995110400A2
8 − 578642190336A2

3A
2
8

+ 279620812800A4
8 − 39467409408A3A9 + 107337293824A3

3A9 + 42830143488A3A
2
8A9

− 16046456832A2
9 − 31414665216A2

3A
2
9 + 54402121728A2

8A
2
9 + 2283864064A3A

3
9

+ 757891072A4
9 + 1900941557760A3B3 − 9409968816128A3

3B3 − 112059437875A3A
2
8B3

− 24718417920A9B3 − 13346193408A2
3A9B3 + 174778343424A2

8A9B3
− 49995276288A3A

2
9B3 + 3779264512A3

9B3 + 990633369600B2
3 − 14454233186304A2

3B
2
3

− 446693990400A2
8B

2
3 − 339699941376A3A9B

2
3 − 26928463872A2

9B
2
3

− 10085791268864A3B
3
3 − 236149809152A9B

3
3 − 2697406423040B4

3 + 21861252000A3A8π
+ 156952867239A3

3A8π − 67341229200A3A
3
8π + 10930626000A8A9π

+ 174951476532A32A8A9π − 79429215600A3
8A9π − 7178885091A3A8A

2
9π

− 1686385008A8A
3
9π + 516913738047A2

3A8B3π − 91517202000A3
8B3π

+ 352331144172A3A8A9B3π − 2939424957A8A
2
9B3π + 566367043725A3A8B

2
3π

+ 183430396800A8A9B
2
3π + 208174546125A8B

3
3π,

F4 = 722478248755200A2
3A8 − 1519825046208512A4

3A8 − 206009008128000A3
8

− 148378343178240A2
3A

3
8 + 116530348032000A5

8 − 27711630213120A3A8A9
+ 7066276593664A3

3A8A9 + 39753005137920A3A
3
8A9 − 10947510927360A8A

2
9

− 45644557320192A2
3A8A

2
9 + · · ·,

F5 = −7401962187325440000A2
3 + 46486215725497712640A4

3 − 92550580964698357760A6
3

+ 2068016746070016000A2
8 + 14697869051080212480A2

3A
2
8 − 27162659432913960960A4

3A
2
8

− 6378965932179456000A4
8 − 2163878587851079680A2

3A
4
8 + 2543799232364544000A6

8
+ 290191499164385280A3A9 + · · ·.

Since the five polynomial equations contain only four independent parameters, A3, B3, A8 and A9 with
the restriction A3 + B3 ̸= 0, there in general exist solutions such that F1 = F2 = F3 = F4 = 0 but F5 ̸= 0.
We first consider the four polynomial equations: F1 = F2 = F3 = F4 = 0 to find all real solutions of these
equations, and then verify if they satisfy the equation F5 = 0. If none of the solutions does, then there do
not exist real solutions satisfying F1 = F2 = F3 = F4 = F5 = 0, and thus the best result obtained from
F1 = F2 = F3 = F4 = 0 yields maximal number of limit cycles.

Note that F2 does not contain A8 and F1 contains only one term A2
8. So, we first solve A2

8 from F1 = 0
to obtain

A2
8 = 1

3150
[
10979A2

3 + 22042A3B3 + 11225B2
3 −A9(76A9 + 275A3 + 29B3)

]
,

which is used to simplify F3 and F4. Then, we perform a symbolic computation on F2, F3 and F4 to
eliminate A3 to obtain a solution,

A3 = A3(B3, A9),

and two resultants:

F23 = F23(B3, A9), F24 = F24(B3, A9).

Next, we again perform symbolic computation on F23 and F24 to eliminate B3 to obtain the final resultant:

F2324 = F2324(A2
9),

which is a single-variate, 24th-degree polynomial in A2
9. Today the technique for solving single-variate

polynomial is mature, and all real and complex solutions of such a polynomial can be found. Here, we
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are only interested in real solutions. In fact, with a computer algebra system such as Maple or Mathematica,
we can perform interval computation to identify the real solutions in intervals with arbitrary accuracy as
one wishes.

Four sets of solutions from F2324 = 0 have been obtained as follows:

A3 = ± 136.2014111281· · ·, A8 = ±2.0625751157· · ·,
B3 = ∓ 138.0681608497· · ·, A9 = ±79.3892644835· · ·,

(28)

and

A3 = ± 138.0681608497· · ·, A8 = ±2.0625751157· · ·,
B3 = ∓ 136.2014111281· · ·, A9 = ±75.6557650402· · ·.

(29)

For these four solutions, F1 = F2 = F3 = F4 = 0, but F5 ̸= 0. Hence, for the solutions given in (28) and
(29), system (26) may generate maximal number of limit cycles around the origin.

Now we prove the sufficiency of conditions I, II and III. When the condition I is satisfied, system (26)|δ=0
can be rewritten as

(
ẋ
ẏ

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
− y +A3x

2 +A5y
2 − y(x2 + y2)

x+A9xy + x(x2 + y2)

)
, for y > 0,(

− y +B3x
2 +B5y

2 − y(x2 + y2)
x+B9xy + x(x2 + y2)

)
, for y < 0.

(30)

Obviously, system (30) is symmetric with respect to the y-axis. Hence, by Lemma 2.2 the origin of system
(26)|δ=0 is a center.

If the condition II holds, system (26)|δ=0 becomes

(
ẋ
ẏ

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
− y +A3x

2 +A5y
2 − y(x2 + y2)

x+A8x
2 − 2A3xy + x(x2 + y2)

)
, for y > 0,(

− y +B3x
2 +B5y

2 − y(x2 + y2)
x+A8x

2 − 2B3xy + x(x2 + y2)

)
, for y < 0.

(31)

The upper and lower systems in (31) are Hamiltonian systems, having respectively the Hamiltonian functions:

H+(x, y) = −1
2x

2 − 1
2y

2 − 1
3A8x

3 +A3x
2y + 1

3A5y
3 − 1

4x
4 − 1

2x
2y2 − 1

4y
4,

H−(x, y) = −1
2x

2 − 1
2y

2 − 1
3A8x

3 +B3x
2y + 1

3B5y
3 − 1

4x
4 − 1

2x
2y2 − 1

4y
4.

(32)

Thus, the condition H+(x, 0) ≡ H−(x, 0) in Lemma 2.1 is satisfied, which implies that the origin of system
(26)|δ=0 is a center.

