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1. Introduction

In the last few years, many real complex phenomena have been modeled more accurately 
by dynamical systems whose vector fields are either non-differentiable or discontinuous, for 
instance, see [3,5,7,30,31,40]. These systems are the so-called non-smooth or discontinuous sys-
tems. Owing to extensive applications, increasing interest has been attracted to the qualitative 
analysis of non-smooth systems, see [1,16,41]. In this paper, we will deal with the following 
family of non-smooth systems,

(ẋ, ẏ) =
{(

f +(x, y), g+(x, y)
)
, for S(x, y) > 0,(

f −(x, y), g−(x, y)
)
, for S(x, y) < 0,

(1)

where the dot denotes differentiation with respect to time t , S: R2 → R is a C∞ function and 
(f ±(x, y), g±(x, y)) are smooth vector fields. In fact, system (1) has two different regions �± =
{(x, y) ∈ R2 : ±S(x, y) > 0} separated by the discontinuous curve � = S−1(0), which is called 
the switching manifold. When the functions f ±(x, y) and g±(x, y) are polynomials in x and 
y, system (1) is called a switching polynomial system or piecewise polynomial system. For 
convenience, we will call the system with the + sign (− sign) the first (second) system in the rest 
of the paper.

Center problem has been known as one of the very important problems in the qualitative 
theory of planar polynomial systems. We recall that an isolated equilibrium point of a planar 
vector field is monodromy if all nearby orbits rotate around the equilibrium point. The center 
problem is to finding the conditions under which the monodromic equilibrium point is a center, 
and this problem in switching systems is much more difficult and complicated than that in smooth 
systems. For example, an equilibrium point of system (1) on the discontinuous curve S(x, y) = 0
can be a center even it is not a center of either the first system or the second system of (1). 
On the contrary, an equilibrium point on the discontinuous curve may not be a center even it is 
a center for both the first and second systems of (1). Some methods have been developed for 
studying the center problem of the switching system (1). Gasull and Torregrosa [20] developed 
an efficient method for computing the Lyapunov constants of switching polynomial systems 
with elementary centers. By elementary center we mean that the linearized system has a pair 
of purely imaginary eigenvalues, while a linear type center implies that the elementary center 
is a center (i.e., a nonlinear center). By computing the Lyapunov constants, the authors of [8,
45] gave a complete classification on the center conditions of the origin in several classes of 
Bautin switching systems. In [24], Guo et al. studied the bi-center conditions for a family of Z2-
equivariant cubic switching systems with two symmetric elementary centers. For more results on 
the problem of linear type centers in switching systems, see [11,36].

Another important problem in the qualitative theory of planar polynomial systems is to de-
termining the maximum number of limit cycles bifurcating from an equilibrium point. By the 
variety of non-smoothness, non-smooth systems exhibit not only Hopf bifurcation, Poincaré bi-
furcation and homoclinic loop bifurcation [34], but also grazing bifurcation [5], border-collision 
bifurcation [15,42] and sliding bifurcation [2,13], which are complicated bifurcation phenomena 
and do not exist in smooth systems. There have been extensive studies on the various kinds of 
nonstandard bifurcation phenomena in planar switching systems, see [6,17,29] and references 
therein. It is well known that linear smooth systems can not produce limit cycles, but switching 
linear systems can produce different kinds of limit cycle bifurcations. Up to now, it has been 
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shown that there are at most three crossing limit cycles in switching linear systems with two 
zones separated by a straight line [18,27,39]. Li and Llibre [35] classified global phase portraits 
for a family of switching linear systems separated by one straight line. Recently, Bastos et al. [4]
proved that seven is a lower bound on the number of crossing limit cycles in planar switching 
linear systems with two pieces divided by a cubic curve. The best lower bounds obtained so far 
on the crossing limit cycles for switching quadratic and cubic systems in two zones separated by 
a straight line are 16 [12] and 24 [22], respectively.

It should be noted that studies for switching systems have been mainly focused on the center 
problem and bifurcation of limit cycles associated with elementary equilibrium points. Some 
works consider the center problem and limit cycle bifurcations in the neighborhood of infinity of 
switching systems [9]. However, to the best of our knowledge, there are no results in considering 
the center problem and bifurcation of limit cycles in switching systems with nilpotent equilibrium 
points. Then a question naturally arises: What results obtained from the switching system with 
elementary equilibrium points can be extended to the case of non-elementary equilibrium points? 
How can we modify the method developed for the elementary case to study non-elementary 
cases?

In this paper, we will study the center conditions and bifurcation of small-amplitude limit 
cycles around an isolated nilpotent equilibrium point in switching systems. This is much more 
challenging compared to the study for switching systems with elementary equilibrium points. By 
an isolated nilpotent equilibrium point in planar polynomial systems, it means that both eigen-
values of the Jacobian matrix of both the first and second systems, evaluated at the equilibrium 
point, are zero but the Jacobian matrix is not null. Computationally efficient methods have been 
developed to study the center problem and the cyclicity problem for planar smooth systems 
with nilpotent equilibrium points, see [37,38,44,47,49]. Note that quadratic smooth polynomial 
systems do not have nilpotent centers, i.e., the simplest nilpotent centers must appear in cubic 
smooth systems [43]. In [21], a method is presented for studying the center problem in smooth 
systems with nilpotent critical points. García [19] developed a technique which can bound the 
maximum number of limit cycles for a large family of symmetric smooth polynomial systems 
with nilpotent equilibrium points. Recently, Li et al. [32] obtained the center conditions on two 
symmetric nilpotent equilibrium points in a class of Z2-equivariant cubic smooth systems, and 
proved the existence of 12 limit cycles for such cubic smooth systems.

However, it is known that there are no algorithms for studying the center problem and bifur-
cation of limit cycles in switching nilpotent systems. Hence, in this paper, based on Bogdanov-
Takens bifurcation theory we will develop a new perturbation approach so that the Poincaré-
Lyapunov method for switching systems with linear type centers can be applied to study the 
center conditions of planar switching polynomial systems associated with a nilpotent equilib-
rium point, and apply it to investigate a class of quadratic switching systems with a nilpotent 
equilibrium point.

Consider the quadratic switching nilpotent system of the following form,

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y + a20x

2 + a11xy + a02y
2

b20x
2 + b11xy + b02y

2

)
, for x > 0,

(
y + A20x

2 + A11xy + A02y
2

B x2 + B xy + B y2

)
, for x < 0,

(2)
20 11 02
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where the y-axis is the unique switching manifold, and λ = (a20, . . . , b02, A20, . . . , B02) ∈ R12, 
representing the parameter space. Thus, the origin (0, 0) of system (2) is a nilpotent equilibrium 
point. The conditions ensuring the origin of system (2) to be a center are derived under the 
conditions b20 < 0 and B20 > 0, i.e., the origin is a cusp of both the first and second systems in 
(2). Without loss of generality, we may assume that b20 = −1 and B20 = 1.

The main results of this paper are stated in the following two theorems.

Theorem 1.1. With b20 = −1 and B20 = 1, the origin of system (2) is a center if one of the 
following conditions holds:

I : a20 − A20 = a02 − A02 = a11 + A11 = b02 + B02 = b11 − B11 = 0;
II : a20 = A20 = a02 = b11 = A02 = B11 = 0;

III : a02 − A02 = a11 + 2b02 = A11 + 2B02 = b11 + 2a20 = B11 + 2A20 = 0;
IV : a20 = a02 = A02 = b11 = A11 + 2B02 = B11 + 2A20 = 0, A20 �= 0;
V : a11 = A11 = a02 = A02 = b02 = B02 = b11 − 2A20 = B11 − 2a20 = 0, A20 �= ±a20;

VI : A20 = a02 = A02 = a11 + 2b02 = b11 + 2a20 = B11 = 0, a20 �= 0.

(3)

It should be noted that allowing A20 = 0 in the condition IV, or a20 = 0 in the condition VI 
yields two special cases of the condition II, and this is why the condition A20 �= 0 is imposed in 
IV, and a20 �= 0 in VI. Similarly, letting A20 = a20 in the condition V yields a special case of the 
condition I, and A20 = −a20 in V gives a special case of the condition III.

Moreover, we want to find the maximal number of limit cycles around the origin of system 
(2). To achieve this, we choose one of the center conditions I-VI and construct a perturbed system 
to prove the existence of small-amplitude limit cycles bifurcating from the perturbed nilpotent 
equilibrium point. As far as we are concerned with bifurcation of limit cycles, the following 
result is a new lower bound on cyclicity problem for such quadratic switching nilpotent systems.

Theorem 1.2. With b20 = −1, B20 = 1, and the center condition III in Theorem 1.1, system (2)
has at least seven limit cycles around the origin under small quadratic perturbations.

In the next section, we present the Poincaré-Lyapunov method for computing the Lyapunov 
constants of switching systems with elementary centers. In Section 3, we develop a perturbation 
approach so that the Poincaré-Lyapunov method for switching systems with elementary centers 
can be applied to study system (2). Then this new method is used to prove Theorems 1.1 and 1.2
in Sections 4 and 5, respectively. Finally, conclusion is drawn in Section 6.

2. Preliminary

In this section, the Poincaré-Lyapunov method is present for studying the linear type center 
problem in switching systems. This method provides an algorithm which uses only a finite jet 
of the system at each step for calculating the Lyapunov constants, for more details see [20]. It 
will be generalized in the next section to develop the Poincaré-Lyapunov method for switching 
systems with isolated nilpotent equilibrium points.
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Consider the following switching polynomial system,

(ẋ, ẏ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
δx − β+y +

n∑
k=2

X+
k (x, y), β+x + δy +

n∑
k=2

Y+
k (x, y)

)
, for y > 0,

(
δx − β−y +

n∑
k=2

X−
k (x, y), β−x + δy +

n∑
k=2

Y−
k (x, y)

)
, for y < 0,

(4)

where δ ∈ R, β± > 0, and X±
k (x, y), Y±

k (x, y) are homogeneous polynomials in the variables x
and y of degree k, k = 2, 3, . . . , n, and the x-axis is the switching manifold. The origin of (4) is 
a common elementary center of both the first and second systems when δ = 0. Note that in next 
section we will transform the y-axis switching manifold of system (2) to the x-axis for our study 
on nilpotent switching systems.

Introducing the polar coordinates x = r cos θ and y = r sin θ into system (4) we obtain

dr

dθ
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δr +∑n

k=2 ϒ+
k (θ)rk

β+ +∑n
k=2 �+

k (θ)rk−1
, for θ ∈ (0,π),

δr +∑n
k=2 ϒ−

k (θ)rk

β− +∑n
k=2 �−

k (θ)rk−1
, for θ ∈ (π,2π),

(5)

where ϒ±
k (θ) and �±

k (θ) are polynomials in cosθ and sin θ of degree k + 1. We denote by

r+(ρ, θ) =
∑
k�1

v+
k (θ)ρk and r−(ρ, θ) =

∑
k�1

v−
k (θ)ρk,

the solutions of the first and second systems of (5) with r+(ρ, 0) = r−(ρ, π) = ρ. Further, define 
respectively the positive and negative half-return maps of system (5) as

�+(ρ) = r+(ρ,π) = e
π δ

β+ ρ +
∑
k�2

v+
k ρk, �−(ρ) = r−(ρ,2π) = e

π δ
β− ρ +

∑
k�2

v−
k ρk.

Then the return map, as shown in Fig. 1(a), can be constructed as

�(ρ) = �−(�+(ρ)) = e
πδ( 1

β+ + 1
β− )

ρ +
∑
k�2

vkρ
k, (6)

and the displacement function has the following form,

d(ρ) = �(ρ) − ρ = [
e
πδ( 1

β+ + 1
β− ) − 1

]
ρ +

∑
k�2

vkρ
k. (7)

Note that it is extremely difficult to compute the composition of the two maps �+(ρ) and 
�−(ρ). However, it may follow Lemma 2.1 in [20] to develop a convenient method for com-
puting the displacement function. By the transformation, (x, y, t) → (x, −y, −t), system (4)
becomes
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Fig. 1. (a) map �(ρ); (b) map (�−)−1(ρ); and (c) map �+−(ρ).

(ẋ, ẏ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−δx − β−y −

n∑
k=2

X−
k (x,−y), β−x + δy +

n∑
k=2

Y−
k (x,−y), for y > 0,

−δx − β+y −
n∑

k=2

X+
k (x,−y), β+x + δy +

n∑
k=2

Y+
k (x,−y), for y < 0.

(8)

Thus, we have the following displacement function

d(ρ) = �+(ρ) − (�−)−1(ρ) = �+(ρ) − �+−(ρ), (9)

where (�−)−1(ρ) is the inverse map of �−(ρ), and �+−(ρ) is the positive half-return map of 
system (8) (see Figs. 1(b) and 1(c), respectively).

