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Abstract

The aim of this paper is to investigate two important problems related to nilpotent center conditions 
and bifurcation of limit cycles in switching polynomial systems. Due to the difficulty in calculating the 
Lyapunov constants of switching polynomial systems at non-elementary singular points, it is extremely 
difficult to use the existing Poincaré-Lyapunov method to study these two problems. In this paper, we 
develop a higher-order Poincaré-Lyapunov method to consider the nilpotent center problem in switching 
polynomial systems, with particular attention focused on cubic switching Liénard systems. With proper 
perturbations, explicit center conditions are derived for switching Liénard systems at a nilpotent center. 
Moreover, with Bogdanov-Takens bifurcation theory, the existence of five limit cycles around the nilpotent 
center is proved for a class of switching Liénard systems, which is a new lower bound of cyclicity for such 
polynomial systems around a nilpotent center.
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1. Introduction

During the past several decades, a large number of works has been focused on the study of the 
so-called Liénard equation,

ẍ + f (x)ẋ + g(x) = 0, (1)

which frequently appears in many disciplines and applications [16]. The dot in (1) denotes deriva-
tive with respect to time t . By introducing y = F(x) + ẋ = ∫ x

0 f (x)dx + ẋ, the equation (1) can 
be brought to the following planar first-order differential system,

ẋ = y − F(x),

ẏ = −g(x),
(2)

which is the so-called generalized Liénard system.
For the Liénard system (2), three important problems related to qualitative dynamical be-

haviors are classified as the center conditions, the number of limit cycles and the global phase 
portraits, see [3,9,29,45]. Christopher [10] introduced an algebraic approach to classify linear-
type centers in smooth polynomial Liénard systems, which are called elementary singular points 
characterized by a pair of purely imaginary eigenvalues. Further, such a center is considered as 
global if the whole vector field of the system is filled with periodic orbits except for this point. 
Later, Llibre and Valls [29] studied all types of generalized Liénard systems having a global 
linear-type center.

Assume that the polynomials F(x) and g(x) are given in the form of F(x) =∑n
i=0 aix

i and 
g(x) =∑m

i=0 bix
i . The problem of the number of bifurcating limit cycles and their relative po-

sitions for the classical Liénard system (i.e., g(x) = x) is the well-known Smale’s 13th problem 
[2,35]. The authors of [27] conjectured that the classical Liénard system can have at most [n−1

2 ]
limit cycles, where [·] denotes the integer function. Maesschalck and Dumortier [32] proved that 
some classical Liénard system can have at least [n−1

2 ] + 2 limit cycles for n ≥ 6.
It has been noted that much attention for the generalized Liénard system was paid to consider 

the maximum number of limit cycles bifurcating from a monodromic singular point, which is 
classified as either a center or a focus, usually called Hopf cyclicity, see for example [11,22,
23,38]. For the Hopf cyclicity at the origin of (2), Han [19] proved it to be [n−1

2 ] + 2 when 
g(−x) = −g(x); Tian and Han [38] showed it to be [ 2n−1

3 ] when deg(g) = 2; and Tian et al.

[39] proved it to be [ 3n−1
4 ] when deg(g) = 3. Chen el at. [4,5] proved the existence of two limit 

cycles in two classes of cubic Liénard systems, and analyzed their global dynamics. However, to 
the best of our knowledge, the three problems for the general Liénard system are still open.

In recent years, increasing attention has been attracted to the research in dynamics of non-
smooth systems since non-smoothness has been included more and more in models describing 
problems arising in engineering [6], epidemiology [37] and electronics [13], and in particular in 
the generalized Liénard system [1,12,28,33,34]. For the non-smooth Liénard system (2), F(x)

and g(x) are usually assumed to be piecewise smooth. For example, Chen el at. [6] studied 
the global dynamics of a mechanical system with dry friction, which can be transformed to a 
piecewise smooth Liénard system. However, the center and Hopf cyclicity problems become 
extremely complicated in switching systems. To overcome the difficulty, the authors of [17]
developed a useful approach for computing the Lyapunov constants for the switching polynomial 
systems with an elementary singular point. With this method, they solved the linear-type center 
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Table 1
The local qualitative properties on the nilpotent singular point (0, 0) of (2).