If the condition III holds, system (26) can be rewritten as

(
ẋ
ẏ

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
− y +A3x

2 +A5y
2 − y(x2 + y2)

x+A8x
2 +A9xy + x(x2 + y2)

)
, for y > 0,(

− y −A3x
2 −A5y

2 − y(x2 + y2)
x+A8x

2 −A9xy + x(x2 + y2)

)
, for y < 0.

(33)

It is easy to see that system (33) is symmetric with respect to the x-axis. Hence, the origin of system (26)|δ=0
is a center.

Therefore, the conditions I, II and III are sufficient for the origin of system (26)|δ=0 being a center. □
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From the proof of Theorem 3.1, if the following conditions

δ = A8 −B8 = F1 = F2 = F3 = F4 = 0, A8(2A3 +A9)(A3 +B3) ̸= 0,

B9 = −2A3 −A9 − 2B3, B5 = −15A3 + 2A5 + 15B3

2 , A5 = −49A3 +A9 + 43B3

12
(34)

are satisfied, we have Vi = 0, i = 1, 2, . . . , 9, V10 ̸= 0, indicating that the origin of system (26) is a 4.5-order
weak focus. For our purpose, we choose one of the solutions in (28),

A3 = 2 − 136.2014111281· · ·, A8 = −2.0625751157· · ·,
B3 =138.0681608497· · ·, A9 = −79.3892644835· · ·,

(35)

to prove the existence of 9 limit cycles. Then, we have V10 = −3.4990999739 × 109. A direct calculation
shows that the determinant,

det
[

∂(V2, V3, V4, V5, V6, V7, V8, V9)
∂(A3, A5, A8, A9, B3, B5, B8, B9)

]
(34),(35)

= −9.8120724589· · · × 1026 ̸= 0. (36)

Hence, we can take appropriate perturbations on δ, A3, A5, A8, A9, B3, B5, B8 and B9 such that

0 < V1 ≪ −V2 ≪ V3 ≪ −V4 ≪ V5 ≪ −V6 ≪ V7 ≪ −V8 ≪ V9 ≪ 1,

and so the polynomial equation d(r) = 0 has 9 simple zeros near r = 0. Thus, the following result follows
directly from Lemma 2.3.

Theorem 3.2. For system (26), there exist 9 small-amplitude limit cycles bifurcating from the origin.

4. Lyapunov quantities at infinity

In this section, we consider bifurcation of limit cycles from the equator of the Poincaré sphere in the
piecewise polynomial system (3) of degree 2n+ 1. With the ideas taken from [11,32], we suppose that there
exists σ > 0 such that

xY ±
2n+1(x, y) − yX±

2n+1(x, y) ≥ σ(x2 + y2)2, (37)

which indicates that the equator Γ∞ on the Poincaré closed sphere is a trajectory of system (3), having no
real singular points. Let Γ∞ = Γ+

∞ ∪ Γ−
∞ denote the equator cycle or infinity (on Gauss sphere) of system

(3), where Γ+
∞ and Γ−

∞ represent the semi-equator cycle of the upper and lower systems of (3), respectively.
We apply the polar coordinate transformation, x = cos θ/r and y = sin θ/r, under which r = 0 corresponds
to the equator. Then, system (3) can be transformed into

dr
dθ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑2n+1
k=1 φ+

2n+2−k(θ)rk∑2n+1
k=1 ψ+

2n+2−k(θ)rk−1
, for θ ∈ (0, π),∑2n+1

k=1 φ−
2n+2−k(θ)rk∑2n+1

k=1 ψ−
2n+2−k(θ)rk−1

, for θ ∈ (π, 2π),
(38)

where

φ±
k+1(θ) = cos θXk(cos θ, sin θ) + sin θYk(cos θ, sin θ),

ψ±
k+1(θ) = sin θXk(cos θ, sin θ) − cos θYk(cos θ, sin θ),

(39)

k = 0, 1, 2 · · · . Particularly, condition (37) implies ψ±
2n+2 ≥ σ > 0.
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Similar to Hopf bifurcation analysis associated with a singular point at the origin of a dynamical system,
we construct the displacement map of (38). Let r̃+(ρ, θ) =

∑
k≥1u

+
k (θ)ρk and r̃−(ρ, θ) =

∑
k≥1u

−
k (θ)ρk

denote the solutions of the upper and lower systems of (38) with the initial conditions r̃+(ρ, 0) = r̃−(ρ, π) = ρ,
respectively. Define respectively the positive half-return map Π+

∞(ρ) and the negative half-return map Π−
∞(ρ)

by

Π+
∞(ρ) = r̃+(ρ, π) =

∑
k≥1

u+
k ρ

k, Π−
∞(ρ) = r̃−(ρ, 2π) =

∑
k≥1

u−
k ρ

k,

where u±
k ’s are the coefficients of Taylor expansion. The return map for (38) can now be defined as

Π∞(ρ) = Π−
∞(Π+

∞(ρ)) =
∑
k≥1

ukρ
k, (40)

where uk’s are the coefficients of Taylor expansion. Then, the displacement function of (38) is given by

d∞(ρ) = Π∞(ρ) − ρ = (u1 − 1)ρ+
∑
k≥2

ukρ
k =

∑
k≥1

Ukρ
k, (41)

where Uk is called the kth-order Lyapunov quantity at infinity (also called kth-order focal values at infinity).
We have the following definitions and results, which are similar to that of Hopf bifurcation analysis around
a singular point at the origin.

Definition 4.1. For system (3), if there exists λ = λ∗ such that

U1(λ∗) = · · · = Uk(λ∗) = 0, Uk+1(λ∗) ̸= 0, (42)

then infinity is called a weak focus of k
2 -order (k ∈ N); and if Uk = 0 for all integer k, infinity is a center.

It follows that we must consider the displacement function (41) of system (38), when we are interested
in the limit cycles bifurcating from infinity. The number of fixed points of Π∞(ρ) (or zeros of d∞(ρ))
corresponds to the maximal number of limit cycles of system (38). If the displacement function (41) satisfies
U1 = · · · = Uk = 0, Uk+1 ̸= 0, then any perturbation of (3) has at most k limit cycles bifurcating at infinity.