Further, we have

(�−)−1(ρ) = �+−(ρ) = e
−π δ

β− ρ +
∑
k�2

u+
k ρk,

and the displacement function can be rewritten as

d(ρ) =
[
e
πδ( 1

β+ + 1
β− ) − 1

e
π δ

β−

]
ρ +

∑
k�2

(v+
k − u+

k )ρk =
∑
k�1

Vkρ
k, (10)

where Vk is called the kth-order Lyapunov constant at the origin of the switching system (4). 
Hence, we need to compute v+

k and u+
k in order to get Vk (k � 2). Now, we show how to obtain 

v+
k , and then an analogous way to get u+

k . Letting δ = 0 and β+ = β− = β in (5) yields

dr

dθ
=

∑n
k=2 ϒ+

k (θ)rk

β +∑n
k=2 �+

k (θ)rk−1
, for θ ∈ (0,π), (11)

which can be expanded into power series in r ,

dr

dθ
=

∞∑
R+

k (θ)rk, (12)

k=2
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where Rk(θ) is a polynomial in cosθ and sin θ . We note that∑n
k=2 ϒ+

k (θ)rk

β +∑n
k=2 �+

k (θ)rk−1
= 1

β

[ n∑
k=2

ϒ+
k (θ)rk

][
1 +

∞∑
i=1

(−
n∑

k=2

�+
k (θ)

β
rk−1)i

]

= 1

β

[ n∑
k=2

ϒ+
k (θ)rk

][
1 +

∞∑
k=1

�̃+
k (θ)rk

]
,

(13)

which is combined with the equations (11) and (12) to yield

R+
k (θ) = 1

β

[ k−1∑
i=2

ϒ+
i (θ)�̃+

k−i (θ) + ϒ+
k (θ)

]
.

Finally, we substitute the solution r(ρ, θ) = ∑
k�1

v+
k (θ)ρk into (12) to get the differential equa-

tions:

dv+
k (θ)

dθ
= R+

k (θ)�+
k,k(θ) + R+

k−1(θ)�+
k−1,k(θ) + · · · + R+

2 (θ)�+
2,k(θ), k � 2, (14)

where �+
k,k(θ) = (v+

1 (θ))k and �+
i,j (θ) are polynomials in v+

l (θ), 1 � l � j . Consequently, we 

have 
dv+

1 (θ)

dθ
= 0 and thus, without loss of generality, obtain v+

1 (θ) = 1. Then,

v+
k (θ) =

θ∫
0

[
R+

k (θ̄ ) + R+
k−1(θ̄ )�+

k−1,k(θ̄ ) + · · · + R+
2 (θ̄)�+

2,k(θ̄ )
]
dθ̄ , k � 2. (15)

Similarly, we can compute u+
k (θ). Then the Lyapunov constants are given by Vk = v+

k (π) −
u+

k (π) ≡ v+
k − u+

k , k � 2 when δ = 0.
It is easy to see that the origin of system (4) is a center if and only if all the Lyapunov constants 

in the displacement function (10) vanish, i.e., d(ρ) ≡ 0 for 0 < ρ � 1. Further, the number of 
isolated zeros of d(ρ) = 0 near ρ = 0 (or the fixed points of �(ρ)) corresponds to the number of 
limit cycles of system (4). If there exists λ∗ ∈ 
 such that

V1(λ∗) = V2(λ∗) = · · · = Vk(λ∗) = 0, Vk+1(λ∗) �= 0, (16)

then appropriately perturbing system (4) will yield at most k limit cycles around the origin. More 
precisely, based on Lemma 4 in [45], we have the following lemma which gives the sufficient 
conditions for the existence of small-amplitude limit cycles around the origin of system (4).

Lemma 2.1 ([45]). Suppose that there exists a critical point λ∗ = (a1c, a2c, . . . , akc) such that 
Vi1(λ∗) = Vi2(λ∗) = · · · = Vik (λ∗) = 0, Vik+1(λ∗) �= 0, with 1 = i1 < i2 < · · · < ik , and

det

[
∂(Vi1 ,Vi2 , · · · ,Vik ) (λ∗)

]
�= 0, (17)
∂(a1c, a2c, · · · , akc)
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then system (4) has exactly k limit cycles bifurcating from the origin of the system by appropriate 
small perturbations on λ = λ∗.

3. The Poincaré-Lyapunov method for switching nilpotent systems

Now, consider the following switching system with a nilpotent critical point at the origin,

(ẋ, ẏ) =
{(

y + f +
1 (x, y), f +

2 (x, y)
)
, for x > 0,(

y + f −
1 (x, y), f −

2 (x, y)
)
, for x < 0,

(18)

where f ±
1 (x, y) and f ±

2 (x, y) are real polynomials without constant and linear terms, and the 
origin is a common equilibrium point of both the first and second systems of (18).

Similar to the result of [8], we have the following result to prove the center conditions for 
system (18) at the origin.

Proposition 3.1. Assume that the origin of system (18) is a monodromic equilibrium point. If the 
following conditions hold:

(a) there exist the first integrals H+(x, y) and H−(x, y) near the origin in the first half-planar 
system and the second one of (18) respectively,

(b) H+(0, y) and H−(0, y) are both even functions in y, or H+(0, y) ≡ H−(0, y),

then the origin of system (18) is a center.

In [33], symmetry is defined for switching systems with the unique switching manifold y-axis 
to prove an equilibrium point to be a center. Here, noticing that the switching manifold of system 
(18) is the x-axis, we thus similarly have the following result to prove the origin of system (18)
to be a center.

Proposition 3.2. Assume that the origin of system (18) is a monodromic equilibrium point. If the 
vector fields of (18) satisfy

(f +
1 (x, y), f +

2 (x, y)) = (−f +
1 (x,−y), f +

2 (x,−y)),

(f −
1 (x, y), f −

2 (x, y)) = (−f −
1 (x,−y), f −

2 (x,−y)),
(19)

or

(f +
1 (x, y), f +

2 (x, y)) = (f −
1 (−x, y),−f −

2 (−x, y)), (20)

i.e., system (18) is symmetric with respect to either the x-axis or the y-axis, then the origin of 
(18) is a center.

In order to prove Theorems 1.1 and 1.2, we need to perturb system (18) and then establish the 
relation between the perturbed system and the unperturbed system. Our main idea is based on 
the Bogdanov-Takens (B-T) bifurcation theory. To explain the idea, we first briefly describe the 
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B-T bifurcation theory for smooth systems. Consider the following general nonlinear dynamical 
system:

ẋ = y + f1(x, y),

ẏ = f2(x, y),
(21)

where f1 and f2 are assumed analytic and their Taylor expansions about (x, y) = (0, 0) contain 
terms starting from second order. Thus, the origin is a nilpotent point. With a series of nonlinear 
transformations, the normal form of system (21) can be obtained as (for example, see [23,25,28]):

ẋ = y,

ẏ =
∞∑

k=2

(akx
2 + bkx

k−1y),
(22)

where ak’s and bk’s are called normal form coefficients, which are explicitly expressed in terms 
of the original system coefficients. Then the bifurcation associated with system (21) is called B-T 
bifurcation. Note that even for a quadratic polynomial system, its normal form (22) can have an 
infinite number of terms, and that’s why the focus values or Lyapunov constants can go to infinite 
order.

To perform bifurcation analysis for system (21) in the vicinity of the origin, we need to add 
perturbation terms to the normal form (22), which are so-called unfolding. For example, if system 
(21) has a codimension-2 B-T bifurcation, then the generic normal form with unfolding is given 
by [23]:

ẋ = y,

ẏ = β1 + β2 y + a2x
2 + b2x y,

(23)

satisfying a2b2 �= 0, where the term β1 + β2 y is called unfolding with small β1 and β2. The 
origin of this system is a nilpotent point as β1 → 0, β2 → 0. For convenience, we may call the 
system (23) with β1 = β2 = 0 as the limit of system (23).

The system (23) can have saddle-node bifurcation, Hopf bifurcation and homoclinic loop bi-
furcation in the vicinity of the origin (i.e., for small β1 and β2). In particular, the Hopf bifurcation 

occurs from one of the two equilibria (x, y) = (±
√

−β1
a2

, 0) on the bifurcation curve,

β1 = − a2

b2
2

β2
2 ,

in the vicinity of the origin. Note that system (23) has a linear-type monodromic equilibrium 
point at each point on the bifurcation curve, namely, this linear-type monodromic equilibrium 
point holds as β1 → 0, β2 → 0. At β1 = β2 = 0, this linear-type monodromic equilibrium point 
is reduced to the nilpotent point. For codimension-2 B-T bifurcation, there exists one limit cycle 
near the Hopf bifurcation curve. A non-generic codimension-2 B-T bifurcation can have the 
following normal form [26]:

ẋ = y,

ẏ = β x + β y + a x2 + b x y,
(24)
1 2 2 2
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where the unfolding is β1x + β2y. This system does not hold symmetry under general perturba-
tion, and it has a transcritical bifurcation, rather than a saddle-node bifurcation like that occurring 
in (22). Moreover, unlike system (22), this system can have a Hopf bifurcation from the equi-
librium point (x, y) = (0, 0) if β1 < 0. When a2b2 = 0, higher-order nonlinear terms are needed 
to determine the codimension and corresponding unfolding, for which multiple limit cycles may 
bifurcate. This clearly indicates that the structure of the perturbed system has changed, depend-
ing upon the added unfolding. However, it should be noted that the local dynamical behaviors 
around the origin such as bifurcation of limit cycles are associated with the nilpotent point.

Now we come back to our switching system (18), and add small perturbations to obtain the 
following perturbed system:

(ẋ, ẏ) =

⎧⎪⎨⎪⎩
(
y + f +

1 (x, y) + εg+
1 (x, y, ε), − ε2x + f +

2 (x, y) + εg+
2 (x, y, ε)

)
, for x > 0,(

y + f −
1 (x, y) + εg−

1 (x, y, ε), − ε2x + f −
2 (x, y) + εg−

2 (x, y, ε)
)

, for x < 0,

(25)
where ε > 0 is a small perturbation parameter, and g±

1,2 are real polynomials without constant and 
linear terms. These ε terms are analogous to the unfolding in system (24). Thus, it is obvious that 
system (25) has an isolated linear-type monodromic equilibrium point at the origin. Moreover, 
this linear-type monodromic equilibrium point is reduced to the nilpotent point as ε → 0, which 
implies that system (18) is the limit of system (25). It should be pointed out that the ε perturbation 
terms in (25) are applied to the whole system, which is not restricted to the local behavior. For 
example, it may general global bifurcations such as homoclinic or heteroclinic loop bifurcations. 
But when we consider local bifurcations in the vicinity of the origin of system (25), these ε terms 
indeed play weak nonlinear influence.

Remark 3.3. Note that the perturbation terms used in (25) are in ε2 order rather than in ε order, 
which can avoid 

√
ε-order and ε−k-order terms (k > 0) in later transformed system (see (31)).

Based on the B-T bifurcation theory and the relation established above for the two systems 
(18) and (25), we directly obtain the following result.

Lemma 3.4. System (18) is the limit of system (25). Assume that the origin of system (18) is a 
monodromic equilibrium point, then the linear-type monodromic equilibrium point of system (25)
is reduced to the nilpotent point of system (18) at the origin as ε → 0. Moreover, if the linear-type 
monodromic equilibrium point of system (25) becomes a center, then the origin of system (18) is 
a nilpotent center.

Having established Lemma 3.4, we can now apply the Poincaré-Lyapunov method and the 
Lyapunov constant computation, described in the previous section for switching systems with an 
elementary center, to study the switching polynomial system (18) with a nilpotent equilibrium 
point, and to prove Theorems 1.1 and 1.2. To achieve this, we compute the Lyapunov constants 
for system (25) since it has an isolated linear-type monodromic equilibrium point at the origin.

For proving Theorem 1.1 (to be done in the next section), instead of system (18), we use 
the quadratic polynomial system (2) and only add the linear perturbation term −ε2x to this 
system. Then, the Lyapunov constants for this perturbed system contain ε terms. We derive the 
conditions under which these ε terms vanish, which implies that these conditions are necessary 
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for the linear-type monodromic equilibrium point to become a center. By Lemma 3.4, we know 
that these conditions are also necessary for the nilpotent point of system (2) being a nilpotent 
center. We then directly use system (2) and some methods to prove that these conditions are also 
sufficient. By this combined approach, we obtain the six conditions, as listed in Theorem 1.1, for 
the origin of system (2) to be a nilpotent center.

Proving Theorem 1.2, which is given in Section 5, is different from that for proving The-
orem 1.1. We actually generalize the approach for analyzing the bifurcation of limit cycles in 
B-T bifurcation. For a codimension-2 B-T bifurcation, there is only one limit cycle which can 
bifurcate from a Hopf bifurcation point. We want to find bifurcation of limit cycles as many as 
possible from a degenerate or generalized Hopf bifurcation by adding more ε terms, like those 
given in (25), to our quadratic system (2). To get more limit cycles, we use one of the center 
conditions in Theorem 1.1 with the linear perturbation term −ε2x added to system (2) so that 
the perturbed system has an elementary center at the origin. Then, we add quadratic perturba-
tion terms with various ε order to this system and compute the Lyapunov constants. Next, using 
higher εk-order Lyapunov constants [46,48], we can prove the existence of 7 small-amplitude 
limit cycles.

