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Abstract. In this paper, the conditions of center and isochronous center at the infinity for

a class of planar differential systems are studied. By a transformation, we first transform

the infinity (the equator) of the systems into the origin. Then sufficient and necessary

conditions for the infinity (the equator) of the systems being a center are obtained. A

Construction Theorem of periodic constants is presented, which plays an important role

in simplifying periodic constants. A complete classification of the sufficient and necessary

conditions is given for the infinity of the systems being an isochronous center. All the

computations for the quantities at infinity and periodic constants are performed using

computer algebraic system – Mathematics 4.2, and the technique employed in this paper

is different from others used in the literature.

Keywords. Planar system, infinity, center, isochronous center, focus value.

AMS (MOS) subject classification: 34C05.

1 Introduction

In the qualitative theory of planar differential systems, the problem to de-
termine the conditions of center and isochronous center has received good
attentions. In the case of the origin, many results have been obtained (see
[27, 23, 25, 12, 2, 14]). Computation of focal values (Lyapunov constants ) is
one approach to study center conditions. For computing focal values, conven-
tional methods include the method of Poincare return map and the method
of Lyapunov coefficients (see [2]). In [17, 5], the authors gave a new compu-
tational method, which combined the calculation of focal values and saddle
qualities into a unified calculation of singular point quantities.

For any center of a planar differential system, the largest neighborhood of
the center, which is entirely covered by periodic orbits, is called the periodic
annulus of the center. The function associated with the period of any periodic
orbits in the periodic annulus is called periodic function. If the periodic
function is a constant, the center is then said to be isochronous.
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The problem of characterizing isochronous centers of the origin has at-
tracted the attention of several authors (see [21, 6, 7, 8, 24]), and many results
have been published. Quadratic systems were classified by Loud [19] and cu-
bic systems with homogeneous nonlinearities by Pleshkan [22]. Kukles’ sys-
tems were classified in [9]. The cubic time-reversible systems were classified
in [20, 3]. A class of cubic complex polynomial systems were classified by Lin
and Li [13]. For some other results on isochronicity at the origin we refer the
reader to [4, 10, 26, 11] and references therein.

For the case of infinity, being difficult, there are very few results. As far as
center conditions at infinity are concerned, several special systems have been
studied: cubic system in [2, 14]; quintic system in [18]. But for the problem
concerning the conditions of the infinity being an isochronous center, no result
has been obtained except that given in [16]. In this paper, we study center
and isochronous center at infinity for a class of planar systems described by
analytic autonomous differential equations. We first transform the infinity
of the systems into the origin. Then we will study the center conditions and
isochronous center conditions at infinity by the methods for the origin.

Consider the following real planar autonomous differential system:





dx

dt
= −y + (x2 + y2)−n

n∑

k=1

Xk(x, y),

dy

dt
= x + (x2 + y2)−n

n∑

k=1

Yk(x, y),
(1.1)

where n is a positive integer, Xk(x, y) and Yk(x, y) are homogeneous poly-
nomials of degree k. System (1.1) can be transformed into the following
autonomous polynomial differential equations in phase plane by a time trans-
formation:





dx

dt
= −y(x2 + y2)n +

n∑

k=1

Xk(x, y) = X(x, y),

dy

dt
= x(x2 + y2)n +

n∑

k=1

Yk(x, y) = Y (x, y).
(1.2)

For the system (1.1) or (1.2), the equator Γ∞ on the Poincaré closed sphere
is a trajectory, having no real singular point. Γ∞ is the equator cycle or the
infinity (on Gauss sphere) of the system (1.1) or (1.2). The infinity of the
system (1.1) or (1.2) is a center or a focus.

By means of Bendixson transformation:

x =
ξ

ξ2 + η2
, y =

η

ξ2 + η2
, (1.3)
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system (1.1) can be transformed into the following polynomial system:




dξ

dτ
= −η +

n∑

k=1

(ξ2 + η2)n−k[(η2 − ξ2)Xk(ξ, η)− 2ξηYk(ξ, η)],

dη

dτ
= ξ −

n∑

k=1

(ξ2 + η2)n−k[(η2 − ξ2)Yk(ξ, η) + 2ξηYk(ξ, η)].
(1.4)

Then the infinity of system (1.1) corresponds to the origin of system (1.4).
The problem of center and isochronous center at infinity of system (1.1) are
now transformed into, respectively, the ones at the origin of system (1.4).