In the following, we consider a particular case of system (3) with higher-order terms, given exactly by

X±
2n+1(x, y) = (µx− y)(x2 + y2)n, Y ±

2n+1(x, y) = (x+ µy)(x2 + y2)n, (43)

under which system (3) becomes

(ẋ, ẏ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
2n∑

k=1
X+

k (x, y) + (µx− y)(x2 + y2)n

2n∑
k=1

Y +
k (x, y) + (x+ µy)(x2 + y2)n

⎞⎟⎟⎟⎟⎟⎠ , for y > 0,

⎛⎜⎜⎜⎜⎜⎝
2n∑

k=1
X−

k (x, y) + (µx− y)(x2 + y2)n

2n∑
k=1

Y −
k (x, y) + (x+ µy)(x2 + y2)n

⎞⎟⎟⎟⎟⎟⎠ , for y < 0.

(44)

For system (44), we alternatively introduce a transformation to change infinity of the system into the origin,
and then use the methods in studying limit cycle bifurcation at the origin to investigate bifurcation of limit
cycles at infinity of system (44). Under the following transformation,

x = ξ

(ξ2 + η2)n+1 , y = η

(ξ2 + η2)n+1 , (45)
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and time rescaling,

dt = (x2 + y2)−ndτ, (46)

we have
dx
dτ = (ξ2 + η2)−1−n dξ

dτ + (−1 − n)ξ(ξ2 + η2)−2−n
(

2ξ dξ
dτ + 2ηdη

dτ

)
,

dy
dτ = (ξ2 + η2)−1−n dη

dτ + (−1 − n)η(ξ2 + η2)−2−n
(

2ξ dξ
dτ + 2ηdη

dτ

)
,

(47)

and thus,

dx
dτ = dx

dt
dt
dτ =

[ 2n∑
k=0

X±
k (x, y) + (µx− y)(x2 + y2)n

]
(x2 + y2)−n

= (ξ2 + η2)−1−n(−η + µξ) + (ξ2 + η2)n+2n2
2n∑

k=0
(ξ2 + η2)−k−nkX±

k (ξ, η),

dy
dτ = dy

dt
dt
dτ =

[ 2n∑
k=0

Y ±
k (x, y) + (x+ µy)(x2 + y2)n

]
(x2 + y2)−n

= (ξ2 + η2)−1−n(ξ + µη) + (ξ2 + η2)n+2n2
2n∑

k=0
(ξ2 + η2)−k−nkY ±

k (ξ, η).

(48)

Further, solving dξ
dτ and dη

dτ from (47) and using (48) yields

⎛⎜⎝
dξ
dτ
dη
dτ

⎞⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
−µ

2n+ 1ξ − η +
2n∑

k=0
P+

2n+2+2nk+k(ξ, η)

ξ + −µ
2n+ 1η +

2n∑
k=0

Q+
2n+2+2nk+k(ξ, η)

⎞⎟⎟⎟⎟⎟⎠ , for η > 0,

⎛⎜⎜⎜⎜⎜⎝
−µ

2n+ 1ξ − η +
2n∑

k=0
P−

2n+2+2nk+k(ξ, η)

ξ + −µ
2n+ 1η +

2n∑
k=0

Q−
2n+2+2nk+k(ξ, η)

⎞⎟⎟⎟⎟⎟⎠ , for η < 0,

(49)

where

P±
2n+2+2nk+k(ξ, η) =

[
(η2 − ξ2

2n+ 1)X±
2n−k(ξ, η) − 2n+ 2

2n+ 1ξηY
±

2n−k(ξ, η)
]
(ξ2 + η2)k(n+1),

Q±
2n+2+2nk+k(ξ, η) =

[
(ξ2 − η2

2n+ 1)Y ±
2n−k(ξ, η) − 2n+ 2

2n+ 1ξηX
±
2n−k(ξ, η)

]
(ξ2 + η2)k(n+1).

(50)

The origin of system (49) corresponds to infinity of system (44). Hence, the origin of system (49) being
a center is equivalent to that infinity of system (44) being a center. We have the following theorem.

Theorem 4.2. Infinity of system (44) is a center if and only if the origin of system (49) is a center.

As discussed in Section 2, we know that the problem to determine the center conditions and bifurcation of
limit cycles at infinity of system (44) can be studied by using the Lyapunov constants at the origin of system
(49). Moreover, the results presented in this section allow us to consider limit cycle bifurcations around the
origin, or near infinity or in both places.
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Definition 4.3. The notation {k1, k2} denotes the configuration of a vector field with k1 (small-amplitude)
limit cycles around the origin and k2 (large-amplitude) limit cycles near infinity.

5. Simultaneous bifurcations of limit cycles at the origin and infinity

In this section, we study bifurcation of limit cycles at infinity of system (26). We find that the Lyapunov
quantities at infinity of system (26) has a great similarity with that at the origin. Under the transformation,

x = ξ

(ξ2 + η2)2 , y = η

(ξ2 + η2)2 , (51)

and time rescaling,

dt = (x2 + y2)−1dτ, (52)

system (26) is transformed into

⎛⎜⎝
dξ
dτ
dη
dτ

⎞⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− µ

3 ξ − η +A5η
4 + 3A3 −A5 − 4A9

3 η2ξ2 − 4
3A8ηξ

3 − 1
3A3ξ

4

− η7 − δ

3η
6ξ − 3η5ξ2 − δη4ξ3 − 3η3ξ4 − δη2ξ5 − ηξ6 − δ

3η
7,

ξ − µ

3 η +A8ξ
4 + 3A9 − 4A3

3 ηξ3 − 1
3A8η

2ξ2 − 4A5 +A9

3 η3ξ

+ ξ7 − δ

3ξ
6η + 3ξ5η2 − δξ4η3 + 3ξ3η4 − δξ2η5 + ξη6 − δ

3η
7,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, for η > 0,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− µ

3 ξ − η +B5η
4 + 3B3 −B5 − 4B9

3 η2ξ2 − 4
3B8ηξ

3 − 1
3B3ξ

4

− η7 − δ

3η
6ξ − 3η5ξ2 − δη4ξ3 − 3η3ξ4 − δη2ξ5 − ηξ6 − δ

3η
7,

ξ − µ

3 η +B8ξ
4 + 3B9 − 4B3

3 ηξ3 − 1
3B8η

2ξ2 − 4B5 +B9

3 η3ξ

+ ξ7 − δ

3ξ
6η + 3ξ5η2 − δξ4η3 + 3ξ3η4 − δξ2η5 + ξη6 − δ

3η
7,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, for η < 0.