4. The proof of Theorem 1.1

First, we analyze the multiplicity of nilpotent equilibrium point (0, 0) of system (2). For the 
general switching polynomial system (18), we assume that

f ±(x) =
∞∑

k=2

c±
k xk

are the unique solutions of the implicit function equations y + f ±
1 (x, y) = 0 in a neighborhood 

of the origin, respectively, and f ±(x)|x=0 = 0. Denote that

f ±
2 (x, f ±(x)) =

∞∑
k=2

α±
k xk,

[
∂f ±

1

∂x
+ ∂f ±

2

∂y

]
(x,f ±(x))

=
∞∑

k=1

β±
k xk.

(26)

For smooth polynomial systems, if α2 = α3 = · · · = αk−1 = 0 and αk �= 0, then the multiplicity 
of the nilpotent equilibrium point is exactly k, for more detail see [38]. It follows from Theorem 
3.5 in [14] that the following results can be used to determine the local behavior at a nilpotent 
equilibrium point of smooth polynomial systems. When βn = 0 and αm �= 0, we have⎧⎪⎪⎨⎪⎪⎩

m = 2k, cusp,

m = 2k + 1,

{
αm > 0, saddle,

αm < 0, center or focus.

(27)

When βn �= 0, αm �= 0 and μ = β2 + 4(n + 1)αm, the following holds:
n
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m = 2k,

{
k � n, cusp,

k > n, saddle-node,

m = 2k + 1,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

αm > 0, saddle,

αm < 0,

⎧⎪⎪⎨⎪⎪⎩
k < n, or k = n and μ < 0, center or focus,

k > n, or k = n and μ � 0,

{
n even, node,

n odd, H-E,

(28)

where H-E denotes an equilibrium point consisting of one hyperbolic and one elliptic sectors.
It is easy to use the above results to obtain the following conditions for the switching polyno-

mial system (2):

β+
1 = 2a20 + b11, α+

2 = b20, α+
3 = −a20b11,

β−
1 = 2A20 + B11, α−

2 = B20, α−
3 = −A20B11.

(29)

Proposition 4.1. The multiplicity of the nilpotent equilibrium point (0, 0) of the first system or 
the second system of (2) is at most equal to four.

Proof. In fact, taking α+
2 = α+

3 = 0 in (29) yields

b20 = 0, a20b11 = 0.

Then, by assuming a20 = 0 we obtain α+
4 = 0. So the polynomials y + f +

1 (x, y) and f +
2 (x, y)

have a common factor y, implying that the origin is not an isolated equilibrium point.
If b11 = 0, we have α+

4 = a2
20b02 �= 0 (b02 �= 0). Otherwise, we have f +

2 (x, y) = 0 when 
b02 = 0, indicating that the origin is not an isolated equilibrium point.

In summary, the multiplicity of the nilpotent equilibrium point (0, 0) of the first system of (2)
is at most four. Similarly, we can show that the multiplicity of the nilpotent equilibrium point 
(0, 0) of the second system of (2) is also at most four. �

It is well known that the multiplicity of a nilpotent focus or center in smooth systems is an 
odd positive integer and greater than one. However, the multiplicity of a nilpotent focus or center 
in the first system or the second system of (2) cannot be three, because otherwise it needs

α±
2 = 0, α±

3 < 0, μ± = (β±
1 )2 + 8α±

3 < 0,

but we actually have μ+ = (2a20 − b11)
2 � 0 and μ− = (2A20 − B11)

2 � 0. So we can only 
have the center conditions of the first and second systems of (2) with a 2nd-order critical point 
(0, 0). Therefore, assume that b20 �= 0 and B20 �= 0 under which α+

2 �= 0 and α−
2 �= 0. Then, 

the equilibrium point (0, 0) in the first system or the second system of (2) is a cusp. Since the 
equilibrium point (0, 0) of (2) cannot be a center or a focus when b20 > 0 or B20 < 0, we only 
need to consider b20 < 0 and B20 > 0. Without loss of generality, we may set b20 = −1 and 
B20 = 1.

Example 4.2. The phase portraits of system (2), as depicted in Figs. 2(a) and 2(b), show the 
origin of (2) to be a cusp or a saddle.
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Fig. 2. The phase portraits of system (2) for (a) a20 = a11 = a02 = b20 = b11 = b02 = A11 = A02 = B20 = B11 =
B02 = 1, showing a cusp; and (b) a20 = a11 = a02 = b20 = b11 = b02 = A11 = A02 = B11 = B02 = 1 and B20 = −1, 
showing a saddle.

Now, we study the center problem for the switching system (2). We add one simple perturba-
tion term − ε2x with 0 < ε � 1 in the ẏ equation. Thus, for simplicity, we consider the following 
perturbed system,

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y + a20x

2 + a11xy + a02y
2

− ε2x − x2 + b11xy + b02y
2

)
, for x > 0,

(
y + A20x

2 + A11xy + A02y
2

− ε2x + x2 + B11xy + B02y
2

)
, for x < 0.

(30)

Then, introducing the transformation (x, y, t) → (ε2y, ε3x, t
ε
) into the above system yields

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(− y + b02ε
2x2 + b11εxy − y2

x + a02ε
3x2 + a11ε

2xy + a20εy
2

)
, for y > 0,

(− y + B02ε
2x2 + B11εxy + y2

x + A02ε
3x2 + A11ε

2xy + A20εy
2

)
, for y < 0.

(31)

Then, we can apply the method described in Section 2 to compute the Lyapunov constants 
associated with the origin of system (31) with the aid of a computer algebra system. It is easy to 
find the 1st Lyapunov constant V1(λ) = 0 and the 2nd Lyapunov constant, given by

V2(λ) = 2

3
ε
[
2(a20 − A20) + b11 − B11 + (a02 − A02)ε

2]. (32)

We consider two cases: A20 = a20 and A20 �= a20.

4.1. Case: A20 = a20

For this case, we have the following theorem.
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Theorem 4.3. Assume b20 = −1, B20 = 1 and A20 = a20. The origin of system (2) is a center if 
one of the conditions I, II and III in (3) holds.

Proof. Under the condition A20 = a20, setting V2(λ) = 0 we get the necessary center conditions 
B11 = b11 and A02 = a02. Further, we consider two sub-cases: a20 = 0 and a20 �= 0.

(1) a20 = 0, for which we obtain the 3rd Lyapunov constant,

V3(λ) = π

8
ε3{b11(b02 + B02) − a02

[
a11 + A11 + 2(b02 + B02)

]
ε2}.

(1a) Letting B02 +b02 = 0 yields V3(λ) = −π
8 a02(a11 +A11) ε5. Then we take A11 +a11 =

0, yielding V3(λ) = 0, which is included in the condition I. Otherwise if A11 +a11 �= 0, 
then a02 = 0 under which we have

V4(λ) = − 2

45
ε3 (a11 + A11) b11 (2 + b02ε

2).

Setting V4(λ) = 0 gives b11 = 0, which is included in the condition II.
(1b) Now we consider b11 = 0, and obtain V3(λ) = −π

8 a02(a11 + A11 + 2b02 + 2B02) ε5. 
Letting a02 = 0 yields the condition II. Otherwise, A11 = −a11 − 2b02 − 2B02 un-
der which V4(λ) = − 2

3a02(a11 + 2b02)(b02 + B02) ε7. Setting V4(λ) = 0 yields a11 +
2b02 = 0, which is included in the condition III.

(2) For a20 �= 0, we have

V3(λ) =π

8
ε3[b11(b02 + B02) − a20(a11 + A11) − a02(a11 + A11 + 2b02 + 2B02)ε

2].
Letting A11 = −a11a20+b11(b02+B02)

a20
by b11(b02 +B02) −a20(a11 +A11) = 0, we have V3(λ) =

− π
8a20

a02(b02 + B02)(2a20 + b11)ε
5.

(2a) If b02 + B02 = 0, we obtain A11 = −a11 and V3(λ) = 0, which is already included in 
the condition I.

(2b) If a02 = 0, we have V3(λ) = 0 and

V4(λ) = − 2

45a20
ε3(b02 + B02)

{
2(2a20 + b11)

2 + [
2a2

20(2a11 + 3b02 − 3B02)

− (7a11 + 7b02 − 3B02)a20b11 + (4b02 + 3B02)b
2
11

]
ε2}.

If b11 = −2a20, we obtain A11 = −a11a20+b11(b02+B02)
a20

= −a11 − 2b02 − 2B02 and have 

V4(λ) = − 4
5a20(a11 + 2b02)(b02 +B02)ε

5. The condition a11 + 2b02 = 0 is included in 
the condition III.

(2c) If 2a20 + b11 = 0, we have A11 = −a11 − 2b02 − 2B02 and V4(λ) = − 2
15ε5(a11 +

2b02)(b02 + B02)(6a20 + 5a02ε
2). Since a20 �= 0 we obtain b02 + B02 = 0 or a11 +

2b02 = 0 by solving V4(λ) = 0. These two conditions are already included in the con-
ditions I and III, respectively.
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Summarizing the above results for A20 = a20, we have obtained the condition I from the 
cases (1a) and (2a), no matter whether a20 is zero or not; the condition II from the case (1a); 
and the condition III from the cases (1b) and (2b). These conditions yield the first few Lyapunov 
constants to vanish and so are necessary conditions for the origin of system (30) to be a center. 
Since the nilpotent center of system (2) is the limit of the center of (25) with g±

1,2(x, y, ε) = 0, the 
above conditions are necessary for the origin of unperturbed system (2) to be a nilpotent center.

Next, we prove that the conditions I, II and III are also sufficient for the origin of system (2)
to be a center. First, consider the condition I in (3), under which system (2) becomes

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y + a20x

2 + a11xy + a02y
2

− x2 + b11xy + b02y
2

)
, for x > 0,

(
y + a20x

2 − a11xy + a02y
2

x2 + b11xy − b02y
2

)
, for x < 0.

(33)

Obviously, system (33) is symmetric with respect to the y-axis, and so the origin of system (33)
is a center by Proposition 3.2.

When the condition II in (3) holds, system (2) can be simplified as

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y + a11xy

− x2 + b02y
2

)
, for x > 0,

(
y + A11xy

x2 + B02y
2

)
, for x < 0.

(34)

Since system (34) is symmetric with respect to the x-axis, and so the origin of system (34) is a 
center by Proposition 3.2.

When the condition III in (3) holds, system (2) can be rewritten as

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y + a20x

2 − 2b02xy + a02y
2

− x2 − 2a20xy + b02y
2

)
, for x > 0,

(
y + a20x

2 − 2B02xy + a02y
2

x2 − 2a20xy + B02y
2

)
, for x < 0.

(35)

It can be shown that the first and second systems of (35) are Hamiltonian systems, with respec-
tively the following two Hamiltonian quantities,

H+(x, y) = 1

2
y2 + x3

3
+ a02

3
y3 + a20x

2y − b02xy2,

H−(x, y) = 1

2
y2 − x3

3
+ a02

3
y3 + a20x

2y − B02xy2.

(36)

It is easy to see that H+(0, y) ≡ H−(0, y), satisfying the condition in Proposition 3.1, which 
implies that the origin of system (35) is a center. �
340



T. Chen, L. Huang and P. Yu Journal of Differential Equations 303 (2021) 326–368
Fig. 3. The phase portraits for (a) the system (33) with a20 = a11 = a02 = b02 = b11 = 1 and b02 = −1; (b) the system 
(34) with a11 = b02 = A11 = B02 = 1; and (c) the system (35) with a20 = a02 = b02 = B02 = 1.

Example 4.4. The illustrated phase portraits for systems (33), (34), and (35) are shown in 
Figs. 3(a), 3(b) and 3(c), respectively.

4.2. Case A20 �= a20

For this condition, we have the following result.

Theorem 4.5. Assume b20 = −1, B20 = 1 and A20 �= a20. The origin of system (2) is a center if 
one of the conditions III, IV, V and VI in (3) holds.

Proof. It is seen from (32) that setting V2(λ) = 0 yields B11 = b11 +2a20 −2A20 and A02 = a02. 
Further, we obtain the 3rd Lyapunov constant,

V3(λ) = − π

8
ε3[a11a20 + A11A20 − 2a20B02 + 2A20B02 − b02b11 − B02b11

+ a02(a11 + A11 + 2b02 + 2B02)ε
2].

Consider two sub-cases: a02 = 0 and A11 = −a11 − 2b02 − 2B02.

(1) a02 = 0, for which V3(λ) becomes

V3(λ) = −π

8
(a11a20 + A11A20 − 2a20B02 + 2A20B02 − b02b11 − B02b11)ε

3.

(1a) If a20 = 0 (and so A20 �= 0), then we have

A11 = −2A20B02 + b02b11 + B02b11

A20

by setting V3(λ) = 0. Then, we obtain

V4(λ) = − 2

45A20
b11ε

3[2a11A20 + 12A3
20 + 4A20b02 − 6A2

20b11 + 2b02b11 + 2B02b11

+ (a11A20b02 − 7A20b
2 − 18A20b02B02 − 9A20B

2 + 4b2 b11 + 7b02B02b11
02 02 02
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+ 3B2
02b11)ε

2].
In order to have V4(λ) = 0, we either set b11 = 0, leading to the condition IV, or obtain 
the following conditions if b11 �= 0:

a11 = −6A3
20 − 2A20b02 + 3A2

20b11 − b02b11 − B02b11

A20

and

2A3
20b02 + 3A20(b02 + B02)

2 − (A2
20b02 + (b02 + B02)

2)b11 = 0.

