
Commun Nonlinear Sci Numer Simulat 23 (2015) 115–128
Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns
Dynamic behaviors of a class of HIV compartmental models
http://dx.doi.org/10.1016/j.cnsns.2014.11.001
1007-5704/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, PR China. Tel.: +86 13707
E-mail addresses: xchen443@uwo.ca (X. Chen), lhhuang@hnu.edu.cn (L. Huang), ypei@uwo.ca (P. Yu).
Xiaoyan Chen a, Lihong Huang a,b,⇑, Pei Yu c

a College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, PR China
b Hunan Women’s University, Changsha, Hunan 410004, PR China
c Department of Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 June 2014
Received in revised form 30 September 2014
Accepted 4 November 2014
Available online 11 November 2014

Keywords:
HIV compartmental model
Global stability
Lyapunov function
LaSalle’s invariance principle
Based on heterogeneities in drug efficacy (either spatial or phenotypic), two HIV compart-
mental models were proposed in Callaway and Perelson (2002) to study the HIV virus
dynamics under drug treatment. In this paper, we provide a global analysis on the two
models, including the positivity and boundedness of solutions and the global stability of
equilibrium solutions. In particular, we show that when the basic reproduction number
R0 6 1 (for which the infection equilibrium does not exist), the infection-free equilibrium
is globally asymptotically stable; while when R0 > 1 (for which the infection equilibrium
exists), the infection equilibrium is globally asymptotically stable.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

With considerable information obtained from the treatment of HIV-infected individuals using highly active antiretroviral
therapy (HAART) [2,21,15,1,13], a large number of mathematical models have been proposed based on the decay character-
istics of virus in the bodies of infected patients [9,22,8,4,14]. Some of these models were developed from the observations of
Perelson et al. [13] that rapid decay of HIV in the first two weeks is mainly due to the fast elimination of free virus and the
loss of productively infected cells, while the main contribution to the second phase is the loss of long-lived infected cells.
Under the assumptions that combined drug efficacy being � and a fraction a of infection events resulting in chronic infection,
a standard and classic model developed on the basis of this decay characteristic is described by the following differential
equations [2]:
dx
dt
¼ k� dx� ð1� �Þkvx;

dy
dt
¼ ð1� aÞð1� �Þkvx� dy;

dz
dt
¼ að1� �Þkvx� lz;

dv
dt
¼ NTdyþ Nmlz� cv ;

ð1:1Þ
where x; y; z and v denote, respectively, the densities of CD4þ cells that are susceptible to infection, productively infected
cells, long lived chronically infected cells and free virus; k and k are the generation rates of CD4þ cells and the infection rate
483381.
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constant, respectively; d; d;l and c are the death rates of CD4þ cells, productively infected cells, long lived chronically
infected cells and free virus, respectively; NT and Nm represent the average numbers of virions produced in the lifetime of
productively infected cells and chronically infected cells, respectively.

Although it has been shown that HAART is extremely effective in reducing the viral burden in HIV-infected individuals
below the threshold of detectability, some evidence indicates that viral replication continuous in these individuals after
an HAART treatment [19,23,5]. For example, Callaway and Perelson [2] have shown that most of existing models are extre-
mely sensitive to minor changes in drug efficacy. More precisely, according to [2], there exists a critical drug efficacy at which
the steady-state of virus becomes zero, implying that virus can be cleared in infected patients. Moreover, the virus vs. drug
efficacy curve is concave down near the critical drug efficacy in most of existing models, showing that virus is sensitive to
minor changes near the critical efficacy. That is to say, if these models describe the realistic situation, a lot of patients should
have cleared the virus in their bodies, which has contrary to observations. To explore more realistic mechanisms responsible
for sustained, yet undetectable viral load, two models were developed in [2]. These two models improve the previous exist-
ing ones by including heterogeneities in drug efficacy, with the use of either drug sanctuary sites created by physiological
barrier or differential efficacy in cocirculating target cells.

There have been previous studies on drug sanctuary and differential efficacy in cocirculating target cells. Examination of
changes in drug efficacy after a treatment with antiretroviral drugs has shown that drug efficiencies are reduced in certain
physiologically distinct sites such as the tests [2,18] and the brain [18,6,12]. Researches in vitro [2,16,17,10] have indicated
that drug efficacy may vary in different types of cells. For example, antiretroviral drugs have less effects in monocyte cell
lines [16,17,10]. Based on the above mentioned facts and the observations in [13], Callawy and Perelson established two
models [2], one including two cocirculating target cells with differential efficacy, and the other modeling two physiologically
distinct compartments with one as drug sanctuary created by a physiological barrier.

1.1. Differential efficacy in cocirculating target cells

Making use of drug efficacy varying by target cell types, model (1.1) is generalized to a more sophisticated one under the
following assumptions: (i) there are two types of target cells cocirculating in a single compartment, where in one population
(i ¼ 1) drug efficacy is 0 < � < 1, while in the other one (i ¼ 2) drug efficacy f� is reduced by a factor 0 < f < 1; and (ii) there
is a fraction a of infection events which results in chronic infection (0 < a < 1). Then, the generalized model can be written
as
dx1

dt
¼ k1 � d1x1 � ð1� �Þk1vx1;

dx2

dt
¼ k2 � d2x2 � ð1� f�Þk2vx2;

dy1

dt
¼ ð1� aÞð1� �Þk1vx1 � dy1;

dy2

dt
¼ ð1� aÞð1� f�Þk2vx2 � dy2;

dz1

dt
¼ að1� �Þk1vx1 � lz1;

dz2

dt
¼ að1� f�Þk2vx2 � lz2;

dv
dt
¼ NTdðy1 þ y2Þ þ Nmlðz1 þ z2Þ � cv;

ð1:2Þ
where xi; yi; zi ði ¼ 1;2Þ and v represent, respectively, the concentrations of HIV-1 target cells, short-lived infected cells, long
lived chronically infected cells, and free virus. The constants, ki; i ¼ 1;2, denote the generation rates of target cells.
ki; i ¼ 1;2, are the infection rate constants. The parameters di ði ¼ 1;2Þ; d; l and c represent the death rates of target cells,
short-lived infected cells, long lived chronically infected cells and free HIV-1 RNA, respectively. NT and Nm represent the
average numbers of virions produced in the lifetime of short-lived and chronically infected cells, respectively.