(53)

We are interested in identifying the center conditions at infinity of system (26). We will show that they
can be classified as two types: Hamiltonian system or one having symmetry with respect to a line. These
conditions are also the center conditions for the origin of (26). Moreover, we will show that system (26) can
have limit cycles bifurcating simultaneously from the origin and the equator.

Theorem 5.1. Assume δ = 0. System (26) has a center at infinity (correspondingly system (53) has a
center at the origin) if and only if µ = 0 and one of the conditions I, II and III given in Theorem 3.1 holds.

Proof. When δ = 0, we compute the Lyapunov quantities at the origin of system (53) (corresponding to
the Lyapunov quantities at infinity of system (26)), and find that the Lyapunov constants are identically
equal to zero except U3k+1. Actually, we have

U1 = e
2µπ

3 − 1,

U4 = 2
9(A8 −B8),

U7 = − 1
24A8(2A3 +A9 + 2B3 +B9)π,

U10 = 2
189A8(2A3 +A9)(15A3 + 2A5 + 15B3 + 2B5),

U13 = − 1
1152A8(2A3 +A9)(A3 +B3)(72A3 + 24A5 − 11A9 + 86B3)π.
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The proof of the necessity of center conditions is similar to the proof for Theorem 3.1, and is thus omitted
here for brevity. Assume that A3 + B3 ̸= 0 and let A5 = − 72A3−11A9+86B3

24 , for which U13 = 0, then we
obtain

U16 = 1
2211300A8(2A3 +A9)(A3 +B3)F6,

U19 = 1
2080899072000A8(2A3 +A9)(A3 +B3)F7π,

U22 = 1
3572072595534643200A8(2A3 +A9)(A3 +B3)F8,

U25 = − 1
5426410061612187648000A8(2A3 +A9)(A3 +B3)F9,

U28 = 1
1436921724707171987122814976000A8(2A3 +A9)(A3 +B3)F10,

where
F6 = −303912A2

3 + 88200A2
8 − 14472A3A9 − 9833A2

9 − 668520A3B3 − 24860A9B3 − 314300B2
3 ,

F7 = −69995520000A3 + 113754063024A3
3 − 34997760000A9 + 48174235056A2

3A9

+ 5874190738A3A
2
9 + 1876956983A3

9 + 216930158640A2
3B3 + 106461471640A3A9B3

+ 5387551160A2
9B3 + 68844491800A3B

2
3 + 47200955900A9B

2
3 − 25886700000B3

3 ,

F8 = 1841255300707909632A2
3 − 1144863919341305856A4

3 − 394121451877171200A2
8

− 1719043246824357888A2
3A

2
8 + 527079896933990400A4

8 + 773005929741287424A3A9

− 972617423970631680A3
3A9 − 78090684271165440A3A

2
8A9 + 277301306147733504A2

9

− 424557724494200832A2
3A

2
9 − 43170343811022848A2

8A
2
9 − 53498864134520832A3A

3
9

− 14395905788608512A4
9 + 3437504648901033984A3B3 − 4471175657023340544A3

3B3

− 3759486934506799104A3A
2
8B3 + 336199294849646592A9B3

− 2647999461030100992A2
3A9B3 − 94590690972925952A2

8A9B3

− 953419734762651648A3A
2
9B3 − 61668382174347264A3

9B3 + 1404448665816268800B2
3

− 6251270020043636736A2
3B

2
3 − 1735543253526118400A2

8B
2
3

− 2221924006383058944A3A9B
2
3 − 449066278613680128A2

9B
2
3

− 3584100795873755136A3B
3
3 − 544296089627394048A9B

3
3 − 700203548918415360B4

3

+ 307061120830464000A3A8π − 1059156131672214576A3
3A8π + 162559052645109120A3A

3
8π

+ 153530560415232000A8A9π − 669882531931717104A2
3A8A9π

+ 125337019129882560A3
8A9π − 64457741654788482A3A8A

2
9π − 22207193163442287A8A

3
9π

− 2487394347692894640A2
3A8B3π + 88114985614656000A3

8B3π

− 1477312740939835800A3A8A9B3π − 68785417325865240A8A
2
9B3π

− 1549165231431057240A3A8B
2
3π − 678537883273870620A8A9B

2
3π

− 200435510879604000A8B
3
3π,

F9 = 10234966178002894848000A2
3A8 − 5804035746587348041728A4

3A8

− 2354895499988828160000A3
8 − 3718181749765617745920A2

3A
3
8

+ 1268445739638325248000A5
8 + · · ·,

F10 = −2076062815991659957626234470400A2
3 + 3023696197447835097631649955840A4

3

− 1318280420985192788330859724800A6
3 + 195757790001546870040559616000A2

8

+ 6276469725372565177768838430720A2
3A

2
8 + · · ·.
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Here, similarly following the proof for Theorem 3.1, we can show that the four polynomial equations
F6 = F7 = F8 = F9 = 0 have 8 sets of real solutions given below:

A3 = ±1.1935491673· · ·, B3 = ∓1.9598517046· · ·

A8 = ±0.8583332974· · ·, A9 = ±0.4170129068· · ·

A3 = ∓1.0820295512· · ·, B3 = ±0.3530483910· · ·

A8 = ±1.2580741376· · ·, A9 = ±0.6980676134· · ·

A3 = ±0.3530483910· · ·, B3 = ∓1.0820295512· · ·

A8 = ±1.2580741376· · ·, A9 = ±0.7598947069· · ·

A3 = ∓1.9598517046· · ·, B3 = ±1.1935491673· · ·

A8 = ±0.8583332974· · ·, A9 = ±1.1155921675.

(54)

Under these solutions, F6 = F7 = F8 = F9 = 0, but F10 ̸= 0. So these solutions may yield maximal number
of limit cycles.