Let M1 = A2
20b02 + (b02 + B02)

2 and M2 = 2A3
20b02 + 3A20(b02 + B02)

2.
(1a.1) If M1 = 0, we have M2 = 0 by M2 − M1b11 = 0. Then computing the resultant 

of M1 and M2 with respect to A20 yields

Resultant[M1,M2,A20] = b2
02(b02 + B02)

4,

which shows that the two polynomials M1 and M2 have common roots if and 
only if b02 = B02 = 0, under which we have

V5(λ) = − π

64
A2

20b11(b11 − 2A20)
2ε5.

Hence, setting V5(λ) = 0 yields b11 = 2A20, which is included in the condition 
V.

(1a.2) If M1 �= 0, we have b11 = M2
M1

�= 0 by linearly solving V4(λ) = 0, and further 
obtain

V5(λ) = − π

192M3
2

ε5 A20M2
[
3M3 + b02(b02 + B02)

2M4ε
2],

V6(λ) = 1

100800M4
2

ε5A20M2
[− 12288M2M3 + 3675πA20M2M3ε + 1536M5ε

2

+ 1225πA20b02(b02 + B02)
2M2M4ε

3 + 256b02(b02 + B02)
2M6ε

4],
where

M3 = 2A4
20b

4
02 + 8A2

20b
5
02 + 3b6

02 + 4A6
20b

2
02B02 + 6A4

20b
3
02B02 + 34A2

20b
4
02B02

+ 18b5
02B02 + 5A4

20b
2
02B

2
02 + 56A2

20b
3
02B

2
02 + 45b4

02B
2
02 + 44A2

20b
2
02B

3
02

+ 60b3
02B

3
02 − A4

20B
4
02 + 16A2

20b02B
4
02 + 45b2

02B
4
02 + 2A2

20B
5
02

+ 18b02B
5
02 + 3B6

02,

M4 = 6A4
20b

2
02 + 20A2

20b
3
02 + 15b4

02 − 10A4
20b02B02 + 26A2

20b
2
02B02 + 60b3

02B02

+ 3A4 B2 − 8A2 b02B
2 + 90b2 B2 − 14A2 B3 + 60b02B

3 + 15B4 ,
20 02 20 02 02 02 20 02 02 02
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M5 = 12A4
20b

7
02 + +5A2

20b
8
02 − 11b9

02 + 32A8
20b

4
02B02 + 80A6

20b
5
02B02

+ 124A4
20b

6
02B02 + 58A2

20b
7
02B02 − 99b8

02B02 − 20A8
20b

3
02B

2
02

+ 117A6
20b

4
02B

2
02 + 345A4

20b
5
02B

2
02 + 246A2

20b
6
02B

2
02 − 396b7

02B
2
02

− 4A6
20b

3
02B

3
02 + 377A4

20b
4
02B

3
02 + 538A2

20b
5
02B

3
02 − 924b6

02B
3
02

− 38A6
20b

2
02B

4
02 + 118A4

20b
3
02B

4
02 + 680A2

20b
4
02B

4
02 − 1386b5

02B
4
02

+ 4A6
20b02B

5
02 − 66A4

20b
2
02B

5
02 + 510A2

20b
3
02B

5
02 − 1386b4

02B
5
02 + A6

20B
6
02

− 43A4
20b02B

6
02 + 218A2

20b
2
02B

6
02 − 924b3

02B
6
02 − 3A4

20B
7
02 + 46A2

20b02B
7
02

− 396b2
02B

7
02 + 3A2

20B
8
02 − 99b02B

8
02 − 11B9

02,

M6 = 96A6
20b

4
02 + 468A4

20b
5
02 + 728A2

20b
6
02 + 360b7

02 − 252A6
20b

3
02B02

+ 147A4
20b

4
02B02 + 2280A2

20b
5
02B02 + 2091b6

02B02 + 175A6
20b

2
02B

2
02

− 862A4
20b

3
02B

2
02 + 1867A2

20b
4
02B

2
02 + 4986b5

02B
2
02 − 12A6

20b02B
3
02

− 275A4
20b

2
02B

3
02 − 772A2

20b
3
02B

3
02 + 6165b4

02B
3
02 − 6A6

20B
4
02

+ 284A4
20b02B

4
02 − 1638A2

20b
2
02B

4
02 + 4020b3

02B
4
02 + 18A4

20B
5
02

− 524A2
20b02B

5
02 + 1125b2

02B
5
02 + 27A2

20B
6
02 − 54b02B

6
02 − 69B7

02.

If b02 = 0, we have M3 = −(A2
20 − 3B02)B

4
02(A

2
20 +B02) and M5 = B6

02(A
6
20 −

3A4
20B02 + 3A2

20B
2
02 − 11B3

02). It is easy to see that it requires that B02 = 0 for 
M3 = M5 = 0, which contradicts with that M1 �= 0. If B02 = −b02 �= 0, we have 
M3 = −4A6

20b
3
02 �= 0. Otherwise, to have common roots of M3, M4 and M5, we 

compute the following resultants to obtain

Resultant[M3,M4,B02] = 9216A30
20b

7
02(6A2

20 + b02)(54A2
20 + 49b02)

≡ 9216A30
20b

7
02 F1,

Resultant[M3,M5,B02] = 256A56
20b

18
02(9216A16

20 − 868032A14
20b02

+ 12423360A12
20b

2
02 − 65473808A10

20b
3
02

+ 131842471A8
20b

4
02 − 132575168A6

20b
5
02

+ 283790520A4
20b

6
02 + 487738800A2

20b
7
02

+ 30337200b8
02)

≡ 256A56
20b

18
02 F2.

Further, calculating the resultant of the polynomials F1 and F2 with respect to 
b02 we obtain

Resultant[F1,F2, b02] = −295819464411678182986326279592800000A32
20

�= 0,
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which indicates that the three polynomials M3, M4 and M5 have no common 
roots.

(1b) If a20 �= 0, for which we have

a11 = −A11A20 + 2a20B02 − 2A20B02 + b02b11 + B02b11

a20

by setting V3(λ) = 0. Then we obtain

V4(λ) = 2

45a20
ε3[− 2(2a20 + b11)M6 + M7ε

2],
where

M6 = A11a20 − A11A20 − 6a2
20A20 + 6a20A

2
20 + 2a20b02 + 4a20B02 − 2A20B02

+ 3a2
20b11 − 3a20A20b11 + b02b11 + B02b11,

M7 = − 4A2
11a20A20 + 4A2

11A
2
20 + 4A11a20A20b02 − 6a2

20b
2
02 + 2A11a

2
20B02

− 14A11a20A20B02 + 16A11A
2
20B02 − 8a2

20b02B02 + 8a20A20b02B02

+ 2a2
20B

2
02 − 12a20A20B

2
02 + 16A2

20B
2
02 − 7A11A20b02b11 + 3a20b

2
02b11

+ A11a20B02b11 − 8A11A20B02b11 + 10a20b02B02b11 − 14A20b02B02b11

+ 9a20B
2
02b11 − 16A20B

2
02b11 + 3b2

02b
2
11 + 7b02B02b

2
11 + 4B2

02b
2
11.

(1b.1) If b11 = −2a20, we obtain M7 = −2A20(A11 + 2B02)(2A11a20 − 2A11A20 −
9a20b02 −5a20B02 −4A20B02). Taking A20 = 0 yields M7 = 0 (and so V4(λ) =
0), and a11 = −2b02, giving the condition VI; or setting A11 = −2B02 again 
yields M7 = 0 and a11 = −2b02, which is included in the condition III. Other-
wise, we linearly solve M7 = 0 for A11 to obtain

A11 = 9a20b02 + 5a20B02 + 4A20B02

2(a20 − A20)
.

Moreover, we have A11 + 2B02 = 9a20(b02+B02)
2(a20−A20)

�= 0, under which the 5th Lya-
punov constant becomes

V5(λ) = 9πa20A20(b02 + B02)

512(A20 − a20)
ε5[− 40a2

20 + 40A2
20 + 30b02 + 30B02

+ 3(B2
02 − b2

02)ε
2].

Setting V5(λ) = 0 yields B02 = b02 = 2a2
20−2A2

20
3 �= 0. Then we obtain

V6(λ) =128a20A20(a20 − A20)

4725
ε5(a20 + A20)

2[108(2a2
20 + 3a20A20 + 2A2

20)

+ (a20 + A20)
2(29a2

20 + 50a20A20 + 29A2
20)ε

2].
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It should be noted that 2a2
20 + 3a20A20 + 2A2

20 = 0 (and similarly 29a2
20 +

50a20A20 + 29A2
20 = 0) if and only if A20 = a20 = 0, which contradicts with 

that a20 �= A20. Hence, V6(λ) �= 0. Note that a20 + A20 = 0 does not yield 
2a2

20 + 3a20A20 + 2A2
20 = 0 or 29a2

20 + 50a20A20 + 29A2
20 = 0.

(1b.2) Now assume that b11 �= −2a20. Then, we have

b02 = −1

2a20 + b11

{
A11(a20 − A20) + 4a20B02

+ (b11 − 2A20)
[
B02 + 3a20(a20 − A20)

]}
by linearly solving M6(λ) = 0 in V4 for b02.
(1b.2.i) If b11 = 2A20, we obtain b11 + 2a20 = 2(a20 + A20) �= 0 and M7 =

(a20 +A20)(A11 +2B02)
2. So setting M7 = 0 (and so V4(λ) = 0) yields 

A11 = −2B02. Then we obtain V5(λ) = −π
8 B02(a20 − A20)(a20 +

A20)
2 ε5. Setting V5(λ) = 0 we obtain B02 = 0, which leads to the 

condition included in condition V.
(1b.2.ii) If b11 �= 2A20, then M7 is given as − 3

2a20+b11
a20(a20 −A20)M̃7, where

M̃7 =A2
11a20 + 3A2

11A20 − 12A11a
2
20A20 + 4A11a20A

2
20

+ 36a3
20A

2
20 − 36a2

20A
3
20 + 4A11a20B02 + 12A11A20B02

− 32a2
20A20B02 + 8a20A

2
20B02 + 4a20B

2
02 + 12A20B

2
02

− A2
11b11 + 6A11a

2
20b11 + 10A11a20A20b11 − 36a3

20A20b11

+ 2A11A
2
20b11 + 36a20A

3
20b11 − 4A11B02b11 + 16a2

20B02b11

+ 12a20A20B02b11 + 4A2
20B02b11 − 4B2

02b11 − 6A11a20b
2
11

+ 9a3
20b

2
11 − A11A20b

2
11 + 27a2

20A20b
2
11 − 36a20A

2
20b

2
11

− 8a20B02b
2
11 − 4A20B02b

2
11 − 9a2

20b
3
11 + 9a20A20b

3
11

+ B02b
3
11.

Moreover, we obtain the 5th and 6th Lyapunov constants given as fol-
lows:

V5(λ) = 1

960(2a20 + b11)2 ε5(a20 − A20)
[
5(2a20 + b11)πM8

− 256(2a20 + b11)
2M̃7ε + 5πM9ε

2],
and

V6(λ) = − 1

302400(2a20 + b11)3 ε5(a20 − A20)