1.2. Drug sanctuary created by a physiological barrier

Further, suppose in model (1.1) the HIV infection process occurs in two distinct compartments. The first compartment is
the main compartment with larger volume and higher drug concentration, while the second one is the drug sanctuary with
smaller volume and lower drug concentration. It is assumed that virus transporting between the two compartments is
allowed, and moreover that the transport of virus between the main compartment and the sanctuary is governed by the rate
constants, D1 and D2, and the difference in virus concentration between the two compartments. With the above additional
assumptions, model (1.1) can be expanded to the new model,
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dx1

dt
¼ k� dx1 � ð1� �Þkv1x1;

dx2

dt
¼ k� dx2 � ð1� f�Þkv2x2;

dy1

dt
¼ ð1� aÞð1� �Þkv1x1 � dy1;

dy2

dt
¼ ð1� aÞð1� f�Þkv2x2 � dy2;

dz1

dt
¼ að1� �Þkv1x1 � lz1;

dz2

dt
¼ að1� f�Þkv2x2 � lz2;

dv1

dt
¼ NTdy1 þ Nmlz1 � cv1 þ D1ðv2 � v1Þ;

dv2

dt
¼ NTdy2 þ Nmlz2 � cv2 þ D2ðv1 � v2Þ;

ð1:3Þ
where all the state variables and parameters are defined as the same as those in model (1.2). All the parameters in models
(1.2) and (1.3) are positive constants.

In models (1.2) and (1.3), the steady state viral load vs. drug efficacy curve in main compartment is concave up near the
point of critical efficacy, which means that the steady state viral load is not sensitive to small changes in drug efficacy [2].
This may explain why HIV-infected individuals carry sustained and low viral load. However, in [2], authors merely analyzed
the equilibrium solutions and performed some numerical simulations for these two models. To explore the detailed
dynamical behavior of the two models, we will study the global property of the models in Sections 2 and 3, including the
positivity and boundedness of solutions, and the global stability of equilibrium solutions. The basic methodology used in this
paper is a combination of fluctuation lemma, Lyapunov function and LaSalle’s invariance principle. We will show that for
models (1.2) and (1.3), if the basic reproduction number, R0 6 1, for which the infection equilibrium does not exist, the infec-
tion-free equilibrium is globally asymptotically stable; if R0 > 1, for which the infection equilibrium exists, the infection
equilibrium is globally asymptotically stable. Simulations are presented in Section 4 to illustrate the theoretical results
obtained in Sections 2 and 3. Finally, conclusion is drawn in Section 5.

2. Global analysis of model (1.2)

In this section, we give a detailed analysis on model (1.2), including well-posedness of solutions, equilibrium solutions
and their stability.

2.1. Well-posedness, equilibria and basic reproduction number

In order for model (1.2) to be biologically meaningful, we will show that all solutions of this model are non-negative for
any given non-negative initial conditions. Moreover, we will show that all solutions of this model are bounded.

Theorem 2.1. Any solution of model (1.2), ðx1ðtÞ; x2ðtÞ; y1ðtÞ; y2ðtÞ; z1ðtÞ; z2ðtÞ;vðtÞÞ, is non-negative for all t > 0 provided that the
initial conditions are non-negative, and is bounded.
Proof. Using the first two equations of model (1.2), we can write the solutions of x1ðtÞ and x2ðtÞ asZ

x1ðtÞ ¼ x1ð0Þe�

R t

0
½d1þð1��Þk1vðsÞ�ds þ k1

t

0
e�
R t

s
½d1þð1��Þk1vðnÞ�dnds
and Z

x2ðtÞ ¼ x2ð0Þe�

R t

0
½d2þð1�f�Þk2vðsÞ�ds þ k2

t

0
e�
R t

s
½d2þð1�f�Þk2vðnÞ�dnds:
This clearly indicates that x1ðtÞ > 0 and x2ðtÞ > 0 for all t > 0 if x1ð0ÞP 0 and x2ð0ÞP 0. Next, we consider the last five
equations of model (1.2) as an autonomous system for y1; y2; z1; z2 and v:
dy1

dt
¼ ð1� aÞð1� �Þk1vx1 � dy1;

dy2

dt
¼ ð1� aÞð1� f�Þk2vx2 � dy2;

dz1

dt
¼ að1� �Þk1vx1 � lz1;

dz2

dt
¼ að1� f�Þk2vx2 � lz2;

dv
dt
¼ NTdðy1 þ y2Þ þ Nmlðz1 þ z2Þ � cv:

ð2:1Þ
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By Theorem 2.1 in [20], we know that any solution of system (2.1) with y1ð0ÞP 0; y2ð0ÞP 0; z1ð0ÞP 0; z2ð0ÞP 0 and
vð0ÞP 0 is non-negative for all t P 0 in its maximal interval of existence.

It remains to prove that all non-negative solutions are bounded. Let ðx1; x2; y1; y2; z1; z2;vÞ be a non-negative solution of
model (1.2) and eN ¼maxfNT þ 1;Nm þ 1g. Consider
gðtÞ ¼ eNðx1 þ x2 þ y1 þ y2 þ z1 þ z2Þ þ v:
Then, we have
dg
dt

����
ð1:2Þ
¼ eNðk1 þ k2Þ � eNðd1x1 þ d2x2Þ � ðeN � NTÞdðy1 þ y2Þ � ðeN � NmÞlðz1 þ z2Þ � cv;
which implies that
dg
dt

����
ð1:2Þ

< 0 for eNðd1x1 þ d2x2Þ þ ðeN � NTÞdðy1 þ y2Þ þ ðeN � NmÞlðz1 þ z2Þ þ cv > eNðk1 þ k2Þ;
> 0 for eNðd1x1 þ d2x2Þ þ ðeN � NTÞdðy1 þ y2Þ þ ðeN � NmÞlðz1 þ z2Þ þ cv < eNðk1 þ k2Þ:

(

Thus, every component of ðx1; x2; y1; y2; z1; z2;vÞmust be bounded. By extension theory of ODE, the boundedness of the solu-
tion is proved.

The proof is complete. h
Let R0 ¼ R1
0 þ R2

0, where
R1
0 ¼ ½NTð1� aÞ þ Nma� k1k1ð1� �Þ

cd1
and R2

0 ¼ ½NTð1� aÞ þ Nma� k2k2ð1� f�Þ
cd2

:

If we just consider one compartment i in model (1.2), then Ri
0 is the basic reproduction number of subsystem i (i ¼ 1;2).