Conditions Type of the origin

an = 0, bm �= 0

m odd, bm > 0 a center or a focus

m odd, bm < 0 a saddle

m even a cusp

an �= 0, bm �= 0,
m = 2k+1

bm < 0 a saddle

� = −4nbm+n2a2
n

bm > 0

k > n − 1, or k = n − 1 and � ≥ 0, n even

consisting of one
hyperbolic sector and
one elliptic sector

n < k − 1, or k = n − 1 and � ≥ 0, n odd a node

n > k − 1, or k = n − 1 and � < 0 a center or a focus

m = 2k
k > n − 1 a saddle-node

k ≤ n − 1 a cusp

problem for a class of switching Liénard systems. In [38,39], the Hopf cyclicities are obtained 
for system (2) when F(x) is a piecewise polynomial having a switching manifold at x = 0 with 
deg(g) = 2, 3.

It should be pointed out that although many research results have been obtained on the center 
problem and bifurcation of small-amplitude limit cycles for switching Liénard systems associ-
ated with elementary singular points, no attention has been paid to switching Liénard systems 
associated with an isolated nilpotent singular point. By an isolated nilpotent singular point in 
planar polynomial systems, it means that the two eigenvalues of the Jacobian matrix of the sys-
tem, evaluated at the singular point, are zero but the Jacobian matrix is not null, more details can 
be found in [15,18,25,26,30,31,36,42,44]. From Theorem 3.5 in [14] we know that if m is the 
smallest integer satisfying bm �= 0, the multiplicity of the nilpotent singular point of system (2)
is exactly m. Further, let n be the smallest number for which an �= 0. Then, the local qualitative 
properties on the nilpotent origin (0, 0) of (2) are summarized in Table 1.

Regarding Table 1, it is worth to mention that the origin of (2) is a monodromic singular point 
and a cusp when the parameters satisfy

�1 = {
(an, bm) ∈R2 : an = 0, b2k+1 > 0

}⋃{
(an, bm) ∈ R2 : an �= 0, b2k+1 > 0, k > n − 1

}
⋃{

(an, bm) ∈R2 : an �= 0, b2k+1 > 0, k = n − 1, � < 0
}

(3)
and

�2 = {
(an, bm) ∈R2 : an = 0, b2k �= 0

}⋃{
(an, bm) ∈R2 : an �= 0, b2k �= 0, k ≤ n − 1

}
,

(4)
respectively.

In this paper, we will develop a higher-order Poincaré-Lyapunov method to determine the 
nilpotent center conditions and bifurcation of small-amplitude limit cycles in switching poly-
nomial systems. It is a more challenging and interesting compared to the works for switching 
systems with elementary singular points. We will apply this method to investigate a class of cubic 
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switching polynomial Liénard systems with a nilpotent singular point. Without loss of generality, 
the cubic switching Liénard systems can be written in the form of the differential equations,

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y − (a+

0 + a+
1 x + a+

2 x2 + a+
3 x3)

−(b+
0 + b+

1 x + b+
2 x2 + b+

3 x3)

)
, if x ≥ 0,

(
y − (a−

0 + a−
1 x + a−

2 x2 + a−
3 x3)

−(b−
0 + b−

1 x + b−
2 x2 + b−

3 x3)

)
, if x < 0,

(5)

where x = 0 is the unique switching manifold, and λ = (a±
i , b±

j ) ∈ R16, i = 0, 1, 2, 3, represents 
the parameter vector. For the convenience in the following analysis, we call the system with “+” 
sign “the first system” and the system with “−” sign “the second system”.

Assume that (0, 0) is a singular point of (5). Then, we have a±
0 = b±

0 = 0. Thus, the Jacobian 
matrices of the first and the second systems of (5) evaluated at the origin are given by

J± =
[−a±

1 1
−b±

1 0

]
. (6)

The necessary and sufficient conditions for the origin of (5) to be an isolated nilpotent singular 
point are Tr(J±) = det(J±) = 0, with J± not being identically zero. It is easy to obtain that 
a±

1 = b±
1 = 0. Then, (5) is reduced to

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y − (a+

2 x2 + a+
3 x3)

−(b+
2 x2 + b+

3 x3)

)
, if x ≥ 0,

(
y − (a−

2 x2 + a−
3 x3)

−(b−
2 x2 + b−

3 x3)

)
, if x < 0.

(7)

It follows from Table 1 that different types of the nilpotent singular point can generate much 
more rich dynamics than that of the elementary one, leading to that the determination of the 
center conditions of (7) becomes more involved. In fact, the center of system (7) on the switching 
manifold can be classified as two monodromic singular points, or a cusp and a monodromic 
singular point, or two cusps. Due to this complexity it is extremely difficult to consider the 
nilpotent center problem in the switching polynomial Liénard systems of general degree n. Here, 
we derive the necessary and sufficient conditions for the center problem associated with the 
nilpotent origin of the cubic switching polynomial Liénard system (7). We have the following 
result.