× [− 12288(2a20 + b11)
2M10

− 735(2a20 + b11)
3πM11ε + 256(2a20 + b11)M12ε

2
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− 735(2a20 + b11)
2πM13ε

3 + 384M14ε
4],

where

M8 = 4A2
11a20 − 24A11a

3
20 + 30A2

11A20 + 144a4
20A20 + 4A11a20A

2
20

+ 96a3
20A

2
20 − 96a2

20A
3
20 + 16A11a20B02 − 96a3

20B02

+ 120A11A20B02 − 248a2
20A20B02 + 8a20A

2
20B02

+ 16a20B
2
02 + 120A20B

2
02 − 13A2

11b11 + 36A11a
2
20b11

− 72a4
20b11 + 202A11a20A20b11 − 216a3

20A20b11 + 2A11A
2
20b11

− 420a2
20A

2
20b11 + 516a20A

3
20b11 − 52A11B02b11

+ 124a2
20B02b11 + 156a20A20B02b11 + 4A2

20B02b11 − 52B2
02b11

− 78A11a20b
2
11 + 84a3

20b
2
11 + 11A11A20b

2
11 + 444a2

20A20b
2
11

− 528a20A
2
20b

2
11 + 12A3

20b
2
11 − 68a20B02b

2
11 − 40A20B02b

2
11

− 6A11b
3
11 − 105a2

20b
3
11 + 165a20A20b

3
11 − 12A2

20b
3
11

+ 13B02b
3
11 − 15a20b

4
11 + 3A20b

4
11,

M9 = 12A3
11a

2
20 − 44A3

11a20A20 − 216A2
11a

3
20A20 − 30A3

11A
2
20

+ 464A2
11a

2
20A

2
20 + 1296A11a

4
20A

2
20 − 84A2

11a20A
3
20

− 2688A11a
3
20A

3
20 − 2592a5

20A
3
20 + 1392A11a

2
20A

4
20 + · · · ,

M10 = A2
11a20 + 24A11a

3
20 − 15A2

11A20 − 60A11a
2
20A20

− 144a4
20A20 + 16A11a20A

2
20 + 84a3

20A
2
20 − 84a2

20A
3
20

+ 4A11a20B02 + 96a3
20B02 + · · · ,

M11 = 44A2
11a20 − 120A11a

3
20 + 222A2

11A20 − 288A11a
2
20A20

+ 720a4
20A20 + 116A11a20A

2
20 + 1344a3

20A
2
20

− 1344a2
20A

3
20 + 176A11a20B02 − 480a3

20B02 + · · · ,

M12 = 330A3
11a

2
20 + 2800A2

11a
4
20 − 846A3

11a20A20

+ 5916A2
11a

3
20A20 − 33600A11a

5
20A20

− 900A3
11A

2
20 + 8448A2

11a
2
20A

2
20 + 34744A11a

4
20A

2
20

+ 100800a6
20A

2
20 + 324A2

11a20A
3
20 + · · · ,

M13 = 60A3
11a

2
20 − 244A3

11a20A20 − 1080A2
11a

3
20A20

− 222A3
11A

2
20 + 2608A2

11a
2
20A

2
20 + 6480A11a

4
20A

2
20

− 516A2
11a20A

3
20 − 14304A11a

3
20A

3
20 − 12960a5

20A
3
20

+ 7824A11a
2
20A

4
20 + · · · ,
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M14 = 195A4
11a

3
20 − 645A4

11a
2
20A20 − 4680A3

11a
4
20A20

+ 901A4
11a20A

2
20 + 18064A3

11a
3
20A

2
20 + 42120A2

11a
5
20A

2
20

+ 525A4
11A

3
20 − 18552A3

11a
2
20A

3
20 − 150504A2

11a
4
20A

3
20

− 168480A11a
6
20A

3
20 + · · · .

Assume B02 = 0. For solving M̃7 = M8 = M9 = · · · = M14 = 0, we 
compute the following resultants:

Resultant[M̃7,M8,A11] = 9(2A20 − b11)
2(2a20 + b11)

3 G1,

Resultant[M̃7,M9,A11] = 27a20(a20 − A20)
2A2

20(a20 − b11)

× (2A20 − b11)
6(2a20 + b11)

2 G2,

Resultant[M̃7,M10,A11] = 9(2A20 − b11)
2(2a20 + b11)

3 G1,

Resultant[M̃7,M11,A11] = 225(2A20 − b11)
2(2a20 + b11)

3 G1,

Resultant[M̃7,M12,A11] = 324(a20 − A20)(2A20 − b11)
4

× (2a20 + b11)
2 G3,

Resultant[M̃7,M13,A11] = 675a20(a20 − A20)
2A2

20(a20 − b11)

× (2A20 − b11)
6(2a20 + b11)

2 G2,

Resultant[M̃7,M14,A11] = 864a20(a20 − A20)
3A2

20(a20 − b11)

× (2A20 − b11)
8(2a20 + b11)

3 G4,

where

G1 = 192a6
20A20 + 808a5

20A
2
20 + 320a4

20A
3
20 + 1792a3

20A
4
20

− 3280a2
20A

5
20 + 2088a20A

6
20 − 696a5

20A20b11

− 2212a4
20A

2
20b11 − 2704a3

20A
3
20b11 + 3740a2

20A
4
20b11

− 4504a20A
5
20b11 + 72A6

20b11 + 2a5
20b

2
11 + 1048a4

20A20b
2
11

+ 2528a3
20A

2
20b

2
11 − 356a2

20A
3
20b

2
11 + 3986a20A

4
20b

2
11

− 136A5
20b

2
11 − 3a4

20b
3
11 − 724a3

20A20b
3
11 − 815a2

20A
2
20b

3
11

− 1840a20A
3
20b

3
11 + 94A4

20b
3
11 + 224a2

20A20b
4
11

+ 444a20A
2
20b

4
11 − 28A3

20b
4
11 + a2

20b
5
11 − 44a20A20b

5
11

+ 3A2
20b

5
11,

G2 = 2028a5
20 + 3820a4

20A20 − 5396a3
20A

2
20 − 12a2

20A
3
20

− 2028a4
20b11 + 2468a3

20A20b11 + 5062a2
20A

2
20b11

− 1662a20A
3 b11 − 1521a3 b2 − 4105a2 A20b

2

20 20 11 20 11
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+ 3094a20A
2
20b

2
11 − 18A3

20b
2
11 + 1014a2

20b
3
11

− 2186a20A20b
3
11 + 12A2

20b
3
11 + 507a20b

4
11 + 3A20b

4
11,

G3 = 123904a10
20A2

20 + 58368a9
20A

3
20 + 1092416a8

20A
4
20

+ 176128a7
20A

5
20 + 1129856a6

20A
6
20 − 373760a5

20A
7
20

− 179392a4
20A

8
20 + 2816a10

20A20b11 − 160704a9
20A

2
20b11

− 720960a8
20A

3
20b11 + · · · ,

G4 = 25392a8
20 + 455952a7

20A20 + 719728a6
20A

2
20

− 1490448a5
20A

3
20 + 310748a4

20A
4
20 − 10092a3

20A
5
20

− 38088a7
20b11 − 744648a6

20A20b11 − 200224a5
20A

2
20b11

+ 2072980a4
20A

3
20b11 + · · · .

Since a20(a20 − A20)(2A20 − b11)(2a20 + b11) �= 0 we discuss the fol-
lowing three subcases. First, considering the last two resultants to be 
zero we have two subcases.
(1) If A20 = 0, under which M̃7 = (a20 − b11)(A11 + 3a20b11)

2. Tak-
ing b11 = a20 yields M̃7 = 0, and then we obtain M8 = −9a20(A11 +
2a2

20)(A11 + 6a2
20). If taking A11 = −2a2

20, we have M8 = M9 =
M10 = M11 = 0 but M12 = −36a8

20 �= 0. Similarly, we have M12 �= 0
when A11 = −6a2

20. If taking another factor in M̃7 and setting A11 =
−3a20b11, we obtain M̃7 = 0, but M8 = 3a20b

2
11(2a20 + b11)

2 �= 0.
(2) If b11 = a20, which yields the last two resultants to be zero, we 
obtain M̃7 = 3A11A20(A11 − a2

20 + 2a20A20). Taking A11 = a2
20 −

2a20A20 we have M̃7 = 0, and M8 = −9a2
20(a20 − 2A20)(21a2

20 −
65a20A20 + 30A2

20). First, consider a20 = 2A20, under which we have 
M8 = M9 = · · · = M14 = 0, leading to b02 = A11 = 0. These condi-
tions belong to the condition V . Next, consider 21a2

20 − 65a20A20 +
30A2

20 = 0, under which we have M9 = −3a3
20(77a20 − 47A20)(a20 −

2A20)
3A20 �= 0.

(3) Besides the above two special cases, in general we calculate the 
resultants of the polynomials G1, G2 and G3 with respect to A20 to 
obtain

Resultant[G1,G2,A20] = 12288a2
20(a20 − b11)

4(2a20 + b11)
2 G12,

Resultant[G1,G3,A20] = 4194304a10
20(a20 − b11)

8b2
11

× (2a20 + b11)
5 G13,

where G12 and G13 are respectively 25th- and 35th-degree polyno-
mials in a20 and b11. Further, we obtain Resultant[G12, G13, b11] =
C1a

1375
20 �= 0, where C1 is a nonzero constant. This implies that the 

polynomials M̃7, M8, · · · , M12 have no common roots when B02 = 0.
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For B02 �= 0, we similarly only need to consider the following resultants:

Resultant[M̃7,M8,A11] = 9(2a20 + b11)
3 G̃1,

Resultant[M̃7,M9,A11] = (2A20 − b11)
2(2a20 + b11)

2 G̃2,

Resultant[M̃7,M12,A11] = 324(2a20 + b11)
2 G̃3,

Resultant[M ′
7,M14,A11] = 4(2A20 − b11)

2(2a20 + b11)
3 G̃4,

where

G̃1 = 768a6
20A

3
20 + 3232a5

20A
4
20 + 1280a4

20A
5
20 + 7168a3

20A
6
20 − 13120a2

20A
7
20

+ 8352a20A
8
20 − 64a6

20A20B02 − 896a5
20A

2
20B02 − 6112a4

20A
3
20B02

− 12192a3
20A

4
20B02 + · · · ,

G̃2 = 876096a9
20A

6
20 − 101952a8

20A
7
20 − 4755456a7

20A
8
20 + 6307200a6

20A
9
20

− 2320704a5
20A

10
20 − 5184a4

20A
11
20 − 44928a9

20A
4
20B02 − 2865600a8

20A
5
20B02

+ 2813184a7
20A

6
20B02 + 6021792a6

20A
7
20B02 + · · · ,

G̃3 = 1982464a11
20A6

20 − 1048576a10
20A7

20 + 16544768a9
20A

8
20 − 14660608a8

20A
9
20

+ 15259648a7
20A

10
20 − 24057856a6

20A
11
20 + 3109888a5

20A
12
20 + 2870272a4

20A
13
20

− 450560a11
20A4

20B02 − 8114176a10
20A5

20B02 + · · · ,

G̃4 = 351019008a13
20A8

20 + 5250023424a12
20A9

20 − 7906664448a11
20A10

20

− 31894290432a10
20A11

20 + 89653118976a9
20A

12
20 − 84788232192a8

20A
13
20

+ 33909829632a7
20A

14
20 − 4714315776a6

20A
15
20 + 139511808a5

20A
16
20

− 5087232a13
20A6

20B02 + · · · .

Since B02 �= 0, without loss of generality, we set B02 = 1. Then we compute the resul-
tants of G̃1 with G̃2, G̃3 and G̃4, respectively, with respect to A20 to obtain

Resultant[G̃1, G̃2,A20] = 5699868278390784(2a20 + b11)
17 G̃121 G̃122 G̃123,

Resultant[G̃1, G̃3,A20] = − 288230376151711744(2a20 + b11)
23 G̃131 G̃132,

Resultant[G̃1, G̃4,A20] = − 1494186269970473680896(2a20 + b11)
22 G̃141 G̃142,

where

G̃121 = − 121a2
20 + 60a4

20 + 110a20b11 − 141a3
20b11 − 25b2

11 + 123a2
20b

2
11

− 51a20b
3
11 + 9b4

11,

G̃122 = 289616698050947334144a14
20 − 10736497709321541903360a16

20

+ 54931253888943027376128a18 + 870907783572523597824a13b11
20 20
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− 6245225035669890385920a15
20b11 + · · · ,

G̃123 = − 154971533932943410202093599850496a22
20

+ 245127937119104848551474851261448192a24
20

− 93323935178697676228730845562255966208a26
20

− 394317896129540776446529911128064a21
20b11

+ 514963260106823723915161085178544128a23
20b11 + · · · ,

G′
131 = 264409883814081941176320000a18

20 + 2775459686442265516223692800a20
20

− 11226851499315174763858624512a22
20

+ 504298937884882968576000000a17
20b11

+ 3709268522401291247016345600a19
20b11 + · · · ,

G̃132 = − 150662772779102167346332468844955697152a24
20

+ 95688417301399804099069191252352381747200a26
20

− 13841391013383836670191181949230250966646784a28
20

− 565929774858769568739347763104241942528a23
20b11

+ 223616561258050719911933750549824678133760a25
20b11 + · · · ,

G̃141 = − 51765940546621170513925221883390871715840000a21
20

+ 3356551902095755604378243049892255205710233600a23
20

− 27585641954434893875291156704961121818665353216a25
20

− 187278527381680408652939572919325680394240000a20
20b11

+ 4822081570260602331816220332062131667946700800a22
20b11 + · · · ,

G̃142 = 3626954362958021481562517270342986401914359891623936a29
20

− 9479022850188686510101115527747531468127821362663653376a31
20

+ 5767470261086132396002745105013056456498230037788896264192a33
20

+ 12133900777786929030218599780545225233505741538590720a28
20b11

− 39506299399581930990565307915611991351567572731120648192a30
20b11

+ · · · .

Further, we compute the resultants G̃121 with G̃131 and G̃141, respectively, with respect 
to b11 to obtain

Resultant[G̃121, G̃131, b11] = −57191981137402500a36
20(361 − 246a2

20

+ 252a4
20) G̃1213,

Resultant[G̃121, G̃141, b11] = C2a
42
20(361 − 246a2

20 + 252a4
20) G̃1214,
350



T. Chen, L. Huang and P. Yu Journal of Differential Equations 303 (2021) 326–368
where C2 is a nonzero integer, G̃1213 and G̃1214 are respectively 132th- and 166th-
degree polynomials in a20. Since a20 �= 0 and 361 −246a2

20+252a4
20 �= 0, and moreover 

it can be shown that Resultant[G̃1213, ̃G1214, a20] �= 0, implying that the polynomials 
G̃121, G̃131 and G̃141 have no common roots. Similarly, we can show that the polyno-
mials G̃12i , G̃13j and G̃14k (i = 1, 2, 3, j = 1, 2, k = 1, 2) do not have common roots. 
Hence, we conclude that the polynomial equations M̃7 = M8 = M9 = M12 = M14 = 0
have no common zeros when a20 �= 0 and B02 �= 0.