It is easy to obtain the equilibrium solutions of model (1.2) in the form of
x1ðvÞ ¼ k1
d1þð1��Þk1v ; x2ðvÞ ¼ k2

d2þð1�f�Þk2v ;

y1ðvÞ ¼ ð1�aÞð1��Þk1
d vx1; y2ðvÞ ¼ ð1�aÞð1�f�Þk2

d vx2;

z1ðvÞ ¼ að1��Þk1
l vx1; z2ðvÞ ¼ að1�f�Þk2

l vx2;
where v is either zero or a non-zero solution which is determined by the following equation:
½NTð1� aÞ þ Nma� k1k1ð1� �Þ
d1 þ ð1� �Þk1v

þ k2k2ð1� f�Þ
d2 þ ð1� f�Þk2v

� �
� c ¼ 0: ð2:2Þ
Obviously, (2.2) is equivalent to the equation,
ck1k2ð1� �Þð1� f�Þv2 � bv þ cd1d2ð1� R0Þ ¼ 0; ð2:3Þ
where
b ¼ ½NTð1� aÞ þ Nma�k1k2ð1� �Þð1� f�Þðk1 þ k2Þ � c½d1ð1� f�Þk2 þ d2ð1� �Þk1�:
Let v1 and v2 be the two roots of (2.3) with v1 6 v2. Then,
v1v2 ¼
d1d2ð1� R0Þ

k1k2ð1� �Þð1� f�Þ ; ð2:4Þ
which, combined with (2.2), yields the following results:

(a) v1 6 v2 < 0 if R0 < 1;
(b) v1 < v2 ¼ 0 if R0 ¼ 1;
(c) v1 < 0 < v2 if R0 > 1.

Based on the above results, we find conditions for the existence of equilibrium solutions of model (1.2) as follows:

(1) model (1.2) has a unique equilibrium E0 ¼ ðk1
d1
; k2

d2
;0;0;0; 0;0Þ, if R0 � 1; or

(2) model (1.2) has two equilibria E0 and E1 ¼ ðx1ðv̂Þ; x2ðv̂Þ; y1ðv̂Þ; y2ðv̂Þ; z1ðv̂Þ; z2ðv̂Þ; v̂Þ where v̂ > 0 is the root of (2.3) for
R0 > 1.
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2.2. Stability of the infection-free equilibrium E0

In this subsection, we study the stability of the infection-free equilibrium E0. To analyze the local stability of E0, we use
the Jacobian matrix of model (1.2) evaluated at E0 and consider its characteristic equation. By a simple calculation, we get the
Jacobian matrix of model (1.2) evaluated at E0 in the form of
JðE0Þ ¼

�d1 0 0 0 0 0 �ð1� �Þk1
k1
d1

0 �d2 0 0 0 0 �ð1� f�Þk2
k2
d2

0 0 �d 0 0 0 ð1� aÞð1� �Þk1
k1
d1

0 0 0 �d 0 0 ð1� aÞð1� f�Þk2
k2
d2

0 0 0 0 �l 0 að1� �Þk1
k1
d1

0 0 0 0 0 �l að1� f�Þk2
k2
d2

0 0 NTd NTd Nml Nml �c

2666666666666666664

3777777777777777775

; ð2:5Þ
which, with help of Maple for a symbolic computation, gives the characteristic equation:
detðkI � JðE0ÞÞ ¼ ðkþ d1Þðkþ d2Þðkþ lÞðkþ dÞðk3 þ a1k
2 þ a2kþ a3Þ ¼ 0; ð2:6Þ
where
a1 ¼ lþ dþ c;

a2 ¼ ldþ cðlþ dÞ � k1k1ð1��Þ
d1

þ k2k2ð1�f�Þ
d2

h i
NTð1� aÞdþ Nmal½ �;

a3 ¼ cldð1� R0Þ:
We have the following result.

Theorem 2.2. The infection-free equilibrium E0 of model (1.2) is globally asymptotically stable for R0 < 1.
Proof. First, we show that E0 is locally asymptotically stable. E0 is asymptotically stable if and only if all roots of the
characteristic polynomial (2.6) have negative real parts. By the Hurwitz criterion, all roots of (2.6) have negative real parts
if and only if the following conditions hold:
D1 ¼ a1 > 0;

D2 ¼ det
a1 1
a3 a2

� �
¼ a1a2 � a3 > 0;

D3 ¼ det
a1 1 0
a3 a2 a1

0 0 a3

264
375 ¼ a3D2 > 0:
Now we show that Di > 0; i ¼ 1;2;3 for R0 < 1. Obviously, D1 > 0 and a3 > 0 for R0 < 1. Recall that
R0 ¼ R1
0 þ R2

0 ¼ NTð1� aÞ þ Nma½ � k1k1ð1� �Þ
cd1

þ k2k2ð1� f�Þ
cd2

� �
:

Thus, R0 < 1 results in
c > NTð1� aÞ þ Nma½ � k1k1ð1� �Þ
d1

þ k2k2ð1� f�Þ
d2

� �
;

which in turn yields that
cðlþ dÞ > NTð1� aÞ þ Nma½ �ðlþ dÞ k1k1ð1� �Þ
d1

þ k2k2ð1� f�Þ
d2

� �
> NTð1� aÞdþ Nmal½ � k1k1ð1� �Þ

d1
þ k2k2ð1� f�Þ

d2

� �
:

ð2:7Þ
With (2.7), it is easy to show that
D2 ¼ a1 cðlþ dÞ � NTð1� aÞdþ Nmal½ � k1k1ð1� �Þ
d1

þ k2k2ð1� f�Þ
d2

� �� �
þ ldðlþ dÞ þ cldR0 > 0:
Therefore, E0 is locally asymptotically stable for R0 < 1.
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Next, we apply the fluctuation lemma [7] to prove that E0 is globally attractive for R0 < 1. To achieve this, we first define,
for a continuous and bounded function g : ½0;1� ! R,
g1 ¼ lim
t!1

inf gðtÞ and g1 ¼ lim
t!1

sup gðtÞ:
Then, by the fluctuation lemma, there exists a sequence tn with tn !1 as n!1 such that
lim
n!1

x1ðtnÞ ¼ x11 ; lim
n!1

dx1

dt
ðtnÞ ¼ 0;
lim
n!1

x2ðtnÞ ¼ x12 ; lim
n!1

dx2

dt
ðtnÞ ¼ 0:
Hence, the first two equations in (1.2) indicate that
dx1

dt
ðtnÞ þ d1x1ðtnÞ þ ð1� �Þk1vðtnÞx1ðtnÞ ¼ k1
and
dx2

dt
ðtnÞ þ d2x2ðtnÞ þ ð1� f�Þk2vðtnÞx2ðtnÞ ¼ k2;
which result in, as n!1,
d1x11 6 d1 þ ð1� �Þk1v1½ �x11 6 k1; implying that x11 6
k1

d1
; ð2:8Þ
and
d2x12 6 d2 þ ð1� f�Þk2v1½ �x12 6 k2; implying that x12 6
k2

d2
: ð2:9Þ
Applying a similar procedure to the remaining equations in (1.2), we have
dy11 6 ð1� aÞð1� �Þk1v1x11 ;

dy12 6 ð1� aÞð1� f�Þk2v1x12 ;

lz11 6 að1� �Þk1v1x11 ;

lz12 6 að1� f�Þk2v1x12 ;
cv1 6 NTdðy11 þ y12 Þ þ Nmlðz11 þ z12 Þ:

ð2:10Þ
Combining (2.8), (2.9) and (2.10) yields
cv1 6 cR0v1 i:e: cð1� R0Þv1 6 0;
which implies that v1 ¼ 0 due to R0 < 1 and the positivity of v. This, together with (2.10), results in y1i ¼ 0 and z1i ¼ 0
(i ¼ 1;2). Thus, as t !1,
yiðtÞ ! 0; ziðtÞ ! 0 and vðtÞ ! 0 ði ¼ 1;2Þ:
Then, with limt!1vðtÞ ! 0, we obtain the asymptotic differential equations from the first two equations of model (1.2) as
dx1

dt
¼ k1 � d1x1 and

dx2

dt
¼ k2 � d2x2:
By the theory for asymptotically autonomous systems [3], we obtain
lim
t!1

x1ðtÞ ¼
k1

d1
and lim

t!1
x2ðtÞ ¼

k2

d2
:

Finally, combining the local stability and global attractiveness of E0, we conclude that E0 is globally asymptotically stable.
The proof of Theorem 2.2 is finished. h
2.3. Stability of the infection equilibrium E1

In this subsection, we assume R0 > 1 and study the stability of the infection equilibrium E1.

Theorem 2.3. The infection equilibrium E1 is globally asymptotically stable for R0 > 1.
Proof. Consider the Lyapunov function,
V ¼ NTð1� aÞ þ Nma½ �
X2

i¼1

xi � x̂i � x̂i ln
xi

x̂i

� �
þ NT

X2

i¼1

yi � ŷi � ŷi ln
yi

ŷi

� �
þ Nm

X2

i¼1

zi � ẑi � ẑi ln
zi

ẑi

� �
þ v � v̂ � v̂ ln

v
v̂

	 

:
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Differentiating V with respect to time t and evaluating it along the trajectory of system (1.2) gives
dV
dt

����
ð1:2Þ
¼ ½NTð1� aÞ þ Nma�

X2

i¼1

ki � dixi � ð1� f i�Þkivxi �
kix̂i

xi
þ dix̂i þ ð1� f i�Þkiv x̂i

� �

þ NT

X2

i¼1

ð1� aÞð1� f i�Þkivxi � dyi � ð1� aÞð1� f i�Þkivxi
ŷi

yi
þ dŷi

� �

þ Nm

X2

i¼1

að1� f i�Þkivxi � lzi � að1� f i�Þkivxi
ẑi

zi
þ lẑi

� �
þ NTdðy1 þ y2Þ þ Nmlðz1 þ z2Þ � cv

� NTdðy1 þ y2Þ þ Nmlðz1 þ z2Þ
v v̂ þ cv̂ ;
where f 1 ¼ 1 and f 2 ¼ f . Using the solution of E1, we obtain the following equations:
NTð1� aÞ þ Nma½ �
X2

i¼1

ð1� f i�Þkiv x̂i � cv ¼ 0;

X2

i¼1

NTdŷi þ Nmlẑi½ � ¼ NTð1� aÞ þ Nma½ �
X2

i¼1

ð1� f i�Þkiv̂ x̂i;

cv̂ ¼ NTð1� aÞ þ Nma½ �
X2

i¼1

ð1� f i�Þkiv̂ x̂i;
which are used to simplify dV
dt jð1:2Þ, yielding
dV
dt

����
ð1:2Þ
¼ NTð1� aÞ þ Nma½ �

X2

i¼1

ki � dixi �
kix̂i

xi
þ dix̂i þ 2ð1� f i�Þkiv̂ x̂i

� �

�
X2

i¼1

NTð1� aÞð1� f i�Þkivxi
ŷi

yi
þ Nmað1� f i�Þkivxi

ẑi

zi
þ NTdyiv̂

v þ Nmlziv̂
v

� �
: ð2:11Þ
Noticing that
ki � dixi �
kix̂i

xi
þ dix̂i þ 2ð1� f i�Þkiv̂ x̂i ¼ ki � dixi �

kix̂i

xi
þ dix̂i � ð1� f i�Þkiv̂ x̂i þ ð1� f i�Þkiv̂ x̂i

x̂i

xi
þ 3ð1� f i�Þkiv̂ x̂i

� ð1� f i�Þkiv̂ x̂i
x̂i

xi
¼ 1� x̂i

xi

� �
½ki � ð1� f i�Þkiv̂ x̂i � dixi� þ 3ð1� f i�Þkiv̂ x̂i

� ð1� f i�Þkiv̂ x̂i
x̂i

xi
¼ � di

xi
ðxi � x̂iÞ2 þ 3ð1� f i�Þkiv̂ x̂i � ð1� f i�Þkiv̂ x̂i

x̂i

xi
; ð2:12Þ
we then obtain
½NTð1� aÞ þ Nma� 3ð1� f i�Þkiv̂ x̂i � ð1� f i�Þkiv̂ x̂i
x̂i

xi

� �
� NTð1� aÞð1� f i�Þkivxi

ŷi

yi

� Nmað1� f i�Þkivxi
ẑi

zi
� NTdyiv̂

v � Nmlziv̂
v ¼ 3NTð1� aÞð1� f i�Þkiv̂ x̂i � NTð1� aÞð1� f i�Þkiv̂ x̂i

x̂i

xi

� NTð1� aÞð1� f i�Þkivxi
ŷi

yi
� NTdyiv̂

v þ 3Nmað1� f i�Þkiv̂ x̂i � Nmað1� f i�Þkiv̂ x̂i
x̂i

xi

� Nmað1� f i�Þkivxi
ŷi

yi
� Nmlziv̂

v ¼ �NTð1� aÞð1� f i�Þkiv̂ x̂i �3þ x̂i

xi
þ vxiŷi

v̂ x̂iyi
þ dyi

ð1� aÞð1� f i�Þkix̂iv

� �
� Nmað1� f i�Þkiv̂ x̂i �3þ x̂i

xi
þ vxiẑi

v̂ x̂izi
þ lzi

að1� f i�Þkix̂iv

� �

6 �3NTð1� aÞð1� f i�Þkiv̂ x̂i
dŷi

ð1� aÞð1� f i�Þkix̂iv̂

� �1
3

� 1

( )
� 3Nmað1� f i�Þkiv̂ x̂i

lẑi

að1� f i�Þkix̂iv̂

� �1
3

� 1

( )
¼ 0:

ð2:13Þ
Hence, dV
dt

��
ð1:2Þ 6 0. Let
S0 ¼ ðx1; x2; y1; y2; z1; z2; vÞ 2 ðRþÞ7
dV
dt

���� ����
ð1:2Þ
¼ 0

( )
:
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Note in (2.13) that the equality holds if and only if
x̂i

xi
¼ vxiŷi

v̂ x̂iyi
¼ dyi

ð1� aÞð1� f i�Þkix̂iv
;

x̂i

xi
¼ vxiẑi

v̂ x̂izi
¼ lzi

að1� f i�Þkix̂iv
; i ¼ 1;2; ð2:14Þ
which, combined with (2.12), yields
S0 ¼ ðx1; x2; y1; y2; z1; z2; vÞ 2 ðRþÞ7 jxi ¼ x̂i;
v
zi
¼ v̂

ẑi
;
v
yi
¼ v̂

ŷi
; i ¼ 1;2

� �
:

Next, we want to find the invariant set of S0. Let XðtÞ ¼ ðx1ðtÞ; x2ðtÞ; y1ðtÞ; y2ðtÞ; z1ðtÞ; z2ðtÞ;vðtÞÞ be an arbitrary solution of
model (1.2) with its initial condition belonging to S0. Then, XðtÞ 2 S0 for all t P 0 if and only if
xiðtÞ � x̂i; t P 0; i ¼ 1;2;
which indicates that vðtÞ � v̂ for all t P 0. Correspondingly, yiðtÞ � ŷi and ziðtÞ � ẑi for all t P 0 (i ¼ 1;2). Thus, XðtÞ ¼ E1, i.e.,
fE1g is the maximal invariant set of S0. Therefore, E1 is globally asymptotically stable by the LaSalle’s invariance principle
[11].

The proof is complete. h
3. Global analysis of model (1.3)

Now we turn to consider model (1.3) and mainly focus on the global stability of equilibrium solutions.

3.1. Well-posedness and equilibria of model (1.3)

For convenience in the following analysis, we first introduce the following rescalings into (1.3):
xi !
k
d

xi; yi !
d2

NTd
yi; zi !

d2

Nml
zi; v i ! dv i; t ! 1

d
t ði ¼ 1;2Þ:
Then, model (1.3) is transformed to
dx1

dt
¼ 1� x1 � k1v1x1;

dx2

dt
¼ 1� x2 � k2v2x2;

dy1

dt
¼ M1k1dv1x1 � dy1;

dy2

dt
¼ M1k2dv2x2 � dy2;

dz1

dt
¼ M2k1lv1x1 � lz1;

dz2

dt
¼ M2k2lv2x2 � lz2;

dv1

dt
¼ y1 þ z1 � cv1 þ D1ðv2 � v1Þ;

dv2

dt
¼ y2 þ z2 � cv2 þ D2ðv1 � v2Þ;

ð3:1Þ
where
k1 ¼ ð1� �Þk; k2 ¼ ð1� f�Þk; M1 ¼
NTð1� aÞk

d2 ; M2 ¼
Nmak

d2
and in model (3.1), the new parameters,
d
d
;

l
d
;

c
d
;

D1

d
;

D2

d

are re-named as d;l; c;D1;D2, respectively, for simplicity.
Let
R1
0 ¼

k1ðM1 þM2Þ
D1 þ c

and R2
0 ¼

k2ðM1 þM2Þ
D2 þ c

:

It is easy to see that Ri
0 is the basic reproduction number for each sub-population i (i ¼ 1;2).
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The equilibrium solutions of model (3.1) are obtained in the form of
x1ðv1Þ ¼ 1
1þk1v1

; x2ðv2Þ ¼ 1
1þk2v2

;

y1ðv1Þ ¼ M1k1x1v1; y2ðv2Þ ¼ M1k2x2v2;

z1ðv1Þ ¼ M2k1x1v1; z2ðv2Þ ¼ M2k2x2v2;
where v1 and v2 satisfy the following two equations:
D1v2 ¼ ðD1 þ cÞð1� R1
0x1Þv1 and D2v1 ¼ ðD2 þ cÞð1� R2

0x2Þv2; ð3:2Þ
which yield solutions: v1 ¼ v2 ¼ 0 or v1 – 0;v2 – 0.

Lemma 3.1. Any solution of model (3.1), ðx1ðtÞ; x2ðtÞ; y1ðtÞ; y2ðtÞ; z1ðtÞ; z2ðtÞ;v1ðtÞ;v2ðtÞÞ, is non-negative for all t > 0 provided
that the initial conditions are non-negative, and is bounded.

The proof of Lemma 3.1 is similar to that for Theorem 2.1, and thus omitted here for brevity.
Let
D1 ¼ ðR1
0;R

2
0Þ 2 Rþ � Rþ j0 < R1

0 6 1� D1D2

ðD1 þ cÞðD2 þ cÞ ; 0 < R2
0 6 1� D1D2

ðD1 þ cÞðD2 þ cÞð1� R1
0Þ

( )
and D2 ¼ Rþ � Rþ nD1, where Rþ represents all positive real numbers.