Next, we prove the sufficiency of the center conditions I, II and III. When the condition I is satisfied,
system (53)|µ=0 can be rewritten as

⎛⎜⎜⎝
dξ
dτ
dη
dτ

⎞⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
− η +A5η

4 + 3A3 −A5 − 4A9

3 η2ξ2 − 1
3A3ξ

4

− η7 − 3η5ξ2 − 3η3ξ4 − ηξ6,

ξ + 3A9 − 4A3

3 ηξ3 − 4A5 +A9

3 η3ξ

+ ξ7 + 3ξ5η2 + 3ξ3η4 + ξη6,

⎞⎟⎟⎟⎟⎟⎟⎠ , for η > 0,

⎛⎜⎜⎜⎜⎜⎜⎝
− η +B5η

4 + 3B3 −B5 − 4B9

3 η2ξ2 − 1
3B3ξ

4

− η7 − 3η5ξ2 − 3η3ξ4 − ηξ6,

ξ + 3B9 − 4B3

3 ηξ3 − 4B5 +B9

3 η3ξ

+ ξ7 + 3ξ5η2 + 3ξ3η4 + ξη6,

⎞⎟⎟⎟⎟⎟⎟⎠ , for η < 0.

(55)

Obviously, system (55) is symmetric with respect to the η-axis. So by Lemma 2.2 the origin of (55) is a
center, and hence system (26)|µ=0 has a center at infinity.

If the condition II holds, system (53)|µ=0 can be rewritten as

⎛⎜⎜⎝
dξ
dτ
dη
dτ

⎞⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
− η +A5η

4 + 11A3 −A5

3 η2ξ2 − 4
3B8ηξ

3 − 1
3A3ξ

4

− η7 − 3η5ξ2 − 3η3ξ4 − ηξ6,

ξ +B8ξ
4 − 10A3

3 ηξ3 − 1
3B8η

2ξ2 − 4A5 − 2A3

3 η3ξ

+ ξ7 + 3ξ5η2 + 3ξ3η4 + ξη6,

⎞⎟⎟⎟⎟⎟⎟⎠ , for η > 0,

⎛⎜⎜⎜⎜⎜⎜⎝
− η +B5η

4 + 11B3 −B5

3 η2ξ2 − 4
3B8ηξ

3 − 1
3B3ξ

4

− η7 − 3η5ξ2 − 3η3ξ4 − ηξ6,

ξ +B8ξ
4 − 10B3

3 ηξ3 − 1
3B8η

2ξ2 − 4B5 − 2B3

3 η3ξ

+ ξ7 + 3ξ5η2 + 3ξ3η4 + ξη6,

⎞⎟⎟⎟⎟⎟⎟⎠ , for η < 0.

(56)
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The upper and lower systems in (56) have an integral factor,

M(x, y) = (ξ2 + η2)−7,

and first integrals:

H+(ξ, η) = 3 − 4A5η
3 + 6η6 − 12A3ηξ

2 + 18η4ξ2 + 4A8ξ
3 + 18η2ξ4 + 6ξ6

36(ξ2 + η2)6 ,

H−(ξ, η) = 3 − 4B5η
3 + 6η6 − 12B3ηξ

2 + 18η4ξ2 + 4A8ξ
3 − 18η2ξ4 + 6ξ6

36(ξ2 + η2)6 .

(57)

Thus, the condition H+(ξ, 0) ≡ H−(ξ, 0) in Lemma 2.1 is satisfied, which implies that the origin of (56) is
a center. Hence, infinity of system (26)|µ=0 is a center.

If the condition III holds, system (53)|µ=0 becomes

⎛⎜⎜⎝
dξ
dτ
dη
dτ

⎞⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
− η +A5η

4 + 3A3 −A5 − 4A9

3 η2ξ2 − 4
3A8ηξ

3 − 1
3A3ξ

4

− η7 − 3η5ξ2 − 3η3ξ4 − ηξ6,

ξ +A8ξ
4 + 3A9 − 4A3

3 ηξ3 − 1
3A8η

2ξ2 − 4A5 +A9

3 η3ξ

+ ξ7 + 3ξ5η2 + 3ξ3η4 + ξη6,

⎞⎟⎟⎟⎟⎟⎟⎠ , for η > 0,

⎛⎜⎜⎜⎜⎜⎜⎝
− η −A5η

4 − 3A3 −A5 − 4A9

3 η2ξ2 − 4
3A8ηξ

3 + 1
3A3ξ

4

− η7 − 3η5ξ2 − 3η3ξ4 − ηξ6,

ξ +A8ξ
4 − 3A9 − 4A3

3 ηξ3 − 1
3A8η

2ξ2 + 4A5 +A9

3 η3ξ

+ ξ7 + 3ξ5η2 + 3ξ3η4 + ξη6,

⎞⎟⎟⎟⎟⎟⎟⎠ , for η < 0.

(58)

It is seen that system (58) is symmetric with respect to the ξ-axis, showing that infinity of system (26)|µ=0

is a center.
Therefore, the conditions I, II and III are also sufficient for infinity of (26)|µ=0 being a center. □

Theorem 5.2. Assume δ = µ = 0. The cubic system (26) has the configuration

{4, 9} and {9, 4},

which give the maximal number of limit cycles that system (26) can have simultaneously around the origin
and infinity.

Proof. We have two cases.

(1) First, we try to obtain the maximal number of limit cycles bifurcating near infinity. We take one of the
real solutions from (54),

A3 = −1.1935491673· · ·, B3 = 1.9598517045· · ·,
A8 = −0.8583332973· · ·, A9 = −0.4170129068· · ·.

(59)

Then under the conditions,

A8 −B8 = 0, B9 = −2A3 −A9 − 2B3, B5 = −15A3 + 2A5 + 15B3

2 , (60)
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A5 = − 72A3−11A9+86B3
24 and the solution given in (59), we have U3k+1 = 0, k = 0, 1, 2, . . . , 8, but

U28 ̸= 0, indicating that infinity of system (26) is a 13.5-order weak focus. Further, it is easy to show
that

det
[
∂(U4, U7, U10, U13, U16, U19, U22, U25)
∂(A3, A5, A8, A9, B3, B5, B8, B9)

]
(59),(60)

= −9.8120724589· · · × 10−7 ̸= 0, (61)

implying that system (26) has 9 large-amplitude limit cycles bifurcating from infinity. From the proof
of Theorem 3.1, we obtain

V5 = 65
768A8(2A3 +A9)2(A3 +B3)π ̸= 0

when A5 = − 72A3−11A9+86B3
24 . Hence, simultaneously, the origin of system (26) is a 2-order weak focus.