With the following transformations:

z = ξ + iη, w = ξ − iη, T = iτ, i =
√−1, (1.5)

system (1.4) can be rewritten as




dz

dT
= z + z2

n∑

k=1

(zw)n−kWk(z, w) = Z(z, w),

dw

dT
= −w − w2

n∑

k=0

(zw)n−kZk(z, w) = −W (z, w),
(1.6)

where {
Zk(ξ + iη, ξ − iη) = Yk(ξ, η)− iXk(ξ, η),

Wk(ξ + iη, ξ − iη) = Yk(ξ, η) + iXk(ξ, η).
(1.7)

Due to no time transformation in (1.3), we have the following lemma.

Lemma 1.1 The infinity of system (1.1) is a center (or an isochronous
center) if and only if the origin of system (1.4) is a center (or an isochronous
center).

System (1.2) can be transformed into system (1.4) by the transformations:

x =
ξ

ξ2 + η2
, y =

η

ξ2 + η2
, t1 = (x2 + y2)−nt. (1.8)

Definition 1.1[16] If the origin of system (1.4) is an isochronous center,
then we say that the infinity of system (1.2) is a pseudo-isochronous center.

For center and isochronous center at infinity of system (1.1), according to
the theory in [5, 15], we need only to study the complex center and complex
isochronous center of complex system (1.6) instead of considering the real
system (1.4).

In this paper, we study center and isochronous center at infinity for the
case n = 2 in system (1.1), i.e., consider the following differential system





dx

dt
= −y +

A10x + A01y + A20x
2 + A11xy + A02y

2

(x2 + y2)2
,

dy

dt
= x +

B10x + B01y + B20x
2 + B11xy + B02y

2

(x2 + y2)2
.

(1.9)
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By a time transformation, system (1.9) can be transformed to the follow-
ing system:





dx

dt
= −y(x2 + y2)2 + A10x + A01y + A20x

2 + A11xy + A02y
2,

dy

dt
= x(x2 + y2)2 + B10x + B01y + B20x

2 + B11xy + B02y
2.

(1.10)

The rest of the paper is organized as follows. In Section 2 we calculate
the singular point quantities of the infinity (the equator) of system (1.9). In
Section 3 we study the integrability conditions of system (1.9) in the neigh-
borhood of the equator. Sufficient and necessary conditions for the infinity to
be a center are given and the potential systems with an isochronous center
at infinity are presented. Finally in Section 4 we classify all the potential
isochronous centers. The construction Theorem of periodic constants is pre-
sented, which plays an important role in simplifying the periodic constants.
A complete classification of the sufficient and necessary conditions is given
for the class of systems having an isochronous center at the infinity.

2 Singular Point Quantity

In this section, we first introduce the method for computing the singular
point quantities of generalized planar polynomial differential systems (see [5]
for details).

Consider the planar polynomial differential system:




dx

dt
= −y +

∞∑

k=1

Xk(x, y),

dy

dt
= x +

∞∑

k=1

Xk(x, y),
(2.1)

where Xk(x, y), Yk(x, y) are k-th degree homogeneous polynomials of x, y.
The singular point O(0, 0) of system (2.1) is a focus or a center. Introduce
the following transformations:

z = x + iy, w = x− iy, T = iτ, i =
√−1, (2.2)

into system (2.1) yields




dz

dt
= z +

∞∑

k=2

Zk(z, w) = Z(z, w),

dw

dt
= −w −

∞∑

k=2

Wk(z, w) = W (z, w),
(2.3)

where z, w, T are complex variables and

Zk(z, w) =
∑

α+β=k

ααβzαwβ , Wk =
∑

α+β=k

bαβwαzβ . (2.4)
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Here, the two systems (2.1) and (2.3) are said to be concomitant.
If system (2.1) is a real planar differential system, then the coefficients of

system (2.3) satisfy the following conjugate conditions:

aαβ = bαβ , α ≥ 0, β ≥ 0, α + β ≥ 2. (2.5)

By the transformations:

z = reiθ, w = re−iθ, T = it, (2.6)

system (2.3) can be transformed into




dr

dt
=

ir

2

∞∑
m=1

∑

α+β=m+2

(aα,β−1 − bβ,α−1)ei(α−β)θrm,

dθ

dt
= 1 +

1
2

∞∑
m=1

∑

α+β=m+2

(aα,β−1 + bβ,α−1)ei(α−β)θrm.