Lemma 3.2. If ðR1
0;R

2
0Þ 2 D1, model (3.1) has a unique equilibrium E0 ¼ ð1;1;0;0;0;0; 0;0Þ. If ðR0

1;R
0
2Þ 2 D2, model (3.1) has two

equilibria E0 and E1 ¼ ðx1ðv1Þ; x2ðv2Þ; y1ðv1Þ; y2ðv2Þ; z1ðv1Þ; z2ðv2Þ;v1;v2Þ with v1 > 0 and v2 > 0.
Proof. Substituting the expressions of x1ðv1Þ and x2ðv2Þ into (3.2), we obtain two curves on the v1-v2 plane, described by
C1 : v2 ¼
D1 þ c

D1
1� R1

0

1þ k1v1

 !
v1; v1 P 0 ð3:3Þ
and
C2 : v1 ¼
D2 þ c

D2
1� R2

0

1þ k2v2

 !
v2; v1 P 0: ð3:4Þ
It follows from (3.3) that
dv2

dv1
¼ D1 þ c

D1
1� R1

0

ð1þ k1v1Þ2

" #
and

d2v2

dv2
1

¼ D1 þ c
D1

2k1R1
0

ð1þ k1v1Þ3
: ð3:5Þ
Thus,
dv2

dv1

����
v1¼0
¼ D1 þ c

D1
ð1� R1

0Þ:
Since (3.4) has the same form as that of (3.3) if v1 and v2 are exchanged, we similarly have the following result for C2,
dv1

dv2
¼ D2 þ c

D2
1� R2

0

ð1þ k2v2Þ2

" #
and

d2v1

dv2
2

¼ D2 þ c
D2

2k2R2
0

ð1þ k2v2Þ3
; ð3:6Þ
and so we obtain
dv1

dv2

����
v2¼0
¼ D2 þ c

D2
ð1� R2

0Þ:
The above formulas indicate that, for R1
0 < 1 (R2

0 < 1), the function defining the curve C1 (C2) is monotonically increasing and

the whole curve C1 (C2) is above (below) the line L1 : v2 ¼ l1v1;v1 P 0 (L2 : v2 ¼ l2v1, v1 P 0), where l1 ¼ ðD1þcÞð1�R1
0Þ

D1

l2 ¼ D2

ðD2þcÞð1�R2
0Þ

	 

.

For ðR1
0;R

2
0Þ 2 D1;0 < l2 6 l1, which implies that the two curves C1 and C2 have no interior intersection point. Hence,

model (3.1) has a unique equilibrium E0 ¼ ð1;1;0;0;0;0;0;0Þ.
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Let
D21 ¼ fðR1
0;R

2
0Þ 2 D2j0 < R1

0 < 1;0 < R2
0 < 1g;

D22 ¼ fðR1
0;R

2
0Þ 2 D2j0 < R1

0 � 1;R2
0 P 1g;

D23 ¼ fðR1
0;R

2
0Þ 2 D2jR1

0 P 1;0 < R2
0 < 1g;

D24 ¼ fðR1
0;R

2
0Þ 2 D2jR1

0 P 1;R2
0 P 1g:
Further, we will prove that for ðR1
0;R

2
0Þ 2 D2j ðj ¼ 1;2;3;4Þ, the two curves C1 and C2 have a unique interior intersection

point in the first quadrant of the v1–v2 plane. To achieve this, we first show that there exists a line L3 : v2 ¼ kv1;v1 P 0, such
that the line L3 and the curve Ci (i ¼ 1;2) have a unique interior intersection point, where

(1) k 2 l1;
D1þc

D1

	 
T D2
D2þc ; l2

	 

for ðR1

0;R
2
0Þ 2 D21;

(2) k 2 l1;
D1þc

D1

	 
T D2
D2þc ;þ1
	 


for ðR1
0;R

2
0Þ 2 D22;

(3) k 2 0; D1þc
D1

	 
T D2
D2þc ; l2

	 

for ðR1

0;R
2
0Þ 2 D23;

(4) k 2 D2
D2þc ;

D1þc
D1

	 

for ðR1

0;R
2
0Þ 2 D24.

That is to say, there exist v ij > 0 (i; j ¼ 1;2) such that
L3

\
Ci ¼ fð0;0Þ; ðv1i;v2iÞg; i ¼ 1;2;
i.e.,
1þ k1v11 ¼
R1

0

1� D1k
D1þc

and 1þ k2v22 ¼
R2

0

1� D2
kðD2þcÞ

:

Obviously, v11 and v22 are well-defined if and only if
R1
0

1� D1k
D1þc

> 1 and
R2

0

1� D2
kðD2þcÞ

> 1: ð3:7Þ
A simple calculation shows that (3.7) holds for ðR1
0;R

2
0Þ 2 D21 if and only if
k 2 l1;
D1 þ c

D1

� �\ D2

D2 þ c
; l2

� �
:

By noticing that 0 < l1 < l2 for ðR1
0;R

2
0Þ 2 D21, we have
l1;
D1 þ c

D1

� �\ D2

D2 þ c
; l2

� �
– ;:
Similarly, for ðR1
0;R

2
0Þ 2 D2i (i ¼ 2;3;4), we can show that (by a similar argument as that used for D21)
k 2 l1;
D1þc

D1

	 
T D2
D2þc ;þ1
	 


for ðR1
0;R

2
0Þ 2 D22;

k 2 0; D1þc
D1

	 
T D2
D2þc ; l2

	 

for ðR1

0;R
2
0Þ 2 D23;

k 2 D2
D2þc ;

D1þc
D1

	 

for ðR1

0;R
2
0Þ 2 D24:
The uniqueness of interior intersection points between the line L3 and the curve Ci (i ¼ 1;2) is obvious. The above results,
together with (3.5) and (3.6), imply that the curve C1 (C2) is below (above) the line L3 for 0 < v1 < v11 (0 < v1 < v12) and
the curve C1 (C2) is above (below) the line L3 for v1 > v11 (v1 > v12). Moreover, on the curve Ci, v j ! þ1 as
v i ! þ1; i; j ¼ 1;2; i – j. Hence, we conclude that the two curves C1 and C2 have a unique interior intersection point with
the first component v1 2 ½minfv11;v12g;maxfv11;v12g�.

Summarizing the above results gives that for ðR1
0;R

2
0Þ 2 D2, model (3.1) has two equilibria E0 and E1 ¼ ðx1ðv1Þ;

x2ðv2Þ; y1ðv1Þ; y2ðv2Þ; z1ðv1Þ; z2ðv2Þ;v1;v2Þ with v1 > 0 and v2 > 0.
The proof of Lemma 3.2 is complete. h
3.2. Global stability of equilibria E0 and E1

In this subsection, we will study the global stability of the equilibrium solutions E0 and E1. First, we consider E0 and have
the following result.