Theorem 1.1. Assume b+
2 ≥ 0 and b−

2 ≤ 0. The origin of the cubic switching Liénard system (7)
is a nilpotent center if one of the following conditions holds:

I : a±
2 = a±

3 = b−
2 = 0, b+

2 > 0, b−
3 > 0;

II : a±
2 = a±

3 = 0, b+
2 > 0, b−

2 < 0;
III : a± = b± = a+b− − a−b+ = 0, a+(b+ + b−) �= 0, b+ > 0, b− < 0;
2 3 3 2 3 2 3 2 2 2 2
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IV : a−
2 = a+

2 , a−
3 = −a+

3 , b−
2 = −b+

2 < 0, b−
3 = b+

3 ; (8)

V : a±
2 = a±

3 = b+
2 = 0, b−

2 < 0, b+
3 > 0;

VI : a±
2 = b±

2 = 0, a−
3 = −a+

3 , b−
3 = b+

3 > 3
4 (a+

3 )2;
VII : a±

2 = a±
3 = b±

2 = 0, b+
3 > 0, b−

3 > 0;
VIII : a−

2 = a+
2 �= 0, a−

3 = −a+
3 , b±

2 = 0, b−
3 = b+

3 > 1
2 (a+

2 )2.

The next result further characterizes the nilpotent center (0, 0) of the cubic switching Liénard 
system (7) to be global.

Theorem 1.2. Assume b+
2 ≥ 0 and b−

2 ≤ 0. The origin of the cubic switching Liénard system (7)
is a nilpotent global center if one of the following conditions holds:

G1 : a±
2 = a±

3 = 0, b+
3 > 0, b−

3 > 0;
G2 : a−

2 = a+
2 , a±

3 = 0, b−
2 = −b+

2 , b−
3 = b+

3 > 1
2 (a+

2 )2.
(9)

Moreover, regarding the bifurcation of limit cycles around the origin of (7), we construct a 
perturbed system using the center condition IV and obtain that the maximal number of bifurcating 
limit cycles from the nilpotent origin of system (7) is 5. This is a new lower bound on the limit 
cycles for such cubic switching Liénard systems around a nilpotent singular point.

Theorem 1.3. With the nilpotent center condition IV in Theorem 1.1, the cubic switching Liénard 
system (7) can have at least 5 limit cycles bifurcating from the origin by higher-order cubic 
perturbations.

The rest of the paper is organized as follows. In the next section, we present our high-order 
Poincaré-Lyapunov method with some formulas which are needed in Section 3. Section 3 is 
devoted to derive the nilpotent center conditions at the origin of system (7). The conditions on 
the global nilpotent center of system (7) are obtained in Section 4. In Section 5, a perturbed 
system of (7) is constructed to show the bifurcation of 5 limit cycles from the origin of (7). 
Finally, conclusion is drawn in Section 6.

2. The high-order Poincaré-Lyapunov method

We consider the following switching nilpotent systems divided by the y-axis,

(ẋ, ẏ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
y +

n∑
i+j=2

A+
ij x

iyj ,

n∑
i+j=2

B+
ij xiyj

)
, if x ≥ 0,

(
y +

n∑
i+j=2

A−
ij x

iyi,

n∑
i+j=2

B−
ij xiyj

)
, if x < 0,

(10)

where A±
ij and B±

ij are parameters. We have the following proposition for proving the nilpotent 
center conditions at the origin (0, 0), which is the common nilpotent singular point in both the 
first and the second systems of (10).
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Proposition 2.1. Assume that the origin (0, 0) of the switching nilpotent system (10) is mon-
odromic. If the first and second systems in (10) have respectively the first integrals I+(x, y)

and I−(x, y) near the origin, and either both I+(0, y) and I−(0, y) are even functions in x or 
I+(0, y) ≡ I−(0, y), then (0, 0) is a nilpotent center.

See [17] for more details about Proposition 2.1. In [24], the authors redefined the symmetry 
of switching systems. By modifying the conditions, we obtain the following result for proving 
the nilpotent center conditions of (10) at the origin.

Proposition 2.2. Assume that the nilpotent origin of the switching nilpotent system (10) is mon-
odromic. If the systems in (10) are symmetric with respect to the x-axis, i.e., the parameters on 
the right-hand side of (10) satisfy

A±
i,2k = B±

i,2k+1 = 0, (11)

or the systems in (10) are symmetric with respect to the y-axis, i.e., the parameters on the right-
hand side of (10) satisfy

A+
2k+1,j = −A−

2k+1,j , A+
2k,j = A−

2k,j , B+
2k+1,j = B−

2k+1,j , B+
2k,j = −B−

2k,j , (12)

then the origin of (10) is a nilpotent center.