(2) Now we consider the second case: A11 = −a11 − 2b02 − 2B02. Solving V3(λ) = 0 for a11
we have

a11 = 2A20b02 + 2a20B02 + b02b11 + B02b11

a20 − A20
.

Then we obtain the 4th Lyapunov constant,

V4(λ) = − 2

15(a20 − A20)
ε3(2a20 + b11)

[− 2(a20 − A20)
2(2A20 − b11)

+ M̃8ε
2 + 5a02(b02 + B02)

2ε4],
where

M̃8 = − 2a02a
2
20 + 4a02a20A20 − 2a02A

2
20 + a20b

2
02 + 3A20b

2
02 + 2a20b02B02

+ 6A20b02B02 + a20B
2
02 + 3A20B

2
02 − b2

02b11 − 2b02B02b11 − B2
02b11.

To have V4(λ) = 0, we take b11 = −2a20 which yields a11 = −2b02, leading to the condition 
III. Otherwise, if A20 = b11

2 , then the ε3-order term in V4(λ) is zero. So we obtain a20 −
A20 = 2a20−b11

2 �= 0, and thus

a11 = 2(2a20B02 + 2b02b11 + B02b11)

2a20 − b11
.

For the ε7-order term in V4(λ), let B02 = −b02. Then we have M̃8 = − 1
2a02(2a20 − b11)

2. 
The solution for M8 = 0 is a02 = 0, under which the 5th Lyapunov constant becomes

V5(λ) = π

64
b02(2a20 − b11)(2a20 + b11)

2 ε5.

Setting V5(λ) = 0 yields b02 = 0, leading to the condition V. Note that letting A20 + a20 = 0
in the condition V yields a special case of III.

Therefore, the conditions obtained above, belonging to the cases III, IV, V and VI, are the neces-
sary conditions for the origin of the unperturbed system (30) to be a center.

Next, we prove that these conditions are also sufficient. When the condition III in (3) holds, 
system (2) becomes
351



T. Chen, L. Huang and P. Yu Journal of Differential Equations 303 (2021) 326–368
(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y + a20x

2 − 2b02xy + a02y
2

− x2 − 2a20xy + b02y
2

)
, for x > 0,

(
y + A20x

2 − 2B02xy + a02y
2

x2 − 2A20xy + B02y
2

)
, for x < 0.

(37)

It can be shown that the first and second systems in (35) are Hamiltonian systems, with respec-
tively the Hamiltonian quantities,

H+(x, y) = 1

2
y2 + x3

3
+ a02

3
y3 + a20x

2y − b02xy2,

H−(x, y) = 1

2
y2 − x3

3
+ a02

3
y3 + A20x

2y − B02xy2.

(38)

Further, noticing that the condition H+(0, y) ≡ H−(0, y) in Proposition 3.1 holds, which implies 
that the origin of system (37) is a center.

When the condition IV in (3) is satisfied, system (2) is reduced to

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y + a11xy

− x2 + b02y
2

)
, for x > 0,

(
y + A20x

2 − 2B02xy

x2 − 2A20xy + B02y
2

)
, for x < 0.

(39)

The first system in (39) has the following first integrals,

H+(x, y) = 1

b02(a11 − b02)(a11 − 2b02)
(1 + a11x)

− 2b02
a11 (1 + 2b02x − a11b02x

2

+2b2
02x

2 − a2
11b02y

2 + 3a11b
2
02y

2 − 2b3
02y

2), if a11(a11 − b02)(a11 − 2b02) �= 0,

H+(x, y) = 1

2
y2 + x3

3
, if a11 = b02 = 0,

H+(x, y) = e−2b02x

2b3
02

(−1 − 2b02x − 2b2
02x

2 + 2b3
02y

2), if a11 = 0, b02 �= 0,

H+(x, y) = 1

2a3
11

(−2a11x + a2
11x

2 + a3
11y

2 + ln(1 + a11x), if a11 �= 0, b02 = 0,

H+(x, y) = 1

b3
02(1 + b02x)2

[
3 + 4b02x + b3

02y
2 + 2 ln(1 + b02x)

+4b02x ln(1 + b02x) + 2b2
02x

2 ln(1 + b02x)
]
, if a11 = b02 �= 0,

H+(x, y) = 1

4b3
02(1 + b02x)2

[− 1 + 2b02x + 4b2
02x

2 + 4b3
02y

2

−2 ln(1 + 2b02x) − 4b02x ln(1 + 2b02x)
]
, if a11 = 2b02 �= 0.

(40)
The second system in (39) has the first integral,
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H−(x, y) = −2

3
x3 + 2A20x

2y + 3y2 − 3B02xy2.

It is easy to verify that H+(0, y) and H−(0, y) are even functions in y, which implies that the 
origin of system (39) is a center by Proposition 3.1.

If the condition V in (3) holds, system (2) has the form,

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y + a20x

2

− x2 + 2A20xy

)
, for x > 0,

(
y + A20x

2

x2 + 2a20xy

)
, for x < 0.

(41)

This case is hard to prove because the approaches used above are not applicable for this 
case. It is noted that system (41) is invariant under the transformation (x, t, a20, A20) →
(−x, −t, A20, a20), but we cannot apply the time-invertible system theory here to prove that the 
origin of the system is a center since A20 and a20 have been exchanged. Hence, we inspect the 
property in the Lyapunov constants, and by using systems (30) and (31), we obtain the perturbed 
system of (41) under the transformation (x, y, t) → (ε2y, ε3 x, t

ε
) as

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(− y + 2A20εxy − y2

x + a20εy
2

)
, for y > 0,

(− y + 2a20εxy + y2

x + A20εy
2

)
, for y < 0.

(42)

It is easy to see that the perturbed system (42) is also invariant under the transforma-
tion (y, t, a20, A20) → (−y, −t, A20, a20). For convenience and clear, let the Lyapunov con-
stants for the first and second systems be v+

k (a20, A20) and u+
k (a20, A20), respectively. Then, 

u+
k (A20, a20) = v+

k (a20, A20), and so u+
k (a20, A20) = v+

k (A20, a20). Moreover, we have found 
that v+

k (a20, A20) is invariant if exchanging a20 and A20, i.e., v+
k (a20, A20) = v+

k (A20, a20) at 
least up to k = 10. This implies that

u+
k (a20,A20) = v+

k (A20, a20) = v+
k (a20,A20),

and so Vk(λ) = v+
k (a20, A20) − u+

k (a20, A20) = 0 at least for k = 2, 3, . . . , 10. If we can show 
that this is true for any k � 2, then we can conclude that the origin of the switching system (41) is 
a center since the origin of both the first and second systems is a cusp. However, this is still very 
hard to prove. Thus, we use simulations for the right-half plane system (x > 0) of (41) to demon-
strate that this is true. In Fig. 4(a), we show two simulated trajectories starting from the same 
initial point (x, y) = (0.0.0025) (on the positive y-axis), one is for (a20, A20) = (1, 5), which 
converges to the stable equilibrium point (x, y) = (−0.1, −0.01) (see the red curve), and the 
other is for exchanging a20 and A20 with (a20, A20) = (5, 1), which converges to the stable equi-
librium point (x, y) = (−0.1, −0.05) (see the blue curve). Note that these two curves intersect at 
the same point on the negative y-axis, implying that our above conjecture is true, i.e., v+

k is in-
variant under the exchange of a20 and A20. Then, we reverse the blue trajectory in Fig. 4(a) about 
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the y-axis (which thus becomes a solution of the left-half plane system of (41)) to form a closed 
orbit with the red trajectory, as shown in Fig. 4(b). In order to further numerically confirm that 
the origin of system (41) is a center, we use an iterative integral scheme to simulate the switching 
system (41) with time step 0.0001 and 3 × 1011 iterations. The results for (a20, A20) = (1, 5) are 
depicted in Fig. 4(c), where the red orbit is obtained after 5 × 106 iterations while the blue orbit 
is obtained after 3 ×1011 iterations. It is clear that these two closed orbits are coincide, indicating 
that the origin of the system is a center. Similarly, the results for (a20, A20) = (1, −5) are shown 
in Fig. 4(d), again indicating that the origin of the system is a center.

The simulated phase portraits of system (41) for (a20, A20) = (1, 5) and (1, −5) are shown in 
Figs. 5(a) and 5(b), respectively. The above simulation results indicate that the origin of system 
(41) is a center, which is though not a rigorous mathematical proof.

When the condition VI in (3) holds, system (2) becomes

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y + a20x

2 − 2b02xy

− x2 − 2a20xy + b02y
2

)
, for x > 0,

(
y + A11xy

x2 + B02y
2

)
, for x < 0.

(43)

Similarly, we can find the first integral for the first system in (35), given by

H+(x, y) = 2

3
x3 + 2a20x

2y + 3y2 − 3b02xy2, (44)

and the first integrals for the second system in (43) as given below:

H−(x, y) = 1

B02(A11 − B02)(A11 − 2B02)
(1 + A11x)

− 2B02
A11 (1 + 2B02x − A11B02x

2

+2B2
02x

2 + A2
11B02y

2 − 3A11B
2
02y

2 + 2B3
02y

2),

if A11B02(A11 − B02)(a11 − 2B02) �= 0,

H−(x, y) = 1

2
y2 − x3

3
, if A11 = B02 = 0,

H−(x, y) = e−2B02x

2B3
02

(1 + 2B02x + 2B2
02x

2 + 2B3
02y

2), if A11 = 0, B02 �= 0,

H−(x, y) = 1

2A3
11

(2A11x − A2
11x

2 + A3
11y

2 − ln(1 + A11x), if A11 �= 0, B02 = 0,

H−(x, y) = 1

B3
02(1 + B02x)2

[− 3 − 4B02x + B3
02y

2 − 2 ln(1 + B02x)

−4B02x ln(1 + B02x) − 2B2
02x

2 ln(1 + B02x)
]
, if A11 = B02 �= 0,

H−(x, y) = 1

4B3
02(1 + B02x)2

[− 1 − 2B02x − 4B2
02x

2 + 4B3
02y

2

−2 ln(1 + 2B02x) + 4B02x ln(1 + 2B02x)
]
, if A11 = 2B02 �= 0.

(45)
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Fig. 4. Simulations of system (41) demonstrating that the origin of system (41) is a center: (a) two trajectories from 
simulating the right-half plane system of (41), with the red one for (a20, A20) = (1, 5) converging to the equilibrium 
point (x, y) = (−0.1, −0.01), and the blue one for (a20, A20) = (5, 1) converging to the equilibrium point (x, y) =
(−0.1, −0.05), which start from a same initial point on the positive y-axis and end at a same point on the negative 
y-axis; (b) the blue trajectory in part (a) is reversed about the y-axis to form a closed orbit with the red trajectory; 
(c) two simulated closed orbits of system (41) for (a20, A20) = (1, 5), using time step 0.0001 and 3 × 1011 iterations, 
coincide with the red one obtained after 5 ×106 iterations and the blue one obtained after 3 ×1011 iterations; and (d) two 
simulated closed orbits of system (41) for (a20, A20) = (1, −5), using time step 0.0001 and 3 × 1011 iterations, coincide 
with the red one obtained after 5 × 106 iterations and the blue one obtained after 3 × 1011 iterations. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. The phase portraits of system (41): (a) for (a20,A20) = (1,5); and (b) for (a20,A20) = (1,−5).

It is seen that H+(0, y) and H−(0, y) are even functions in y, satisfying the conditions in Propo-
sition 3.1, and so the origin of system (43) is a center. �
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Fig. 6. The phase portraits for (a) the system (37) with a20 = a02 = b02 = B02 = 1 and A20 = 1.5; (b) the system (39)
with a11 = b02 = A20 = 1 and B02 = −1; and (c) the system (43) with a20 = b02 = A11 = 1 and B02 = 0.

Example 4.6. For illustration, the phase portraits for systems (37), (39) and (43) are shown in 
Figs. 6(a), (b) and (c), respectively.

5. The proof of Theorem 1.2

In this section, we will perturb system (2) with the center condition III in (3) to prove the exis-
tence of small-amplitude limit cycles around the origin (0, 0). It will be shown that the existence 
of 7 limit cycles needs perturbations up to ε12 order.