(2.7)

For a complex constant h, |h| ¿ 1, we may write the solution of (2.7)
satisfying the initial-value condition r|θ=0 = h as

r = r̃(θ, h) = h +
∞∑

k=2

vk(θ)hk. (2.8)

Evidently, if system (2.1) is a real system, v2k+1(2π), k = 1, 2, · · · are the
k-th order focal value of the origin.

Lemma 2.1[1] For system (2.3), we can uniquely derive the following formal
series:

ϕ(z, w) = z +
∞∑

k+j=2

ck,jz
kwj , ψ(z, w) = w +

∞∑

k+j=2

dk,jw
kzj , (2.9)

where
ck+1,k = dk+1,k = 0, k = 1, 2, · · · , (2.10)

such that

dϕ

dT
= ϕ +

∞∑

j=1

pjϕ
j+1ψj ,

dψ

dT
= −ψ −

∞∑

j=1

qjψ
j+1ϕj . (2.11)

Let µ0 = 0, µk = pk − qk, k = 1, 2, · · ·. In [5], µk is defined as the k-th
order singular point quantity of the origin of system (2.3).

If µ0 = µ1 = · · · = µk−1 = 0 but µk 6= 0, then the origin of system (2.3)
is called k-th order weak critical singular point. In other words, k is called
the multiplicity of the origin of the system.

If µk = 0 for k = 1, 2, · · ·, then the origin of system (2.3) is called an
extended center (complex center).
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If system (2.1) is a real autonomous differential system with the concomi-
tant system (2.3), then for the origin, the k-th order focus quantity v2k+1 of
system (2.1) and the k-th order quantity of the singular point of system (2.3)
have the following relation [17]:

v2k+1 = iµk for k = 1, 2 · · · . (2.12)

Theorem 2.1 (Theorem 2.2 in [5]) For system (2.3), ∀α, β, α 6= β, and
m ≥ 1, we have

Cαβ =
1

β − α

α+β+2∑

k+j=3

[
(α + 1)ak,j−1 − (β + 1)bj,k−1

]
Cα−k+1,β−j+1 (2.13)

and

µm =
2m+2∑

k+j=3

(
ak,j−1 − bj,k−1

)
Cm−k+1,m−j+1, (2.14)

where akj = bkj = Ckj = 0, for k < 0 or j < 0.
Now we turn to the computation of singular point quantities at the infinity

of system (1.9). By means of transformations (1.3) and (1.5), system (1.9)
becomes the following quintic complex system:




dz

dT
= z

[
1 + b02z

3 + (2a20 − b11)z2w + b20zw2 + b01z
3w + b10z

2w2
]

4
= Z(z, w),

dw

dT
= −w

[
1 + a02w

3 + (2b20 − a11)w2z + a20z
2w + a01w

3z + a10w
2z2

]

4
= −W (z, w),

(2.15)
where

a01 =
A01 + B10 − (A10 −B01)i

2
,

a20 =
−A11 + B20 −B02 + (A02 −A20 −B11)i

4
,

a11 =
−A11 − 2B02 + (B11 + 2A20)i

2
,

a02 =
A11 −B02 + B20 + (A02 −A20 + B11)i

4
,

b01 = a01, b20 = a20, b11 = a11, b02 = a02,

and the infinity of system (1.9) is changed into the origin of system (2.15).
By (2.12), we will be able to reduce the problem of determining whether

the infinity of system (1.9) is a center or a weak focus to the calculation of
the singular point quantities µm at the origin of system (2.15). Since all Cαβ

and µm are polynomials with rational coefficients, the above formulas can be
easily implemented using a computer algebra system such as Mathematica
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or Maple. In order to compute the quantities at infinity and simplify them
quickly, as well as make use of the extended symmetric principle to obtain
the conditions of integrability of system (1.9), we need to obtain all the Lie-
invariants of (2.15). This can be achieved using the technique developed in
[17].