Now we introduce our higher-order Poincaré-Lyapunov method to study the switching system 
(10), which establishes the relation between the unperturbed systems and the perturbed systems 
based on Bogdanov-Takens (B-T) bifurcation theory. Hence, we consider the following perturbed 
system of (10),

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
ϑ1εx + y +

n∑
i+j=2

A+
ij x

iyj +
n∑

k=1,i+j=2

P +
kij ε

kxiyj

−ε2x + ϑ2εy +
n∑

i+j=2

B+
ij xiyj +

n∑
k=1,i+j=2

Q+
kij ε

kxiyj

⎞⎟⎟⎟⎟⎠ , if x ≥ 0,

⎛⎜⎜⎜⎜⎝
ϑ1εx + y +

n∑
i+j=2

A−
ij x

iyi +
n∑

k=1,i+j=2

P −
kij ε

kxiyj

−ε2x + ϑ2εy +
n∑

i+j=2

B−
ij xiyj +

n∑
k=1,i+j=2

Q−
kij ε

kxiyj

⎞⎟⎟⎟⎟⎠ , if x < 0,

(13)

where −ε2x is called unfolding with sufficiently small ε > 0, λ± = (ϑ1,2, A
±
ij , B

±
ij , P ±

ij , Q±
ij )

represent two parameter vectors. For convenience, we denote that (10) is the limit system of 
(13).

Note that the linear perturbation terms used in (13) are ε2x rather than εx can avoid the √
ε and 1

εk perturbation terms (k ∈ Q+) in later transformed systems. Based on the relation 
established for these two systems (10) and (13), and the B-T bifurcation theory, we directly have 
the following lemma. More detailed discussions on this subject can be found in [7].
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Lemma 2.3. Assume that the origin of (10) is monodromic, and that the two systems in (10) are 
limit systems of (13). If the linear-type elementary singular point at the origin of (13) becomes a 
linear-type center, then the origin of (10) is a nilpotent center.

We give the following example to illustrate our basic idea, as it is known that the nilpotent 
polynomial smooth systems can be transformed to the normal form (see [20]),

ẋ = y,

ẏ = ak

(
1 + h(x)

)
xk + bky

(
1 + g(x)

)
xk−1 + y2p(x, y),

(14)

where k ≥ 2, h(x), g(x) and p(x, y) are real analytic functions satisfying h(0) = g(0) = 0. For 
example, we consider a codimension-2 symmetric B-T bifurcation of the cubic normal form (14), 
given in the following form [21]:

ẋ = y,

ẏ = ε1x + ε2y + a3x
3 + b3x

2y,
(15)

where the terms ε1x + ε2y are called unfolding with small ε1 and ε2. Note that if ε1 < 0, the 
system (15) can have Hopf bifurcation near the origin from the bifurcation line ε2 = 0. It is 
easy to check that the elementary origin of (15) is a center if and only if b3 = 0. The isolated 
elementary origin of (15) is reduced to a nilpotent point when ε1 → 0− and ε2 → 0. Furthermore, 
it can be verified that the nilpotent monodromic origin (when a3 < 0) of system (15) without 
unfolding is also a center if b3 = 0.

The difficulty arising from the problem of distinguishing a center from a focus in switching 
nilpotent system (10) is that the problem may be not algebraically solvable. That is, it does not 
have an infinite sequence of independent polynomials involving the coefficients of the systems 
such that the Lyapunov constants vanish simultaneously, which guarantees the existence of a cen-
ter. We will show that the higher-order Poincaré-Lyapunov method we develop for the switching 
polynomial system (13) to determine nilpotent center can overcome the difficulty. More details 
are described below.