In addition, we obtain that

det
[
∂(V2, V3, V4)
∂(A3, A8, A9)

]
(59)

= −261.2058994389· · · ̸= 0. (62)

Thus, system (26), in addition to 9 large-amplitude limit cycles bifurcating from infinity, has 4 small-
amplitude limit cycles simultaneously bifurcating from the origin, yielding a distribution {4, 9}.

(2) Next, we first consider the maximal limit cycles bifurcating from the origin. From the results of Section
3, we know that there exist parameter values satisfying V1 = V2 = · · · = V9 = 0, but V10 ̸= 0. This
shows that 9 small-amplitude limit cycles bifurcate from the origin. Then, under the condition (60), we
obtain U1 = U4 = U7 = U10 = 0. Assume A8(2A3 +A9)(A3 +B3) ̸= 0, we have

U13 = 13
1152A8(2A3 +A9)2(A3 +B3)π ̸= 0

when A5 = − 49A3+A9+43B3
12 . In addition, we obtain that

det
[
∂(U4, U7, U10)
∂(A3, A8, A9)

]
(35)

= 6.9102089798 · · · ̸= 0. (63)

Hence, system (26), besides 9 small-amplitude limit cycles bifurcating from the origin, has 4 large-
amplitude limit cycles simultaneously bifurcating from infinity, yielding the distribution {9, 4}. □

6. An example with 11 limit cycles at infinity

In this section, we present a special example of the piecewise cubic polynomial system (5) to show 11 limit
cycles bifurcating from infinity. To achieve this, setting A3 = B3 = A4 = B4 = A9 = B9 = A10 = B10 = 0
and B6 = A6 in system (5), we obtain

(
ẋ
ẏ

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
A1x+A2y +A5y

2 + (µx− y)(x2 + y2)
A6x+A7y +A8x

2 + (x+ µy)(x2 + y2)

)
, for y > 0,(

B1x+B2y +B5y
2 + (µx− y)(x2 + y2)

A6x+B7y +B8x
2 + (x+ µy)(x2 + y2)

)
, for y < 0.

(64)



100 T. Chen et al. / Nonlinear Analysis: Real World Applications 41 (2018) 82–106

Under the transformations (51) and (52), system (64) becomes

⎛⎜⎝
dξ
dτ
dη
dτ

⎞⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− µ

3 ξ − η +A5η
4 − A5

3 η2ξ2 − 4A8

3 ηξ3 +A2η
7 + 3A1 − 4A7

3 η6ξ

+ 5A2 − 4A6

3 η5ξ2 + 5A1 − 8A7

3 η4ξ3 + A2 − 8A6

3 η3ξ4

+ A1 − 4A7

3 η2ξ5 − A2 + 4A6

3 ηξ6 − A1

3 ξ7,

ξ − µ

3 η − 4A5

3 η3ξ − A8

3 η2ξ2 +A8ξ
4 − A7

3 η7 − 4A2 +A6

3 η6ξ

+ A7 − 4A1

3 η5ξ2 + A6 − 8A2

3 η4ξ3 + 5A7 − 8A1

3 η3ξ4

+ 5A6 − 4A2

3 η2ξ5 + 3A7 − 4A1

3 ηξ6 +A6ξ
7,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, for η > 0,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− µ

3 ξ − η +B5η
4 − B5

3 η2ξ2 − 4B8

3 ηξ3 +B2η
7 + 3B1 − 4B7

3 η6ξ

+ 5B2 − 4A6

3 η5ξ2 + 5B1 − 8B7

3 η4ξ3 + B2 − 8A6

3 η3ξ4

+ B1 − 4B7

3 η2ξ5 − B2 + 4A6

3 ηξ6 − B1

3 ξ7,

ξ − µ

3 η − 4B5

3 η3ξ − B8

3 η2ξ2 +B8ξ
4 − B7

3 η7 − 4B2 +A6

3 η6ξ

+ B7 − 4B1

3 η5ξ2 + A6 − 8B2

3 η4ξ3 + 5B7 − 8B1

3 η3ξ4

+ 5A6 − 4B2

3 η2ξ5 + 3B7 − 4B1

3 ηξ6 +A6ξ
7,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, for η < 0.

(65)

Then we have the following two theorems.

Theorem 6.1. System (64) has a center at infinity (correspondingly system (65) has a center at the origin)
if and only if one of the following conditions holds:

IV : µ = A1 +A7 = B1 +B7 = A8B8 = 0,
V : µ = A1 +B1 = A2 −B2 = A5 +B5 = A7 +B7 = A8 −B8 = 0.

(66)

Proof. First, we prove that the conditions IV and V are necessary. As discussed in the previous section,
we have µ = 0 due to U1 = 0. From the 4th Lyapunov constant, U4 = − 2

9 (A8 − B8) = 0, we get B8 = A8.
Then, we obtain U7 = − 1

6 (A1 + A7 + B1 + B7)π. Taking B7 = −A7 − A1 − B1 yields U7 = 0, and then
U10 = − 4

27 (A1 +A7)(A5 +B5).

(i) Letting A7 = −A1 yields U10 = 0, which gives the condition IV.
(ii) If B5 = −A5, for which U10 = 0, and then U13 = 1

12 (A1 + A7)(−A2 + B2)π, which leads to B2 = A2

from U13 = 0. Consequently, we have U16 = 2
15 (A1 +A7)A8(A1 +B1).

(iia) If B1 = −A1, we obtain the condition V.
(iib) If A8 = 0, then we have

U19 = − 1
24(A1 +A7)(2A1 +A7 −B1)(A1 +B1)π.

Setting U19 = 0 yields B1 = 2A1+A7, and then U22 = − 128
1575A5(A1+A7)2(3A1+A7). If A7 = −3A1,

we get B1 = −A1 which is included in condition V. Otherwise, we have A5 = 0 from U22 = 0.
Further, we have U25 = − 1

48 (3A2 − 5A6)(A1 +A7)2(3A1 +A7)π. Taking A2 = 5
3A6 yields U25 = 0,
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leads to U28 = U34 = U40 = 0, and

U31 = 1
1152(A1 +A7)2(3A1 +A7)(45A2

1 − 32A2
6 + 126A1A7 + 69A2

7)π,

U37 = − 1
1620A6(A1 +A7)2(3A1 +A7)(−266A2

6 + 333A1A7 + 222A2
7)π.