Proof. We add quadratic perturbations to system (37) to obtain the following perturbed system 
(noticing that b20 = −1, B20 = 1):

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y + a20x
2 − 2b02xy + a02y

2

+
12∑

k=1

εk(ε δkx + p20kx
2 + p11kxy + p02ky

2),

− ε2x − x2 − 2a20xy + b02y
2

+
12∑

k=1

εk(ε δky + q20kx
2 + q11kxy + q02ky

2),

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for x > 0,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y + A20x
2 − 2B02xy + a02y

2

+
12∑

k=1

εk(ε δkx + P20kx
2 + P11kxy + P02ky

2),

− ε2x + x2 − 2A20xy + B02y
2

+
12∑

k=1

εk(ε δky + Q20kx
2 + Q11kxy + Q02ky

2),

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for x < 0,

(46)
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where 0 < ε � 1, and δk , pijk , qijk , Pijk and Qijk (i + j = 2) are real perturbation parameters. 
It will be seen in the following coefficients reduction procedure that the perturbing coefficients 
q20k, q11k, q02k and Q20k, Q11k, Q02k can be set zero. Note that when we compute the Lya-
punov constants of the above system we set the linear perturbation terms zero, i.e. δk = 0. The 
Lyapunov constants are calculated according to the εk-order, starting from k = 1. We use the ε-
order Lyapunov constants to determine the number of limit cycles, and in addition perturbing the 
linear coefficient δ1 to get one more small-amplitude limit cycle. However, if we think we may 
obtain more limit cycles from ε2-order terms, then we need to find the conditions on parameters 
such that all the ε-order Lyapunov constants vanish, in other words, the origin of the system is a 
center up to ε-order, and the conditions are called the center conditions for that ε-order [46]. This 
process can go further until we reach a value of k such that no center conditions can be found 
and so maximal number of limit cycles may be obtained.

First, system (46) contains many perturbation parameters, which yields difficulty in calculat-
ing the Lyapunov constants and solving the polynomial equations resulted from the Lyapunov 
constants. In order to reduce the number of parameters, we follow the approach described in [46]
to make the following near-identity transformations:

x → x + d1(ε)x + d2(ε)y,

y → y + d3(ε)x + d4(ε)y,

t → t + d5(ε)t,

(47)

for the upper system, where

di(ε) = di1ε + di2ε
2 + · · · + dinε

n, i = 1,2, . . . ,5. (48)

A similar transformation can be formed for the lower system. Note that (47)|ε=0 is an identity 
map, and thus keeps the unperturbed system of (46) unchanged. Moreover, the new system under 
the transformation (47) can be still written in the same form of (46). Therefore, we may find 
proper di(ε)’s to simplify the perturbations without loss of generality. To illustrate the procedure, 
we show how to simplify the ε-order terms, that is, consider n = 1. We only consider the upper 
system, and the same process can be applied to the lower system. Using (47) and substituting it 
into system (46) and taking the ε-order terms, we obtain

ẋ =d31 x + (−d11 + d41 + d51) y + [
d21 + a20(d11 + d51) − 2b02d31 + p201

]
x2

+ [
2a20d21 + a02d31 − b02(d41 + d51) + 1

2p111
]
x y

+ [
a02(−d11 + 2d41 + d51) − 3b02d21 + p021)

]
y2,

ẏ = − d31 y − (2d11 + 3a20d31 − d41 + d51 − q201) x2

+ [
a20(d11 − d51) + d21 − 2b02d31 − 1

2q111
]
x y

− [
2a20d21 + a02d31 − b02(d41 + d51) − q021

]
y2.

(49)

Now, simplify setting

d11 = − a2
20q201 − a20q111 + q021

(a2 + b )
,

20 02
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d21 = − a20b02q201 − b02q111 − a20q021

2(a2
20 + b02)

,

d31 = 0,

d41 = − (4a2
20 + b02)q201 − 3a20q111 + 3q021

2(a2
20 + b02)

,

d51 = (2a2
20 + b02)q201 − a20q111 + q021

2(a2
20 + b02)

,

eliminates the term d31x in the ẋ equation and all the terms in the ẏ equation. Thus, we 
may assume that the perturbations are only needed for the first equations of both upper and 
lower systems. This implies that the perturbing terms 

∑12
k=1 εk(q20kx

2 + q11kxy + q02ky
2) and ∑12

k=1 εk(Q20kx
2 + Q11kxy + Q02ky

2) in (46) are redundant, and can be removed. So in the 
following we assume q20k = q11k = q02k = Q20k = Q11k = Q02k = 0.

Further, similarly introducing the scaling (x, y, t) → (
ε2y, ε3x, t

ε

)
into system (46), we fi-

nally obtain the following system up to ε12-order terms,

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− y − y2 − 2 ε a20 xy + ε2b02 x2 +
12∑

k=1

εkδk x,

x + εa20y
2 + ε2(−2b02xy + p201y

2) + ε3(a02x
2 + p111xy + p202y

2)

+
12∑

k=1

εkδky +
12∑

k=4

εk(p02(k−3) x
2 + p11(k−2) xy + p20(k−1) y

2),

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

for y > 0,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− y + y2 − 2 εA20 xy + ε2B02 x2 +
12∑

k=1

εkδk x,

x + εA20y
2 + ε2(−2B02xy + P201y

2) + ε3(a02x
2 + P111xy + P202y

2)

+
12∑

k=1

εkδky +
12∑

k=4

εk(P02(k−3) x
2 + P11(k−2) xy + p20(k−1) y

2),

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

for y < 0.

(50)

To prove the existence of small-amplitude limit cycles around the origin, we compute the Lya-
punov constants Vjk for j = 1, 2, . . . , 8 and k = 1, 2, . . . , 12, where k indicates that the Lyapunov 
constants correspond to the εk terms. Then, based on Vjk we solve the polynomial equations to 
determine the number of limit cycles. We start from k = 1. For a fixed k, we choose appropriate 
parameter values such that as many as Lyapunov constants vanish. As a matter of fact, this solu-
tion procedure is similar to that in the Hopf bifurcation analysis near a Bogdanov-Takens critical 
point, but here we deal with a more degenerate (or generalized) Hopf bifurcation.

First, for k = 0, it is easy to use Proposition 3.2 (but note that it needs to exchange the variables 
x and y since now the switch line of system (50) is the y-axis) to show that the origin of system 
(50) is a center when ε = 0. Also note that V1k = 0 when δk = 0 for any k.
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Next, consider k = 1. We obtain that all Lyapunov constants vanish when δ1 = 0, i.e., Vj1 = 0, 
j = 1, 2, . . .. Moreover, through the computation of the Lyapunov constants up to ε12 order, we 
observe that the following parameters are not used and can be set zero. (Of course, if we continue 
to go to higher-order computations, these parameters should not be set zero.)

p20k = 0, k = 3,4, . . . ,11, p02k = 0, k = 5,6, . . . ,9,

p11k = 0, k = 8,9,10, P119 = P1110 = 0.
(51)

Now, for k = 2, V12 = 0 with δ2 = 0. Then, V22 = 4
3 (p201 − P201). Setting

P201 = p201

yields Vj2 = 0 for all j . So, for k = 2, we can obtain 1 small-amplitude limit by perturbing δ2
with V22 �= 0.

For k = 3, again we obtain

P202 = p202

by solving V23 = 0, leading to Vj3 = 0 for all j , which implies that for k = 3, again 1 small-
amplitude limit can be obtained by perturbing δ3 with V23 �= 0.

For k = 4, solving V24 = 0 we have

P203 = 1

2
(p021 − P021),

and letting V34 = 0 yields

P021 = p021 + 2(B02 + b02)p201 − (A20P111 + a20p111).

Then, we obtain

V44 = − 16

15
p201(A

2
20 − a2

20).

Setting V44 = 0 has three choices. Choosing p201 = 0 will result in less number of limit cycles. 
Hence, we choose

A20 = a20,

under which Vj4 = 0 for all j , which indicates that for k = 4 we can obtain 3 small-amplitude 
limit cycles if we choose V44 �= 0 and perturb P021, P203 and δ4.

For k = 5, we similarly obtain

P204 = 1

2
(p022 − P022)

by solving V25 = 0, and
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P022 = p022 − (P111 + p111)p201 + 2(B02 + b02)p202 − a20(P112 + p112)

by solving V35 = 0. Then V45 becomes V45 = − 8
45p201(P111 + p111). For the same reason that 

setting p201 = 0 gives less number of limit cycles, we choose

P111 = −p111,

under which Vj5 = 0 for all j . This implies that 3 small-amplitude limit cycles can be obtained 
for k = 4 if choosing V44 �= 0 and perturbing P022, P204 and δ5.

For k = 6, similarly by solving V26 = V36 = 0 we obtain

P205 = 1

2
(p023 − P023),

P023 = p023 − [
2B02(B02 + b02) + (P112 + p112)

]
p201 − a20(P113 + p113).

Then, we solve V46 = 0 for p111 to obtain

p111 = − p201

9a20(B02 + b02)

{
2(P112 + p112) + 3(B02 + b02)

[
3(B02 − b02) − 4a2

20

]}
,

under the assumption (combined with the above assumption p201 �= 0):

a20(B
2
02 − b2

02)p201 �= 0, (52)

in which the condition B02 − b02 �= 0 will be needed later. Then we have

V56 = 5πp201

96

[
P112 + p112 + 12(B02 + b02)a

2
20

]
,

which yields

P112 = −p112 − 12a2
20(B02 + b02)

by setting V56 = 0. With the above solutions, Vj6 = 0 for all j . Therefore, for k = 6, we can 
obtain 4 small-amplitude limit cycles for choosing V56 �= 0 and perturbing p111, P023, P025 and 
δ6.

For k = 7, under the condition in (52), we solve V27 = 0 for P206, V37 = 0 for P024, V47 = 0
for p112, and V57 = 0 for P113 to obtain

P206 = 1

2
(p024 − P024),

P024 = p024 − p201(P113 + p113) − a20(P114 + p114)

+ 2(B02 + b02)
[
(6a2

20 − B02)p202 + 2a20p
2
201 + 6a2

20(a02 − a20B02)
]

− 1

a20
(B2

02 − b2
02)p

2
201,

p112 = − 1

3a2

[
3a20(B02 − b02 − 4a2

20)p202 − 2(B02 − b02 − 2a2
20)p2

201

20
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+ 12a3
20(3B02a20 − 2a3

20 − a02)
]− 2

9a20(B02 + b02)
(P113 + p113)p201,

P113 = −p113 − 3

5a20
(B02 + b02)(B02 − b02 + 10a2

20)p201,

under which Vj7 = 0 for all j . This indicates that for k = 7, we can also get 4 small-amplitude 
limit cycles for choosing V57 �= 0 and perturbing p112, P024, P026 and δ7.

For k = 8, with the condition in (52), we similarly solve V28 = 0 for P207, V38 = 0 for P025, 
V48 = 0 for p113, and V58 = 0 for P114 to obtain

P207 = −1

2
P025,

P025 = −p201(P114 + p114) − a20(P115 + p115) + 1

5a2
20

(B02 + b02)
{
4(B02 − b02)p

3
201

+ a20
[
10a3

20(16a2
20 + 9b02) + B02a20(7B02 + 3b02 − 120a2

20)

+ a02
(
50a2

20 + 3(B02 − b02)
)]

p201 + 60a4
20p021 + 7a20(10a2

20 − B02 + b02)p201p202
}
,

p113 = − 2

9a20(B02 + b02)
(P114 + p114)p201

+ 1

90a3
20

{
360a4

20p021 + 12a20
[
11(B02 − b02) − 10a2

20

]
p201p202 − 48(B02 − b02)p

3
201

+ a20
[
360a5

20 − 12(32B02 − 17b02)a
3
20 + 18B02a20(2B02 + 3b02)

− 300a02a
2
20 + 93(B02 − b02)a02

]
p201

}
,

P114 = −p114 + 3

25a2
20

(B02 + b02)
[
10a3

20(38a3
20 + 2a02 − 5p202)

+ 25(B2
02 − 4B02b02 + b2

02)a
2
20 − (B02 − b02)(250a4

20 + 25a02a20 + 5a20p202 − 4p2
201)

]
.

Then, solving V68 = 0 yields

a02 = a20

B02 − b02

[
(B02 − b02)

2 − 2(B02 − b02)(a
2
20 + b02) − 2b2

02

]
,

under which Vj8 = 0 for all j . Thus, for k = 8, we can obtain 5 small-amplitude limit cycles for 
choosing V58 �= 0 and perturbing P114, p113, P025, P027 and δ8.