Theorem 3.1. The infection-free equilibrium E0 is globally asymptotically stable for ðR1
0;R

2
0Þ 2 D1.
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Proof. For ðR1
0;R

2
0Þ 2 D1, we have R1

0 < 1 and R2
0 6 1� D1D2

ðD1þcÞðD2þcÞð1�R1
0Þ
< 1, which implies that
D1 > k1ðM1 þM2Þ � c; D2 > k2ðM1 þM2Þ � c ð3:8Þ
and
D1½c � k2ðM1 þM2Þ� þ D2½c � k1ðM1 þM2Þ� þ ½c � k1ðM1 þM2Þ�½c � k2ðM1 þM2Þ�P 0: ð3:9Þ
Recall that k2 > k1. Then by a simple calculation, we can show that the valid region of ðD1;D2Þ is nonempty and lies in the
first quadrant if and only if one of the following conditions holds:

(i) k1ðM1 þM2Þ � c 6 0; k2ðM1 þM2Þ � c 6 0;
(ii) k1ðM1 þM2Þ � c � 0; k2ðM1 þM2Þ � c P 0.

Now we study the stability of E0 for the two cases (i) and (ii). Consider the Lyapunov function
V1 ¼
X2

i¼1

mi ðM1 þM2Þðxi � 1� ln xiÞ þ
yi

d
þ zi

l
þ v i

� �
;

where mi; i ¼ 1;2 are positive constants to be determined. Differentiating V1 with respect to time along the trajectory of
model (3.1) gives
dV1

dt

����
ð3:1Þ
¼

X2

i;j¼1;i–j

mi ðM1 þM2Þð1� xi � kiv ixi �
1
xi
þ1þ kiv iÞ þ ðM1 þM2Þkiv ixi � yi � zi½ � þ ½yi þ zi � ðcþDiÞv i þDiv j�

� �

¼�
X2

i¼1

ðM1 þM2Þmi
ð1� xiÞ2

xi
þ
X2

i;j¼1;i–j

kiðM1 þM2Þ � ðcþDiÞ½ �mi þmjDj
� �

v i:
For Case (i), taking m1 ¼ D2 and m2 ¼ D1, we have
dV1

dt

����
ð3:1Þ
¼ �ðM1 þM2Þ

D2ð1� x1Þ2

x1
þ D1ð1� x2Þ2

x2

" #
� D2 c � k1ðM1 þM2Þ½ �v1 � D1 c � k2ðM1 þM2Þ½ �v2 6 0: ð3:10Þ
For Case (ii), we choose m1 and m2 as the roots of the following equations:
m1½k1ðM1 þM2Þ � ðc þ D1Þ� þ D2m2 ¼ ½k1ðM1 þM2Þ � c�½k2ðM1 þM2Þ � c�;
m1D1 þ ½k2ðM1 þM2Þ � ðc þ D2Þ�m2 ¼ ½k1ðM1 þM2Þ � c�½k2ðM1 þM2Þ � c�;

�

i.e.,
mi ¼
½k1ðM1 þM2Þ � c�½k2ðM1 þM2Þ � c�½kjðM1 þM2Þ � c � 2Dj�
½k1ðM1 þM2Þ � c � D1�½k2ðM1 þM2Þ � c � D2� � D1D2

> 0; i; j ¼ 1;2; i – j;
which implies
dV1

dt

����
ð3:1Þ
¼ �

X2

i¼1

ðM1 þM2Þmi
ð1� xiÞ2

xi
� c � k1ðM1 þM2Þ½ � k2ðM1 þM2Þ � c½ �ðv1 þ v2Þ 6 0: ð3:11Þ
Set
S1 ¼ ðx1; x2; y1; y2; z1; z2; v1;v2Þ 2 ðRþÞ8
dV1

dt

���� ����
ð3:1Þ
¼ 0

( )
:

According to (3.10), we have for Case (i),
S1 ¼ ðx1; x2; y1; y2; z1; z2;v1; v2Þ 2 ðRþÞ8jx1 ¼ x2 ¼ 1; D2 c � k1ðM1 þM2Þ½ �v1 þ D1 c � k2ðM1 þM2Þ½ �v2 ¼ 0
n o

:

We now want to verify that the invariant set of S1 is fE0g. Let XðtÞ ¼ ðx1ðtÞ; x2ðtÞ; y1ðtÞ; y2ðtÞ; z1ðtÞ; z2ðtÞ;v1ðtÞ;v2ðtÞÞ be an arbi-
trary solution of model (3.1) initiating from S1. Then, we have XðtÞ 2 S1 for all t P 0 if and only if
xiðtÞ � 1; i ¼ 1;2;
which indicates that v iðtÞ � 0 for all t P 0 (i ¼ 1;2). According to (3.1), we have yiðtÞ ¼ ziðtÞ � 0 for all t P 0 (i ¼ 1;2). Thus,
the maximal invariant set of S1 is fE0g for Case (i). Similarly, we can show that the maximal invariant set of S1 is fE0g for Case
(ii). Hence, the global asymptotic stability of E0 follows from the LaSalle’s invariance principle [11].

The proof is complete. h
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Theorem 3.2. If the infection equilibrium E1 of model (3.1) exists, then it is globally asymptotically stable.
Proof. Consider the Lyapunov function,
V2 ¼
X2

i¼1

mi ðM1 þM2Þ xi � x̂i � x̂i ln
xi

x̂i

� �
þ 1

d
yi � ŷi � ŷi ln

yi

ŷi

� �
þ 1

l
zi � ẑi � ẑi ln

zi

ẑi

� �
þ v i � v̂ i � v̂ i ln

v i

v̂ i

� �� �
;

where m1 ¼ D2v̂1 and m2 ¼ D1v̂2. Then, the time derivative of V2 along the trajectory of model (3.1) is given by
dV2

dt

����
ð3:1Þ
¼
X2

i;j¼1;i–j

mi ðM1þM2Þ 1�xi�
x̂i

xi
þ x̂iþkiv i x̂i

� �
�M1kiv ixi ŷi

yi
þ ŷi�

M2kiv ixi ẑi

zi
þ ẑi�ðcþDiÞv iþDiv j�

v̂ iðyiþziÞ
v i

þðcþDiÞv̂ i�
Div jv̂ i

v i

� �
:

Recall that
X2

i¼1

ðŷi þ ẑiÞ ¼ ðM1 þM2Þðk1v̂1x̂1 þ k2v̂2x̂2Þ;

ðM1 þM2Þkiv ix̂i � ðc þ DiÞv i ¼ �
Div i v̂ j

v̂ i
; i; j ¼ 1;2; i – j;