To achieve this, introducing the transformation (x, y, t) → (ε3x, ε2y, t
ε
) into (13), we obtain

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
ϑ2x − y +

n∑
k=1,i+j=2

Ãkij
+
(λ+)εkxiyj

x + ϑ1y +
n∑

k−1,i+j=2

B̃kij
+
(λ+)εkxiyj

⎞⎟⎟⎟⎟⎠ , if y ≥ 0,

⎛⎜⎜⎜⎜⎝
ϑ2x − y +

n∑
k=1,i+j=2

Ãkij
−
(λ−)εkxiyj

x + ϑ1y +
n∑

k=1,i+j=2

B̃kij
−
(λ−)εkxiyj

⎞⎟⎟⎟⎟⎠ , if y < 0,

(16)

where Ãkij
±
(λ±) and B̃kij

±
(λ±) are the polynomials in the parameter vector λ±.
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With the polar coordinates transformation: x = r cos θ and y = r sin θ , the perturbation system 
(16) becomes the form,

dr

dθ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
k=0,i+j=1

c+
kij (λ

+) cos θi sin θj εkri+j

1 +
n∑

k=0,i+j=1

d+
kij (λ

+) cos θi sin θj εkri+j−1

, if θ ∈ [0,π],

n∑
k=0,i+j=1

c−
kij (λ

−) cos θi sin θj εkri+j

1 +
n∑

k=0,i+j=1

d−
ij (λ−) cos θi sin θj εkri+j−1

, if θ ∈ (π,2π),

(17)

where ckij
±(λ±) and d̃kij

±
(λ±) are the polynomials in the parameter vector λ±.

Let r+(ξ, λ+, ε, θ) = ∑
k≥1 v+

k (λ+, ε, θ)ξk and r−(ξ, λ−, ε, θ) = ∑
k≥1 v−

k (λ+, ε, θ)ξk be 
the solutions of the first and second systems of (17) associated with the initial conditions 
r+(ξ, λ+, ε, 0) = r−(ξ, λ−, ε, π) = ξ . We denote by


+(ξ) = r+(ξ, λ+, ε,π) =
∑
k≥1

v+
k (λ+, ε,π)ξk

and


−(ξ) = r−(ξ, λ+, ε,2π) =
∑
k≥1

v−
k (λ−, ε,π)ξk,

the first half-return map 
+(ξ) and the second half-return map 
−(ξ), respectively, where 
v±
k (λ±, ε, π) are the coefficients in Taylor expansions. However, it is extremely difficult to com-

posite these two maps to compute the displacement map of (17). We may follow the procedure in 
[17] and introduce the transformation (x, y, t) → (x, −y, −t) into the piecewise smooth system 
(16) to yield

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
−ϑ2x − y −

n∑
k=1,i+j=2

Ãkij
−
(λ−)εkxi(−y)j

x − ϑ1y +
n∑

k−1,i+j=2

B̃kij
−
(λ−)εkxi(−y)j

⎞⎟⎟⎟⎟⎠ , if y > 0,

⎛⎜⎜⎜⎜⎝
−ϑ2x − y +

n∑
k=1,i+j=2

Ãkij
+
(λ+)εkxi(−y)j

x − ϑ1y +
n∑

B̃kij
+
(λ+)εkxiyj

⎞⎟⎟⎟⎟⎠ , if y ≤ 0.

(18)
k=1,i+j=2
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Then, the displacement function can be written as

d(ξ) = 
+(ξ) − (
−)−1(ξ) = 
+(ξ) − 
+−(ξ) =
∑
j≥1

Vj (λ
±, ε,π)ξj , (19)

where 
+−(ξ) is the first half-return map of (18), and

Vj (λ
±, ε,π) =

∞∑
k=1

Vjk εk, j = 1,2, . . . , (20)

in which Vjk denotes the j th εk-order Lyapunov constant, see [7] for more details about the 
computation of the generalized Lyapunov constants. Hence, we can derive the center conditions 
of system (13) by vanishing the ε terms in these generalized Lyapunov constants, and then by 
Lemma 2.3 we derive the algebraic conditions characterizing the nilpotent center of system (10). 
Thus, we prove that these conditions are necessary for (0, 0) of (10) be a nilpotent center. In gen-
eral, these nilpotent center conditions can be satisfied by appropriately choosing the perturbation 
coefficients P ±

kij and Q±
kij .

Further, we generalize our method to study the bifurcation of limit cycles from the nilpotent 
center of the switching system (10). Actually, by B-T bifurcation theory, we may add the linear 
perturbation term −ε2x to the switching system (10) such that the system has a linear-type center 
at the origin. Then we perturb such system by adding higher ε-order terms, and compute the 
generalized Lyapunov constants of the perturbed system. Finally, by using the higher ε-order 
Lyapunov constants [41,43], we find the bifurcation of limit cycles from the center as many 
as possible. More precisely, with the result in [40], we derive the following lemma giving the 
sufficient conditions for the existence of small-amplitude limit cycles around the origin of (10).