Theorem 2.2 For system (2.15), there exist 32 elementary Lie-invariants,
as listed in Table 1.

Table 1

a10 b10, a20a11 b20b11, a20b20 a11b11

a02b02 a01b01, a2
20a01 b2

20b01, a20b11a01 b20a11b01

b2
11a01 a2

11b01, b3
01a

2
02 a2

01b
2
02, a20b01a02 b20a01b02

b11b01a02 a11a01b02, a20a
2
01b02 b20b

2
01a02, b11a

2
01b02 a11b

2
01a02

a3
20a02 b3

20b02, a2
20b11a02 b2

20a11b02, a20b
2
11a02 b20a

2
11b02

b3
11a02 a3

11a02

Lemma 2.2 (Lemma 2.5 in [17]) For any positive integer m, the mth quan-
tity of the singular point at the origin of system (2.15) is a linear combination
having rational coefficients with respect to both of monomial Lie-invariant
of this order and their inverse symmetric forms, i.e., µm has the following
algebraic structure:

µm =
s(m)∑

k=1

γm,k (gm,k − g∗m,k), (2.16)

where s(m) is a positive integer number, γm,k’s are rational numbers, and
gm,k’s and g∗m,k’s are monomial Lie-invariants of order m, k = 1, 2, · · · , s(m).

By applying Theorems 2.1 and 2.2 to system (2.15), we compute the
singular point quantities at the origin using the computer algebra system
Mathematica, and simplify them using Lemma 2.2. We obtain the following
theorem.

Theorem 2.3 The first 6 singular point quantities at the origin of system
(2.15) are:




µ1 = 0, µ2 = b10 − a10, µ3 = b20b11 − a20a11, µ4 = 0,

µ5 =
1
6

[
(3a2

11 − b11a02 + 3a11b20)b01 − (3b2
11 − a11b02 + 3b11a20)a01

]
,

µ6 = a20b
2
11a02 − b20a

2
11b02,

(2.17)
in which we already let µl = 0 for l ≤ k, k = 2, 3, · · · , 6.

Theorem 2.4 If all the first 6 singular point quantities at the origin of
system (2.15) are zero, then there exist constants p, q, λ, s such that at least
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one of the following three conditions holds

(i) a10 = b10 = λ, a11 = b11 = 0; (2.18)

(ii)

{
a10 = b10 = λ, a20 = pb11, b20 = pa11, a02 = qa3

11,

b02 = qb3
11, |a11|+ |b11| 6= 0;

(2.19)

(iii)

{
a10 = b10 = λ, a20 = b20 = 0, a01 = s(b11a02 − 3a2

11),

b01 = s(a11b02 − 3b2
11), b3

11a02 − a3
11b02 6= 0, |a11|+ |b11| 6= 0.

(2.20)

Proof. Since µ2 = 0, there exists a constant λ such that a10 = b10 = λ. If
a11 = b11 = 0, then (2.18) holds. Now suppose a11b11 6= 0. When µ3 = 0,
there exists a constant p such that a20 = pb11, b20 = pa11. It follows that
µ6 = p(b3

11a02 − a3
11b02). Consider µ6 = 0. If b3

11a02 − a3
11b02 = 0 then (2.19)

holds; if b3
11a02−a3

11b02 6= 0, we have p = 0 and then by µ5 = 0, (2.20) holds.
If (2.19) holds, then system (2.15) becomes





dz

dT
= z

[
1 + b3

11qz
3 + (2p− 1)b11z

2w + a11pzw2 + b01z
3w + λz2w2

]
,

dw

dT
= −w

[
1 + a3

11qw
3 + (2p− 1)a11w

2z + b11pz2w + a01w
3z + λw2z2

]
,

(2.21)
where

|a11 + b11| 6= 0. (2.22)

Theorem 2.5 The first 11 singular point quantities at the origin of system
(2.21) are:





µ1 = µ2 = µ3 = µ4 = 0,

µ5 =
1
6
(b2

11a01 − a2
11b01)(a11b11q − 3p− 3),

µ6 = 0,

µ7 = − 1
12

(b2
11a01 − a2

11b01)[(b2
11a01 + a2

11b01)q − 24λ],

µ8 =
1
3
a11b11(b2

11a01 − a2
11b01)(p + 2)(4p2 − 5p + 3),

µ9 =
2
3
(b2

11a01 − a2
11b01)(a01b01 + 3λ2),

µ10 =
1
15

a11b11(b2
11a01 − a2

11b01)(55p2 − 463p + 126)λ,

µ11 =
21
2

(b2
11a01 − a2

11b01)λ3,

(2.23)

where we already let µl = 0 for l ≤ k, k = 2, 3, · · · , 11.
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If (2.20) is satisfied, then system (2.15) becomes




dz

dT
= z

[
1 + b02z

3 − b11z
2w + s(a11b02 − 3b2

11)z
3w + λz2w2

]
,

dw

dT
= −w

[
1 + a02w

3 − a11w
2z + s(b11a02 − 3a2

11)w
3z + λw2z2

]
,

(2.24)
where

b11a02 − a3
11b02 6= 0, |a11|+ |b11| 6= 0. (2.25)

Theorem 2.6 The first 12 singular point quantities at the origin of system
(2.24) are





µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = 0,

µ7 =
1
12

(b3
11a02 − a3

11b02)(24r + 9a11b11s− a02b02s)s,

µ8 = − 1
36

(b3
11a02 − a3

11b02)(48r − 81a11b11s + a02b02s),

µ9 = − 1
8
(b3

11a02 − a3
11b02)

[
5a11b11 − 240a2

11b
2
11s

3 − a02b02

+16(b3
11a02 + a3

11b02)s3
]
,

µ10 = − 1
5
(b3

11a02 − a3
11b02)

[
160a2

11b
2
11 − 13(b3

11a02 + a3
11b02

]
s2,

µ11 = − 4139531
49140

(b3
11a02 − a3

11b02)a2
11b

2
11s,

µ12 =
35
8

(b3
11a02 − a3

11b02)a2
11b

2
11,

(2.26)

in which we again already let µl = 0 for l ≤ k, k = 2, 3, · · · , 12.

3 Conditions of Center

From the discussion given in section 1, the conditions of center and isochronous
center at the origin of system (2.15) are, respectively, the conditions of cen-
ter and isochronous center (or pseudo-isochronous center) at the infinity of
system (1.9) (or system (1.10)). In what follows, we give a complete classifi-
cation of the sufficient and necessary conditions of the origin of system (2.15)
being a center or an isochronous center. Correspondingly, the conditions of
center and isochronous center (or pseudo-isochronous center) at the infinity
of system (1.9) (or system (1.10)) are derived.

If (2.18) holds, then system (2.15) can be written as




dz

dT
= z

(
1 + b02z

3 + 2a02z
2w + b20zw2 + b01z

3w + λz2w2
)
,

dw

dT
= −w

(
1 + a02w

3 + 2b02w
2z + a20z

2w + a01w
3z + λw2z2

)
.

(3.1)
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Theorem 3.1 System (3.1) has the first integral

z3w3

2 + 2b02z3 + 6a20z2w + 6b20w2z + 2a02w3 + (zw)(3b01z2 + 6λzw + 3a01w2)
= const.

(3.2)
From Theorem 2.5 we obtain the following result.

Theorem 3.2 For system (2.21), the first 11 singular point quantities at
the origin are zero if and only if one of the following three conditions holds

(i) b2
11a01 − a2

11b01 = 0; (3.3)

(ii) λ = q = p + 1 = b11 = a01 = 0, a11b01 6= 0; (3.4)

(ii)∗ λ = q = p + 1 = a11 = b01 = 0, b11a01 6= 0. (3.5)

By the theory of Lie-invariant given in [17] or Lemma 1 in [26], we have
the following theorem.