We compute the resultant,

Res(45A2
1 − 32A2

6 + 126A1A7 + 69A2
7,−266A2

6 + 333A1A7 + 222A2
7, A1)

= 3184020A4
6 + 2297700A2

6A
2
7 + 554445A4

7,
(67)

which does not have non-zero real solutions. If A6 = 0, we have U31 = 1
1152 (A1 + A7)2(3A1 +

A7)(45A2
1 + 126A1A7 + 69A2

7)π, U37 = 0, and

U43 = 373
108000A

3
7(A1 +A7)2(3A1 +A7)(66A1 + 49A7)π.

Then, computing the resultant to obtain

Res(45A2
1 + 126A1A7 + 69A2

7, A7(66A1 + 49A7), A1) = 1125A4
7. (68)

Hence, 45A2
1 + 126A1A7 + 69A2

7 = A7(66A1 + 49A7) = 0 if and only if A1 = A7 = 0.

Next, we prove the sufficiency of the conditions IV and V. When the condition IV is satisfied, system (65)
can be rewritten as

⎛⎜⎝
dξ
dτ
dη
dτ

⎞⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− η +A5η
4 − A5

3 η2ξ2 − 4A8

3 ηξ3 +A2η
7 + 7A1

3 η6ξ

+ 5A2 − 4A6

3 η5ξ2 + 13A1

3 η4ξ3 + A2 − 8A6

3 η3ξ4

+ 5A1

3 η2ξ5 − A2 + 4A6

3 ηξ6 − A1

3 ξ7,

ξ − 4A5

3 η3ξ − A8

3 η2ξ2 +A8ξ
4 + A1

3 η7 − 4A2 +A6

3 η6ξ

− 5A1

3 η5ξ2 + A6 − 8A2

3 η4ξ3 − 13A1

3 η3ξ4

+ 5A6 − 4A2

3 η2ξ5 − 7A1

3 ηξ6 +A6ξ
7,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, for η > 0,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− η +B5η
4 − B5

3 η2ξ2 − 4A8

3 ηξ3 +B2η
7 + 7B1

3 η6ξ

+ 5B2 − 4A6

3 η5ξ2 + 13B1

3 η4ξ3 + B2 − 8A6

3 η3ξ4

+ 5B1

3 η2ξ5 − B2 + 4A6

3 ηξ6 − B1

3 ξ7,

ξ − 4B5

3 η3ξ − A8

3 η2ξ2 +A8ξ
4 + B1

3 η7 − 4B2 +A6

3 η6ξ

− 5B1

3 η5ξ2 + A6 − 8B2

3 η4ξ3 − 13B1

3 η3ξ4

+ 5A6 − 4B2

3 η2ξ5 − 7B1

3 ηξ6 +A6ξ
7,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, for η < 0.

(69)
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The upper and lower systems in (69) have an integral factor,

M(x, y) = (ξ2 + η2)−7,

and first integrals:

H+(ξ, η) = 1
36(ξ2 + η2)6 (3 − 4A5η

3 − 6A2η
6 − 12A1η

5ξ − 12A2η
4ξ2 + 6A6η

4ξ2

+ 4A8ξ
3 − 24A1η

3ξ3 − 6A2η
2ξ4 + 12A6η

2ξ4 − 12A1ηξ
5 + 6A6ξ

6),

H−(ξ, η) = 1
36(ξ2 + η2)6 (3 − 4B5η

3 − 6B2η
6 − 12B1η

5ξ − 12B2η
4ξ2 + 6A6η

4ξ2

+ 4A8ξ
3 − 24B1η

3ξ3 − 6B2η
2ξ4 + 12A6η

2ξ4 − 12B1ηξ
5 + 6A6ξ

6).

(70)

Thus, the condition H+(ξ, 0) ≡ H−(ξ, 0) in Lemma 2.1 holds, which implies that infinity of system (64)|µ=0

is a center.
If the condition V holds, system (65) can be rewritten as

⎛⎜⎜⎝
dξ
dτ
dη
dτ

⎞⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− η +A5η
4 − A5

3 η2ξ2 − 4A8

3 ηξ3 +A2η
7 + 3A1 − 4A7

3 η6ξ

+ 5A2 − 4A6

3 η5ξ2 + 5A1 − 8A7

3 η4ξ3 + A2 − 8A6

3 η3ξ4

+ A1 − 4A7

3 η2ξ5 − A2 + 4A6

3 ηξ6 − A1

3 ξ7,

ξ − 4A5

3 η3ξ − A8

3 η2ξ2 +A8ξ
4 − A7

3 η7 − 4A2 +A6

3 η6ξ

+ A7 − 4A1

3 η5ξ2 + A6 − 8A2

3 η4ξ3 + 5A7 − 8A1

3 η3ξ4

+ 5A6 − 4A2

3 η2ξ5 + 3A7 − 4A1

3 ηξ6 +A6ξ
7,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, for η > 0,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− η −A5η
4 + A5

3 η2ξ2 − 4A8

3 ηξ3 +A2η
7 − 3A1 − 4A7

3 η6ξ

+ 5A2 − 4A6

3 η5ξ2 − 5A1 − 8A7

3 η4ξ3 + A2 − 8A6

3 η3ξ4

− A1 − 4A7

3 η2ξ5 − A2 + 4A6

3 ηξ6 + A1

3 ξ7,

ξ + 4A5

3 η3ξ − A8

3 η2ξ2 +A8ξ
4 + A7

3 η7 − 4A2 +A6

3 η6ξ

− A7 − 4A1

3 η5ξ2 + A6 − 8A2

3 η4ξ3 − 5A7 − 8A1

3 η3ξ4

+ 5A6 − 4A2

3 η2ξ5 − 3A7 − 4A1

3 ηξ6 +A6ξ
7,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, for η < 0.

(71)

Obviously, system (71) is symmetric with respect to the ξ-axis. Hence, infinity of system (64)|µ=0 is a
center. □

Theorem 6.2. If the following conditions:

µ = A2 = A5 = A6 = A8 = B2 = B5 = B8 = 2A1 +A7 −B1 = 3A1 + 2A7 +B7 = 0,
45A2

1 + 126A1A7 + 69A2
7 = 0, A1 +A7 ̸= 0, A1A7 ̸= 0,

(72)

are satisfied, then system (64) can be perturbed to have 11 limit cycles near infinity.
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Proof. It has been shown in Theorem 6.1 that if the conditions in (72) are satisfied, infinity of system (64)
is a 21-order weak focus. Further, it can be shown that

det
[
∂(U4, U7, U10, U13, U16, U19, U22, U25, U31, U37)
∂(A2, A5, A6, A7, A8, B1, B2, B5, B7, B8)

]
(72)

= −37A7(A1 +A7)11(3A1 +A7)5π6

16070775840000 (3A1 + 2A7)(231A3
1 + 645A2

1A7 + 513A1A
2
7 + 115A3

7).