Lemma 2.4 (Lemma 4, [40]). If there exists a critical point λ∗ = (a1c, a2c, · · · , anc) such 
that a set of εk-order Lyapunov constants satisfies V1k(λ∗) = V2k(λ∗) = · · · = Vnk(λ∗) = 0, 
Vn+1,k(λ∗) �= 0 and

det

[
∂(V1k,V2k, · · · ,Vnk)

∂(a1c, a2c, · · · , anc)
(λ∗)

]
�= 0, (21)

then small appropriate perturbations about λ = λ∗ lead to that the switching system (16) has 
exactly n limit cycles bifurcating from (0, 0).

3. The proof of Theorem 1.1

From the results given in the precious section, we know that the nilpotent center of (7) at the 
origin can be combined by a monodromic singular point or a cusp, i.e. the parameters satisfy the 
condition �1 or �2. Firstly, assume that the origin in the first smooth system of (7) is a cusp, 
then we have b+

2 �= 0. If b−
2 �= 0, then the origin in the second system of (7) is also a cusp with 

multiplicity two. If b−
2 = 0, we have the following statement: The origin of the second system 

of (7) is a monodromic singular point with multiplicity three if and only if one of the following 
conditions holds:
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Fig. 1. Two phase portraits of the cubic switching Liénard system (7) showing that the origin is a cusp for (a) a±
2 = b±

3 =
1, a±

3 = 2, b+
2 = −1 and b−

2 = −2; and (b) a±
2 = a±

3 = b+
3 = 1, b−

3 = −1, b+
2 = 2 and b−

2 = 3.

a−
2 = b−

2 = 0, b−
3 >

3

4
(a−

3 )2;

b−
2 = 0, a−

2 �= 0, b−
3 >

1

2
(a−

2 )2.

(22)

We only consider b+
2 > 0 and b−

2 ≤ 0 because the origin of (7) cannot be monodromic when 
either b+

2 < 0 or b−
2 > 0, which are illustrated in the two phase portraits of system (7), as depicted 

in Fig. 1. It is shown that when b+
2 < 0 the first system of (7) has two seperatrices connecting 

the origin and two singular points in the right half Poincaré disc, see Fig. 1(a). Similarly when 
b−

2 > 0 the second system of (7) has two seperatrices connecting the origin and the other two 
ones in the left half Poincaré disc, see Fig. 1(b). Thus, the origin cannot be a center when either 
b+

2 < 0 or b−
2 > 0.

Example 3.1. Two different phase portraits of the cubic switching Liénard system (7), as de-
picted in the Poincaré disc, show that the origin is a cusp for b+

2 = −1 (see Fig. 1(a)) or b−
2 = 3

(see Fig. 1(b)).

Next, we discuss how to apply the higher-order Poincaré-Lyapunov method to derive the 
nilpotent center conditions for the origin of system (7). With perturbations added to system (7), 
we obtain the following perturbed systems,

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎝
y − (a+

2 x2 + a+
3 x3) +

∑
k=1

εkP +
k (x)

−ε2x − (b+
2 x2 + b+

3 x3) +
∑
k=1

εkQ+
k (x)

⎞⎟⎟⎠ , if x ≥ 0,

⎛⎜⎜⎝
y − (a−

2 x2 + a−
3 x3) +

∑
k=1

εkP −
k (x)

−ε2x − (b−
2 x2 + b−

3 x3) +
∑
k=1

εkQ−
k (x)

⎞⎟⎟⎠ , if x < 0,

(23)

where
267



T. Chen, F. Li and P. Yu Journal of Differential Equations 379 (2024) 258–289
P ±
k (x) = p±

k2 x2 + p±
k3 x3, Q±

k (x) = q±
k2 x2 + q±

k3 x3,

in which p±
ki , q

±
ki are real parameters. It is very difficult for computing the generalized Lyapuov 

constants of (23) with large number of parameters. So we only consider the ε2-order pertur-
bations. Further, introducing the transformation (x, y, t) → (ε3x, ε2y, t

ε
) into system (23), we 

obtain

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−y − (b+
2 + q+

22ε
2)y2 − (b+

3 ε2 + q+
23ε

4)y3

x − (a+
2 ε + p+

22ε
3)y2 − (a+

3 ε3 + p+
23ε

5)y3

)
, if y ≥ 0,

(−y − (b−
2 + q−

22ε
2)y2 − (b−

3 ε2 + q−
23ε

4)y3

x − (a−
2 ε + p−

22ε
3)y2 − (a−

3 ε3 + p−
23ε

5)y3

)
, if y < 0.