Theorem 3.3 If (3.3) holds, then the origin is a center of system (2.21),
and if (3.4) or (3.5) holds, then system (2.21) has the integrating factor:

M1 = (zw)−7/2(2 + 3b01z
3w + 3a01w

3z)−1/6. (3.6)

Theorems 2.5, 3.2 and 3.3 imply the following assertion.

Theorem 3.4 For system (2.21), there exists a regular integral in the
neighborhood of the origin if and only if the first 11 singular point quantities
at the origin are zero or one of the three conditions of Theorem 3.2 holds.
Relevantly, one of the three conditions of Theorem 3.2 is the center condition
of the origin.

By Theorem 2.6, we have the following theorem.

Theorem 3.5 For system (2.24), the first 12 singular point quantities at
the origin are zero if and only if one of the following two conditions holds

(i) λ = s = b11 = a02 = 0, a11b02 6= 0; (3.7)

(i)∗ λ = s = a11 = b02 = 0, b11a02 6= 0. (3.8)

Then the following theorem can be easily confirmed.

Theorem 3.6 If (3.7) or (3.8) holds, then system (2.24) has the integrating
factor

M2 = (zw)−3(1 + a02w
3)−1/3(1 + b02z

3)−1/3. (3.9)

From Theorems 2.6, 3.5 and 3.6, we have the following result.

Theorem 3.7 For system (2.24), there exists a regular integral in the neigh-
borhood of the origin if and only if the first 12 singular point quantities at
the origin are zero or one of the two conditions in Theorem 3.5 holds. Rel-
evantly, one of the two conditions of Theorem 3.5 is the center condition of
the origin.
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4 Conditions of Isochronous Center

In this section, we study the conditions of isochronous center at the infinity
of the system. We first introduce the notions and definitions that will be
used henceforth.

Denoting τ0 = 0, τk = pk + qk, k = 1, 2, · · ·.
Definition 4.1 For any positive integer k, τk is called the k-th order periodic
constant at the origin of complex systems (2.1) and (2.3).

Definition 4.2 If all the singular point quantities and periodic constants
at the origin of system (2.3) are zero, then the origin of complex system (2.3)
is called a complex isochronous center.

It is clear that the isochronous center in real field is a particular case of
the complex isochronous center.

On the other hand, one can prove (see Theorem 2.3 in [17]) that pk

and qk (k = 1, 2, · · ·) are Lie-invariants of order k. Therefore, we have the
following result.

Theorem 4.1 (Construction Theorem of Periodic Constant) For any
positive integer k, the k-th order periodic constant τk of system (2.3) is a
Lie-invariant of order k .

Theorem 4.2 If all the elementary Lie-invariants of system (2.3) are zero,
then the origin of system (2.15) is a complex isochronous center.

The Construction Theorem of Periodic Constant shows that the essential
property of periodic constants plays an important role in simplifying the
period constants henceforth.

By Theorems 2.2 and 4.2, it is readily to obtain the following theorem.

Theorem 4.3 If a planar polynomial differential system can be brought to
one of the following forms:





dz

dT
= z

(
1 + b20zw2

)
,

dw

dT
= −w

[
1 + a02w

3 + (2b20 − a11)w2z + a01w
3z

] (4.1)

and 



dz

dT
= z

[
1 + b02z

3 + (2a20 − b11)z2w + b01z
3w

]
,

dw

dT
= −w

(
1 + a20z

2w
)
,

(4.2)

then the origin of the system is a complex isochronous center.
Now, we consider the isochronous centers of system (3.1), (2.21) and

(2.24), respectively.

4.1 Isochronicity of system (3.1)

In [15], a new recursive algorithm of periodic constants is given. By applying
the recursive algorithm to system (3.1), we compute the periodic constants
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using the computer algebra system Mathematica, and simplify them using
Theorem 4.1, leading to the following result.

Theorem 4.4 The first seven periodic constants at the origin of system
(3.1) are given as follows:





τ1 = 0, τ2 = 2λ, τ3 = 0, τ4 = a01b01,

τ5 = − 4
3

[
3(a2

20a01 + b2
20b01) + 2(a20a02b01 + b20b02a01)

]
,

τ6 = 0, τ7 = − 10
3

(
a20a

2
01b02 + b20b

2
01a02

)
,

(4.3)

where we already let τ1 = · · · = τk−1 = 0, k = 2, 3, · · · , 7.
From Theorem 4.4, we obtain the following theorem.