ðc þ DiÞv̂ i ¼ ðM1 þM2Þkiv̂ ix̂i þ Div̂ j; i; j ¼ 1;2; i – j:
Hence,
dV2

dt

����
ð3:1Þ
¼
X2

i¼1

mi ðM1 þM2Þð1� xi �
x̂i

xi
þ x̂i þ 2kiv̂ ix̂iÞ �

M1kiv ixiŷi

yi
�M2kiv ixiẑi

zi
� v̂ iðyi þ ziÞ

v i

� �
þ gðv1; v2Þ;
where
gðv1; v2Þ ¼
X2

i;j¼1;i–j

miDi v j þ v̂ j �
v̂ i

v i
v j �

v i

v̂ i
v̂ j

� �
¼ D1D2v̂1v̂2 2� v̂1v2

v1v̂2
� v̂2v1

v2v̂1

� �
:

Then, by a similar procedure used in proving Theorem 3.1, we obtain
dV2

dt

����
ð3:1Þ
¼ �ðM1 þM2Þ

X2

i¼1

miðxi � x̂iÞ2

xi
�
X2

i¼1

M1mikiv̂ ix̂i �3þ x̂i

xi
þ v ixiŷi

yiv̂ ix̂i
þ yi

M1kix̂iv i

� �

�
X2

i¼1

M2mikiv̂ ix̂i �3þ x̂i

xi
þ v ixiẑi

ziv̂ ix̂i
þ zi

M2kix̂iv i

� �
þ gðv1; v2Þ 6 �ðM1 þM2Þ

X2

i¼1

miðxi � x̂iÞ2

xi

�
X2

i¼1

M1mikiv̂ ix̂i �3þ 3ŷi

M1kiv̂ ix̂i

� �
�
X2

i¼1

M2mikiv̂ ix̂i �3þ 3ẑi

M2kiv̂ ix̂i

� �
þ gðv1;v2Þ: ð3:12Þ
Obviously, gðv1;v2Þ 6 0. Thus, we conclude that
dV2

dt

����
ð3:1Þ
6 �ðM1 þM2Þ

X2

i¼1

miðxi � x̂iÞ2

xi
� 0:
Further, set
S2 ¼ ðx1; x2; y1; y2; z1; z2; v1;v2Þ 2 ðRþÞ8j
dV2

dt
jð3:1Þ ¼ 0

� �
:

According to (3.12), dV2
dt jð3:1Þ ¼ 0 if and only if
xi ¼ x̂i;
x̂i

xi
¼ v ixiŷi

yiv̂ ix̂i
¼ yi

M1kix̂iv i
;

x̂i

xi
¼ v ixiẑi

ziv̂ ix̂i
¼ zi

M2kix̂iv i
; i ¼ 1;2;
and v̂1v2
v1v̂2
¼ v̂2v1

v2 v̂1
. This implies that the maximal invariant set of S2 is fE1g. Therefore, E1 is globally asymptotically stable by the

LaSalle’s invariance principle [11].
The proof is finished. h
4. Numerical simulations

To illustrate the theoretical results obtained in Sections 2 and 3, we present simulations with the parameter values used
in [2]. More precisely, for model (1.2), k1 ¼ 104 cells/ml/day, k2 ¼ 31:98 cells/ml/day, d1 ¼ d2 ¼ 0:01/day, k1 ¼ 8� 10�7 ml/
copy, k2 ¼ 10�4 ml/copy, d ¼ 0:7/day, l ¼ 0:07/day, NT ¼ 100;Nm ¼ 4:11;a ¼ 0:195; c ¼ 13/day; and for model (1.3),
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Fig. 1. Simulated trajectories of v for model (1.2): (a) � ¼ 0:9 and f ¼ 0:85; and (b) � ¼ 0:9 and f ¼ 0:34.
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Fig. 2. Simulated trajectories of virus for model (1.3) with � ¼ 0:9 and f ¼ 0:85: (a) the virus v1; and (b) the virus v2.
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Fig. 3. Simulated trajectories of virus for model (1.3) with � ¼ 0:9 and f ¼ 0:34: (a) the virus v1; and (b) the virus v2.
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k ¼ 104 cells/ml/day, d ¼ 0:01/day, k ¼ 8� 10�7 ml/copy, d ¼ 0:7/day, l ¼ 0:07/day, NT ¼ 100, Nm ¼ 4:11;a ¼ 0:195; c ¼ 13/
day, D1 ¼ 0:1048/day, D2 ¼ 19:66/day. We use these parameter values to perform simulations with f and � chosen as
perturbation parameters.

For model (1.2), taking � ¼ 0:9 and f ¼ 0:85 gives R0 ¼ 0:97 < 1. Hence, the infection-free equilibrium is globally
asymptotically stable by Theorem 2.2, as shown in Fig. 1(a). Fig. 1(b) shows that the virus persists for � ¼ 0:9 and
f ¼ 0:34 (for which R0 ¼ 1:888), which agrees with the theoretical result given in Theorem 2.3 that the infection equilibrium
is globally asymptotically stable for R0 > 1.

For model (3.1), choosing � ¼ 0:9 and f ¼ 0:85 yields R1
0 ¼ 0:496 and R2

0 ¼ 0:468. Thus, ðR1
0;R

2
0Þ 2 D1 which implies that the

infection-free equilibrium is globally asymptotically stable by Theorem 3.1, see Fig. 2(a) and (b). If we choose � ¼ 0:9 and
f ¼ 0:34, then R1

0 ¼ 0:496 and R2
0 ¼ 1:382 > 1 and so ðR1

0;R
2
0Þ 2 D2, which means that the infection equilibrium is globally

asymptotically stable by Theorem 3.2, as depicted in Fig. 3(a) and (b). Fig. 3 indicates that the concentration of virus in
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the main compartment is lower than that in the drug sanctuary due to the less efficacy in the latter. This may explain why
there is less effect of treatment on some physiological sites such as the brain [6,12].

5. Conclusion

In this paper, we have reinvestigated two HIV compartmental models that make use of heterogeneities in drug efficacy
[2]. In particular, we have studied the qualitative behavior of the two models to show that any solution of these models is
non-negative for non-negative initial conditions, and bounded. Moreover, it has been shown that the dynamics of these
models are simple, i.e., the infection-free equilibrium is globally asymptotically stable when the basic reproduction number
R0 6 1; and the infection equilibrium exists and is globally asymptotically stable when R0 > 1. It has indicated that it is
necessary to measure the drugs and virus levels in multiple compartments and to identify subcompartments where drugs
are ineffective. Future study is therefore needed to develop multiple compartments HIV models and investigate dynamical
behaviors which maybe more complex.
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