(24)

Then, we consider two cases: b−
2 = 0 and b−

2 < 0 to obtain the nilpotent center conditions by 
considering each ith εk-order Lyapunov constant.

3.1. Case 1: b−
2 = 0

We use the higher-order Poincaré-Lyapunov method to compute the generalized Lyapunov 
constants associated with the origin of (24). The first two generalized Lyapunov constants are 
V1(ε) = 0 and

V2(ε) = 4

3

[
(a+

2 − a−
2 ) + (p+

22 − p−
22)ε

2] ε. (25)

By (22) we consider the two subcases: (i) a−
2 = 0, b−

3 > 3
4 (a−

3 )2, and (ii) a−
2 �= 0, b−

3 > 1
2 (a−

2 )2.

(i) a−
2 = 0, b−

3 > 3
4 (a−

3 )2. Setting the ε-order and ε3-order Lyapunov constants in V2(ε) zero 
yields the necessary center conditions a+

2 = 0 and p−
22 = p+

22. Then, the 3rd generalized 
Lyapunov constant is obtained as

V3(ε) = − π

8

[
3a+

3 + 3a−
3 − 2b+

2 p+
22 + (3p+

23 + 3p−
23 − 2p+

22q
+
22 − 2p+

22q
−
22)ε

2] ε3.

Letting the ε3-order and ε5-order terms in V3(ε) equal zero we obtain the following condi-
tions,

p+
22 = 3(a+

3 + a−
3 )

2b+
2

,

p−
23 = 1

b+
2

(−b+
2 p+

23 + a+
3 q+

22 + a−
3 q+

22 + a+
3 q−

22 + a−
3 q−

22

)
.

Then, we have the 4th generalized Lyapunov constant, given by

V4(ε) = 4
+
[
4a−

3 (b+
2 )2 − M1ε

2 + M2ε
4] ε3,
15b2
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where

M1 = 3a+
3 b+

3 + 3a−
3 b+

3 − 3a+
3 b−

3 − 3a−
3 b−

3 − 4(b+
2 )2p−

23 − 4a−
3 b+

2 q+
22 + 4a+

3 b+
2 q−

22,

M2 = 4b+
2 p−

23q
+
22 + 4b+

2 p−
23q

−
22 − 4a+

3 q+
22q

−
22 − 4a−

3 q+
22q

−
22 − 4a+

3 (q−
22)

2 − 4a−
3 (q−

22)
2

− 3a+
3 q+

23 − 3a−
3 q+

23 + 3a+
3 q−

23 + 3a−
3 q−

23.

Letting each ε term in V4(ε) be zero, we obtain the conditions:

a−
3 = 0,

p−
23 = 3a+

3 b+
3 − 3a+

3 b−
3 + 4a+

3 b+
2 q−

22

4(b+
2 )2

,

q−
23 = 1

b+
2

(−b+
3 q+

22 + b−
3 q+

22 − b+
3 q−

22 + b−
3 q−

22 + b+
2 q+

23

)
.

Then, we have

V5(ε) = − 5π

256(b+
2 )3

a+
3 (b+

2 + q+
22ε

2 + q−
22ε

2)
[
2(b+

2 )2(b+
3 + 7b−

3 ) + M3ε
2] ε5,

where

M3 = 9(b+
3 )2 − 18b+

3 b−
3 + 9(b−

3 )2 − 14b+
2 b+

3 q+
22 + 14b+

2 b−
3 q+

22 − 2b+
2 b+

3 q−
22

+ 2b+
2 b−

3 q−
22 + 16(b+

2 )2q+
23.

a+
3 = 0 (leading to V5(ε) = 0) gives the condition I. Otherwise, if a+

3 �= 0, setting the other 
ε terms in V5(ε) zero we obtain

b+
3 = −7b−

3 , q+
23 = − 1

(b+
2 )2

[
36(b−

3 )2 + 7b+
2 b−

3 q+
22 + b+

2 b−
3 q−

22

]
.

Further, under the above conditions, we have the 6th generalized Lyapunov constant given 
by

V6(ε) = − 128

315(b+
2 )2

a+
3 b−

3 (b+
2 + q+

22ε
2 + q−

22ε
2)3ε5 �= 0

when a+
3 �= 0.