Theorem 4.5 For system (3.1), the first seven periodic constants are zero
if and only if one of the following five conditions holds:

(i) λ = a01 = b01 = 0; (4.4)

(ii) λ = a01 = b20 = a20 = 0, b01 6= 0; (4.5)

(ii)∗ λ = b01 = a20 = b20 = 0, a01 6= 0; (4.6)

(iii) λ = b01 = a20 = b02 = 0, a01b20 6= 0; (4.7)

(iii)∗ λ = a01 = b20 = a02 = 0, b01a20 6= 0. (4.8)

If (4.4) holds, system (3.1) becomes




dz

dT
= z

(
1 + b02z

3 + 2a20z
2w + b20w

2z
)
,

dw

dT
= −w

(
1 + a20w

3 + 2b20w
2z + a20z

2w
)
.

(4.9)

Theorem 4.6 The origin of system (4.9) is an isochronous center.

Proof. By means of the transformations:

z = reiθ, w = re−iθ, t = −iT, (4.10)

system (4.9) can be written as




dr

dt
=

ir4

2

[
(a20e

iθ − b20e
−iθ) + (b02e

3iθ − a02e
−3iθ)

]
,

dθ

dt
= 1 + g(θ)r3,

(4.11)

where
g(θ) =

1
2

[
3(a20e

iθ + b20e
−iθ) + (b02e

3iθ + a02e
−3iθ

]
. (4.12)
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The first integral of system (4.11) is

r6

1 + 2g(θ)r3
= const. (4.13)

From (4.13), the solution of system (4.11) satisfying the initial-value condi-
tion r|θ=0 = h is

r3 =
g(θ)h6 + h3

√
1 + 2g(0)h3 + g2(θ)h6

1 + 2g(0)h3
. (4.14)

Substituting (4.14) into equation (4.11), we obtain

dt

dθ
= 1− g(θ)h3

√
1 + 2g(0)h3 + g2(θ)h6

. (4.15)

For g(θ) satisfying g(θ + π) = −g(θ), we have
∫ 2π

0

dt

dθ
dθ ≡ 2π. (4.16)

This completes the proof.
If (4.5) holds, system (3.1) can be brought into





dz

dT
= z

(
1 + b02z

3 + b01z
3w

)
,

dw

dT
= −w

(
1 + a02w

3
)
.

(4.17)

Theorem 4.7 The origin of system (4.17) is an isochronous center.

Proof. The analytic change of coordinates given by

u =
z(1 + a02w

3)1/3

(1 + b02z3 + a02w3 + 3
2b01z3w)1/3

, v =
w

(1 + a02w3)1/3
, (4.18)

brings system (4.17) into the form:

du

dT
= u,

dv

dT
= −v. (4.19)

Therefore, the origin is a complex isochronous center.
Similar to the proof for Theorem 4.6, we can show that if (4.6) holds,

then the origin of system (3.1) is a complex isochronous center.
Taking into account Theorem 4.3 we have the following result.

Theorem 4.8 For system (3.1), if (4.7) or (4.8) holds, then the origin of
the system is an isochronous center.

From Theorems 4.4-4.8, we have the following theorem.

Theorem 4.9 For system (3.1), the origin is an isochronous center if and
only if the first seven period constants are zero or one of the five conditions
in Theorem 4.5 holds.
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4.2 Isochronicity of system (2.21)

For |a11|+|b11| 6= 0, if (3.3) in Theorem 3.2 holds, then there exists a constant
d such that a01 = da2

11, b01 = db2
11, and it brings system (2.21) into the form:





dz

dT
= z

[
1 + b3

11qz
3 + (2p− 1)b11z

2w + a11pzw2 + db2
11z

3w + λz2w2
]
,

dw

dT
= −w

[
1 + a3

11qw
3 + (2p− 1)a11w

2z + b11pz2w + da2
11w

3z + λw2z2
]
.