For k = 9, we can similarly obtain 5 small-amplitude limit cycles by solving V29 = 0 (with 
P208), V39 = 0 (with P026), V49 = 0 (with p114), and V59 = 0 (with P115), yielding the following 
solutions (with δ9 = 0):

P208 = −1

2
P026,

P026 = −p201(P115 + p115) − a20(P116 + p116) + 2(B02 + b02)

5a20
(25a2

20 − B02 + b02)p
2
202

+ 48(B2
02 − b2

02)

25a2 p2
201p202 + 12(B02 + b02)a

2
20p022
20

361



T. Chen, L. Huang and P. Yu Journal of Differential Equations 303 (2021) 326–368
+ (B02 + b02)

5a20

[
3(B02 − b02) + 50a2

20

]
p021p201

+ B02 + b02

5(B02 − b02)

[
10(B02 − b02)

3 + (B02 − b02)
2(32a2

20 + 11b02)

− 2(B02 − b02)(72a4
20 + 53a2

20b02 − 2b2
02) − 76a2

20b
2
02

]
p202 − 16(B2

02 − b2
02)

25a3
20

p4
201

+ (B02 + b02)

75a20(B02 − b02)

[
235(B02 − b02)

3 − (B02 − b02)
2(1118a2

20 − 253b02)

+ 4(B02 − b02)(705a4
20 + 70a2

20b02 − 2b2
02) + 580a2

20b
2
02

]
p2

201

+ 12a3
20(B02 + b02)

5(B02 − b02)

[
2(B02 − b02)

2(a2
20 − 4b02) + (B02 − b02)(34a4

20

+ 67a2
20b02 + 13b2

02) + 2b2
02(5a2

20 + 6b02)
]

− 48

5(B02 − b02)2 a3
20(B02 + b02)B

3
02b02,

p114 = 4a20p022 + 4(B02 − b02)

5a2
20

p2
202 + 1

30a2
20

[
31(B02 − b02) − 100a2

20

]
p201p021

− 128(B02 − b02)

75a3
20

p2
201p202 + 1

30a20(B02 − b02)

[
43(B02 − b02)

3

− 2(B02 − b02)
2(73a2

20 + 10b02) + 4(B02 − b02)(12a4
20 + 43a2

20b02 − 8b2
02)

+ 232a2
20b

2
02

]
p202 − 100

450a20(B02 + b02)
(P115 + p115)p201

+ 32(B02 − b02)

75a4
20

p4
201

− 1

225a2
20(B02 − b02)

[
128(B02 − b02)

3 + 5(B02 − b02)
2(208a2

20 − 155b02)

− 4(B02 − b02)(240a4
20 − 440a2

20b02 + 133b2
02) + 560a2

20b
2
02

]
p2

201

− 2a2
20

15(B02 − b02)2

[
88(B02 − b02)

4 − 4(B02 − b02)
3(111a2

20 − 26b02)

+ (B02 − b02)
2(180a4

20 − 570a2
20b02 + 147b2

02)

− 4(B02 − b02)b
2
02(21a2

20 − 71b02) + 124b4
02

]
,

P115 = −p115 + 3(B02 + b02)

5a20
(4a2

20 − 5(B02 − b02))p021 + 24(B2
02 − b2

02)

25a2
20

p201p202

− 48(B2
02 − b2

02)

125a3
20

p3
201 − (B02 + b02)

50a20(B02 − b02)

[
139(B02 − b02)

3

− 2(B02 − b02)
2(48a2 − 271b02) − 4(B02 − b02)(297a4 + 163a2 b02 − 68b2 )
20 20 20 02
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− 112a2
20b

2
02

]
p201 − 12

(B02 − b02)2 p201
a3

20(B02 + b02)
3(2B02 − b02)(B02 − 2b02).

Then, solving V69 = 0 for p021 we obtain

p021 = − 2

45(B02 − b02)

[
26(B02 − b02)

2 − (B02 − b02)(44a2
20 − 81b02) + 36b2

02

]
p201

− 4

(B02 − b02)3 p201
(b02 + B02)

2a4
20(2B02 − b02)(B02 − 2b02),

under which Vj9 = 0 for all j .
For k = 10, we obtain 6 small-amplitude limit cycles. We solve V210 = 0 to obtain P209 =

− 1
2P027, and V310 = 0 for P027, V410 = 0 for p115, V510 = 0 for P116, and V610 = 0 for p022. 

These lengthy parameter solutions are not listed for brevity. Then V710 and V810 are given by

V710 = 245π(B02 + b02)

9216
p201 G7810, V810 = − 64(B02 + b02)

243
p201 G7810, (53)

where

G7810 = 16(B02 − b02)
[
a4

20 + 5B02b02

2(B02 − b02)
a2

20 + 5

16
(B02 + b02)

2
]
. (54)

Thus, with the condition in (52), V710 �= 0 if G7810 �= 0, leading to 6 small-amplitude limit cycles. 
To get possible more limit cycles from higher ε order Lyapunov constants, we set G7810 = 0
which yields Vj10 = 0 for all j .

To solve G7810 = 0, we note that the term in the square bracket is a quadratic polynomial in 
a2

20. To have positive solutions for a2
20, it needs B02b02(B02 − b02) < 0 and its discriminate must 

be non-negative, for which we have

a2
20 = −5B02b02

4(B02 − b02)

[
1 ±

√
1 − (B2

02−b2
02)

2

5B2
02b

2
02

]
,

showing that a2
20 can have one or two positive solutions provided that

B02b02

B02 − b02
< 0, 1 − (B2

02 − b2
02)

2

5B2
02b

2
02

� 0 =⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 < B02 < b02,

3 + √
5

2
b02 � B02 < b02 < 0,

0 <
−3 + √

5

2
b02 � B02 � −3 − √

5

2
b02.

(55)
For k = 11, we solve V211 = 0 to obtain P2010 = − 1

2P028. Then, using Vj11, j = 3, 4, 5, 6 to 
solve for P028, p116, P117 and p023, respectively. Again we do not list these lengthy parameter 
solutions here. With these solutions, we obtain

V711 = π(B02 + b02)

2 G7811, V811 = − 64(B02 + b02)

2 G7811, (56)

82944a20(B02 − b02) 535815a20(B02 − b02)
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where

G7811 = 2205G7810 a20(B02 − b02)
2p202 − 2(B02 − b02)

2 G1 p2
201 + 5040a6

20 G2,

G1 = −31604(B02 − b02)a
4
20 + 8(683B2

02a
2
20 − 12112B02b02 + 683b2

02)a
2
20

+ (B02 − b02)(3253B2
02 + 7282B02b02 + 3253b2

02),

G2 = −36(B02 − b02)
2a4

20 + 42(B02 − b02)(B
2
02 − 4B02b02 + b2

02) a2
20

35(B4
02 + 2B3

02b02 − 10B2
02b

2
02 + 2B02b

3
02 + b4

02).

(57)

Thus, for k = 11, we also obtain 6 small-amplitude limit cycles if G7811 �= 0.
Finally, we continue to consider k = 12, for which we need G7810 = G7811 = 0 so that 

Vj10 = Vj11 = 0 for all j . To achieve this, we may use a2
20 to solve G7810 = 0, and p2

201 to solve 
G7811 = 0 provided that G1G2 > 0. Before solving there two equations, we consider the Lya-
punov constants Vj12, j = 2, 3, . . . , 8. Similarly, we solve V212 = 0 to obtain P2011 = − 1

2P029. 
Then we use P029 to solve for V312 = 0, p117 for V412 = 0, P118 for V512 = 0, p024 for V612 = 0, 
and p202 for V712 = 0, respectively. Then, we obtain

V812 = − (B02 + b02)p201

1451520(B02 − b02)

{− 231525π(B02 − b02)G7810 p201 + 16384
[
108(B02 − b02)

5

+ (B02 − b02)
4(40a2

20 + 459b02) + (B02 − b02)
3(430a2

20b02 + 567b2
02)

+ 2(B02 − b02)
2(280a6

20 + 700a4
20b02 + 755a2

20b
2
02 + 108b3

02)

+ 4(B02 − b02)(350a4
20b

2
02 + 540a2

20b
3
02 + 27b4

02) + 1080a2
20b

4
02

]}
.

(58)

Summarizing the above results, we can conclude that 7 small-amplitude limit cycles can be 
obtained from the ε12-order terms as long as we can find solutions such that G7810 = G7811 = 0
but V812 �= 0. There exist an infinite number of solutions, one of which is given below:

b02 = − 1

20
,

B02 = − 1

10
=⇒

⎧⎪⎪⎨⎪⎪⎩
a20 = 1

4

√
2 − 1

5

√
55 = 0.17971510 · · · ,

p201 =
√

42(10 − √
55)

48

√
286065628−36326077

√
55

3869989561 = 0.02289181 · · · ,

under which G7810 = G7811 = 0, yielding

Vj10 = Vj11 = 0 for all j,

V812 = − 9(42 − 5
√

55)

866877661664000000

√
812697807810(16859771408 − 2270370899

√
55)

= −0.21716684 · · · × 10−6 �= 0.

The other parameter values are computed based on the obtained formulas. Denote these parame-
ter values as a critical point C. Moreover, a direct computation shows that
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Table 5.1
Bifurcation of limit cycles in system (2) under the center condition III.

εk-order Lyapunov Constants 1 2 3 4 5 6 7 8 9 10 11 12

Number of Limit Cycles 0 1 1 3 3 4 4 5 5 6 6 7

det

[
∂(V212,V312,V412,V512,V612,V712)

∂(P2011,P029,p117,P118,p024,p202)

]
C

= π(−563381 + 8452
√

55)

158544691200000000
√

2 − 55
5

[
35(16859771408 − 2270370899

√
55)

23219937366

] 3
2

= − 0.83664488 · · · × 10−12 �= 0,

which implies that 6 small-amplitude limit cycles can be obtained by perturbing the parameters, 
in backward, p202, p024, P118, p117, P029 and P2011. Finally, perturbing δ12 to get one more 
small-amplitude limit cycle, giving a total 7 small-amplitude limit cycles.

Note that the parameter values of b02 and B02 can be easily adjusted to change the values of 
V812 and the above determinant.

This completes the proof for Theorem 1.2. �
Remark 5.1.

(i) It is seen from the above proof for Theorem 1.2 that the number of small-amplitude limit 
cycles bifurcating in the quadratic system (2) under the center condition III, corresponding 
to the εk-order Lyapunov constants, are obtained as listed in Table 5.1.
A natural question arises: Is 7 the maximal number of limit cycles which can be obtained for 
this case? Moreover, using other center conditions I, II, IV, V and VI, can more limit cycles 
be obtained? These questions are left for future study.

(ii) It should be noted from the above proof for Theorem 1.2 that for each set of εk-order Lya-
punov constants Vjk , 2 � k � 11, we verify Vjk = 0 for an enough large number j and 
then assume that Vjk = 0 for all j � 1. The proof for Theorem 1.2 is different from that for 
Theorem 1.1. In proving Theorem 1.1, we first obtain all possible necessary conditions by 
eliminating the εk-order terms in the Lyapunov constants as many as possible, and then use 
other approaches to prove the sufficiency. Thus, when we derive the necessary conditions, 
there is no need to worry about if they are sufficient, that is, if the Lyapunov constants are 
truly vanish up to infinite order, which certainly cannot be verified by computation. To prove 
the existence of limit cycles using the εk+1-order Lyapunov constants, theoretically we need 
to show that all the Lyapunov constants vanish up to εk-order, namely, the origin of the sys-
tem is a center up to εk order. But this is extremely difficult or impossible to give such a 
proof especially if the order is high.
In our proof for Theorem 1.2, based on system (46) which is a perturbed quadratic system 
of (37) (noticing that (37) is the original quadratic system (2) under the center condition III), 
we use the ε12-order terms to prove the existence of 7 small-amplitude limit cycles. That is, 
theoretically we assume that all the Lyapunov coefficients vanish up to ε11 order, and thus 
the ideal normal form for the analysis of limit cycle bifurcation can be written as
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d(r) = ε12 r
[
V112 +V212 r +V312 r2 +· · ·+V712 r6 +V812 r7 +O(r8)

]+ ε13 h(r, ε), (59)

with V112 = eεπδ12 − e−επδ12 ≈ 2επδ12. All the coefficients Vj12, j = 2, 3, . . . , 8 and the 
tailed terms are functions of p202, p024, P118, p117, P029 and P201. According to Theorem 
2.4 in [10] (p. 108), the tailed term ε13 h(r, ε) can be ignored for ε � r .
However, without assuming that all the Lyapunov coefficients vanish up to ε11 order, it is 
better to write the d(r) as follows:

d(r) = r
[
V1(ε) + V2(ε) r + V3(ε) r2 + · · · + V7(ε) r6 + V8(ε) r7 + O(r8)

]
, (60)

where Vk are named by the kth-order Lyapunov constant and Vk(ε) = ∑∞
j=12 Vkj ε

j . For any 
given ε, when perturbing the parameters from the critical pint C, it is easy to obtain 7 zeros 
for r under the condition that r is small enough, which correspond to 7 small-amplitude 
bifurcating limit cycles. A concrete example has been constructed to verify this conclusion.

6. Conclusion

In this paper, we have discussed the center problem and bifurcation of limit cycles for planar 
switching systems with a nilpotent equilibrium point. We have developed a perturbation ap-
proach so that the Poincaré-Lyapunov method can be used to compute the Lyapunov constants 
of switching nilpotent systems. Using this new method, we have obtained the center conditions 
for a class of quadratic switching systems with a nilpotent equilibrium point. Moreover, we have 
constructed a perturbed system with one of the center conditions to show the existence of seven 
small-amplitude limit cycles around the origin of the system. This is a new result on the lower 
bound of maximal number of limit cycles for such quadratic switching systems with a nilpo-
tent equilibrium point. Future works in this direction may focus on the following two unsolved 
problems in this paper: (i) Is 7 the maximal number of small-amplitude limit cycles which can 
bifurcate in system (2) under the center condition (III)? (ii) Using all center conditions (I)-(VI), 
what is the maximal number of limit cycles that the system (2) can have under appropriate per-
turbations?
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