Let H0 = 45A2
1 + 126A1A7 + 69A2

7. Then, we compute the resultants to obtain that

Res(H0, 3A1 + 2A7, A1) = 45A2
7 ̸= 0,

Res(H0, 231A3
1 + 645A2

1A7 + 513A1A
2
7 + 115A3

7, A1) = 91570176A6
7 ̸= 0,

indicating that H0 = 3A1 + 2A7 = 0 and H0 = 231A3
1 + 645A2

1A7 + 513A1A
2
7 + 115A3

7 = 0 have no non-zero
real solutions. Therefore,

det
[
∂(U4, U7, U10, U13, U16, U19, U22, U25, U31, U37)
∂(A2, A5, A6, A7, A8, B1, B2, B5, B7, B8)

]
(72)

̸= 0,

which indicates that d∞(r) has 11 simple zeros near r = 0. This shows that 11 large-amplitude limit cycles
can bifurcate from infinity of system (64). A concrete numerical example for d∞(r) to have 11 simple zeros
is given in the next section. □

7. A numerical example realization of the 11 limit cycles

Theorem 6.2 guarantees the existence of 11 large-amplitude limit cycles in system (64) under small
perturbations. In order to obtain 11 large-amplitude limit cycles bifurcating from infinity, one needs to find
exact 11 positive roots solved from the polynomial equation:

d∞(r) = U1r + U4r
4 + · · · + U37r

37 + U43r
43 = 0. (73)

In general, it is not an easy task to find a set of explicit parameter values to have a numerical realization.
In particular, it is extremely difficult to obtain a numerical set of perturbations for the case of high multiple
limit cycles. However, for our case, since the perturbations can be done one by one, it is possible to obtain
parameter values such that the Eq. (73) can have 11 positive solutions. In the following, we present a concrete
example for illustration. The complete set of critical values of (µc, A1c, A2c, . . . , B7c, B8c) are given in (72).
Under these conditions, we have Ui = 0, i = 1, 2, . . . , 42, but U43 ̸= 0. Further, solving A1 and A7 from the
equation

45A2
1 + 126A1A7 + 69A2

7 = 0

yields two real solutions. We choose one of them, given by

A1 = 0.37656799869833483520· · ·, A7 = − 0.50424025103273360438· · ·. (74)

Therefore, we need perturbations such that

0 < U1 ≪ −U4 ≪ U7 ≪ −U10 ≪ U13 ≪ −U16 ≪ U19 ≪ −U22 ≪ U25 ≪ −U31 ≪ U37 ≪ 1. (75)

We take perturbations in the backward order: on A6 for U37, on A2 for U25, on A5 for U22, on B1 for U19,
on A8 for U16, on B2 for U13, on B5 for U10, on B7 for U7, on B8 for U4, on µ for U1. More precisely, we
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choose

µ = µc + 1.7 × 10−68 = 1.7 × 10−68,

A2 = A2c + 0.00033333333 = 0.00033333333,
A5 = A5c + 10−15 = 10−15,

A6 = A6c + 0.0002 = 0.0002,
A8 = A8c + 10−25 = 10−25,

B1 = B1c − 9 × 10−21

= 0.248895746363936066016291164691594557962220996910691649508,
B2 = B2c + 0.00033333333299999999999999999997008184186959518186004

= 0.00033333333299999999999999999997008184186959518186004,
B5 = B5c − 1.0000000000000000000000052869749507672354975752845 × 10−15

= −1.0000000000000000000000052869749507672354975752845 × 10−15,

B7 = B7c + 8.9999999999999999999999999981 × 10−21

= −0.12122349402953729683852907185263420053122835248621,
B8 = B8c + 9.99999999999999999999999999999955 × 10−26

= 9.99999999999999999999999999999955 × 10−26.

(76)

With the above perturbed parameter values, we obtain the following Lyapunov constants:

U1 = 1.06814150222052970107729875031503 × 10−67,

U4 = −10−57,

U7 = 10−48,

U10 = −10−40,

U13 = 10−33,

U16 = −1.0647248678081108360917361383756436548140191531415 × 10−27,

U19 = 9.4076207516259133434330217147167515034784700337664 × 10−23,

U22 = −8.2856120069794437863240270300666625581487535135386 × 10−19,

U25 = 6.672734058155054546472804002072488405209027013565 × 10−16,

U31 = −3.5587914976826957581188288011053271494449005158177 × 10−11,

U37 = 2.6829217281236385925660150873455717155374539666814 × 10−8,

U43 = −0.20665634791709396362537493136546130186290774390368,

(77)

for which Eq. (73) has 11 positive roots:

r1≈ 0.0004951057, r2 ≈ 0.0009962443, r3 ≈ 0.0021544391, r4≈ 0.0046561506,
r5≈ 0.0096891379, r6 ≈ 0.0226219191, r7 ≈ 0.0482546035, r8≈ 0.1070254815,
r9≈ 0.1523230384, r10≈ 0.3375260483, r11≈ 0.4749986020,

(78)

as expected. It should be noted that U2 = U3 = U5 = U6 = · · · = 0 even under the perturbations.

8. Conclusion

In this paper, we have discussed the center problem and bifurcation of limit cycles for two types of
piecewise cubic polynomial systems. We have developed a computationally efficient method for computing
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the Lyapunov constants at infinity of piecewise polynomial systems. Using our method, we consider a special
piecewise cubic polynomial system to show the existence of 13 limit cycles with either {9, 4} or {4, 9}
distribution at the origin and infinity. Moreover, we construct a special system to prove the existence of 11
limit cycles bifurcating from infinity, which is a new best result in the direction of this research.

We would like to develop more computationally efficient methodology to study bifurcations of limit
cycles around the origin and infinity simultaneously in piecewise polynomial systems. In particular, finding
the maximal number of limit cycles bifurcating at infinity for general piecewise polynomial systems with no
singular point at infinity is a challenging task.
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