(4.20)

Theorem 4.10 For system (4.20), the first nine periodic constants of the
origin are given as follows:





τ1 = 0, τ2 = 2λ, τ3 = 2(1− 3p)a2
11b

2
11,

τ4 = a2
11b

2
11d

2, τ5 = 0, τ6 =
1
2
a3
11b

3
11(a11b11q − 4)q,

τ7 = 0, τ8 = 0, τ9 =
640
21

a4
11b

2
11q,

(4.21)

where we already let τ1 = · · · = τk−1 = 0, k = 2, 3, · · · , 9.

Theorem 4.11 For system (4.20), the first nine periodic constants are zero
if and only if one of the following three conditions holds:

(i) λ = 1− 3p = d = q = 0, a11b11 6= 0; (4.22)

(ii) λ = b11 = 0, a11 6= 0; (4.23)

(ii)∗ λ = a11 = 0, b11 6= 0. (4.24)

If (4.22) holds, system (4.20) becomes




dz

dT
= z

(
1− 1

3
b11z

2w +
1
3
a11zw2

)
,

dw

dT
= −w

(
1− 1

3
a11w

2z +
1
3
b11wz2

)
.

(4.25)

Theorem 4.12 The origin of system (4.25) is an isochronous center.

Proof. The transformation (4.10) brings system (4.25) into the apparently
trivial form:

dθ

dt
= 1. (4.26)

If (4.23) or (4.24) holds, then system (4.20) becomes the particular case
of system (4.1) or (4.2) in Theorem 4.3, respectively. Therefore, we have the
following result.

Theorem 4.13 For system (4.20), if (4.23) or (4.24) holds, then the origin
of the system is an isochronous center.

From Theorems 4.10–4.13, we obtain the following theorem.
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Theorem 4.14 For system (4.20), the origin is a complex isochronous center
if and only if the first nine periodic constants are zero or one of the three
conditions in Theorem 4.11 holds.

If (3.4) in Theorem 3.2 holds, then system (2.21) becomes




dz

dT
= z

(
1− a11zw2 + b01z

3w
)
,

dw

dT
= −w

(
1− 3a11w

2z
)
.

(4.27)

Theorem 4.15 The origin of system (4.27) is an isochronous center.

Proof. Noting that the origin of system (4.27) is a center, there exists an
analytical integral factor in the neighborhood of the origin satisfying

dM3

dt

∣∣∣∣
(4.27)

= −zw
(
7a11w + 4b01z

2
)

M3, M3(0, 0) = 1. (4.28)

The following transformations

u = z
(
1 +

3
2
b01z

3w
)−11/21

M
−1/7
3 , v = w

(
1 +

3
2
b01z

3w
)4/7

M
3/7
3 , (4.29)

bring system (4.28) into the form:

du

dT
= u,

dv

dT
= −v. (4.30)

This completes the proof.
By the same technique, we have the following result.

Theorem 4.16 For system (2.21), if (3.5) in Theorem 3.2 holds, then the
origin is an isochronous center.

4.3 Isochronicity of system (2.24)

If (3.7) in Theorem3.5 holds, system (2.24) becomes




dz

dT
= z

(
1 + b02z

3
)
,

dw

dT
= −w

(
1− a11w

2z
)
.

(4.31)

Theorem 4.17 The origin of system (4.31) is an isochronous center.

Proof. Noting that the origin of system (4.27) is a center, there exists an
analytical integral factor in the neighborhood of the origin satisfying

dM4

dT

∣∣∣∣
(4.27)

= −4z
(
a11w

3 + b02z
2
)

M4, M4(0, 0) = 1. (4.32)
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Under the following transformations:

u = z
(
1 + b02z

3
)−1/3

, v = w
(
1 + b02z

3
)1/3

M
1/4
4 , (4.33)

system (4.31) can be rewritten as

du

dT
= u,

dv

dT
= −v. (4.34)

The proof is complete.
By the same technique, we have the following theorem.

Theorem 4.18 For system (2.24), if (3.8) in Theorem 3.5 holds, then the
origin is an isochronous center.

All the results obtained in this section completes the classification of
isochronous center at the infinity of system (1.9) (or pseudo-isochronous cen-
ter at the infinity of system (1.10)).
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