(ii) a−
2 �= 0, b−

3 > 1
2 (a−

2 )2. Setting the ε-order and ε3-order terms in V2(ε) zero yields the nec-
essary center conditions a−

2 = a+
2 �= 0 and p−

22 = p+
22. Then, the 3rd generalized Lyapunov 

constant is given by

V3(ε) = π

8

[
2a−

2 b+
2 − (3a+

3 + 3a−
3 − 2b+

2 p+
22 − 2a+

2 q+
22 − 2a+

2 q−
22)ε

2 − (3p+
23 + 3p−

23

− 2p+ q+ − 2p+ q− )ε4]ε �= 0.
22 22 22 22
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3.2. Case 2: b−
2 < 0

Similarly, setting each ε term in V2(ε) zero yields the necessary center conditions a−
2 = a+

2
and p−

22 = p+
22. Then, we obtain the 3rd generalized Lyapunov constant,

V3(ε) = π

8

[
2a+

2 (b+
2 + b−

2 ) − (3a+
3 + 3a−

3 − 2b+
2 p+

22 − 2b−
2 p+

22 − 2a+
2 q+

22 − 2a+
2 q−

22)ε
2

− (3p+
23 + 3p−

23 − 2p+
22q

+
22 − 2p+

22q
−
22)ε

4]ε.
Considering the ε-order term in V3(ε), we have two subcases: (i) a+

2 = 0, and (ii) b+
2 + b−

2 = 0.

(i) Assume that a+
2 = 0 and b+

2 +b−
2 �= 0. We let the ε3-order and ε5-order terms in V3(ε) equal 

zero to obtain the conditions,

p+
22 = 3(a+

3 + a−
3 )

2(b+
2 + b−

2 )
,

p−
23 = 1

b+
2 + b−

2

(
b+

2 p+
23 + b−

2 p+
23 − a+

3 q+
22 − a−

3 q+
22 − a+

3 q−
22 − a−

3 q−
22

)
.

Then, the 4th generalized Lyapunov constant becomes

V4(ε) = −4

15(b+
2 + b−

2 )

[
4(b+

2 + b−
2 )(a−

3 b+
2 − a+

3 b−
2 ) − M4ε

2 − M5ε
4]ε3,

where

M4 = 3a+
3 b+

3 + 3a−
3 b+

3 − 3a+
3 b−

3 − 3a−
3 b−

3 + 4(b+
2 )2p+

23 + 8b+
2 b−

2 p+
23 + 4(b−

2 )2p+
23

− 4a+
3 b+

2 q+
22 − 8a−

3 b+
2 q+

22 − 4a−
3 b−

2 q+
22 − 4a−

3 b+
2 q−

22 + 4a+
3 b−

2 q−
22,

M5 = 4b+
2 p+

23q
+
22 + 4b−

2 p+
23q

+
22 − 4a+

3 (q+
22)

2 − 4a−
3 (q+

22)
2 + 4b+

2 p+
23q

−
22 + 4b−

2 p+
23q

−
22

− 4a+
3 q+

22q
−
22 − 4a−

3 q+
22q

−
22 + 3a+

3 q+
23 + 3a−

3 q+
23 − 3a+

3 q−
23 − 3a−

3 q−
23.

Thus, we have

a−
3 = a+

3 b−
2

b+
2

, p+
23 = −3a+

3 b+
2 + 3a+

3 b−
3 + 4a+

3 b+
2 q+

22 + 4a+
3 b−

2 q+
22

4b+
2 (b+

2 + b−
2 )

by setting the ε3-order and ε5-order terms in V4(ε) zero. Then, M5 is simplified as

M5 = − 3

b+
2

a+
3 (b+

3 q+
22 − b−

3 q+
22 + b+

3 q−
22 − b−

3 q−
22 − b+

2 q+
23 − b−

2 q+
23 + b+

2 q−
23 + b−

2 q−
23).

(i.1) If a+ = 0, we obtain M5 = 0, leading to a condition included in the condition II.
3
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(i.2) If a+
3 �= 0, we have

q+
23 = 1

b+
2 + b−

2

(b+
3 q+

22 − b−
3 q+

22 + b+
3 q−

22 − b−
3 q−

22 + b+
2 q−

23 + b−
2 q−

23)

by setting M5 = 0. Further, we obtain the 5th generalized Lyapunov constant,

V5(ε) = − 5a+
3 π

256b+
2 (b+

2 + b−
2 )2

[
b+

2 + b−
2 + (q+

22 + q−
22)ε

2][2(b+
2 + b−

2 )M6 + M7ε
2]ε5

where

M6 = b+
3 (b+

2 + 7b−
2 ) + b−

3 (7b+
2 + b−

2 ),

M7 = 9(b+
3 )2 − 18b+

3 b−
3 + 9(b−

3 )2 + 2b+
2 b+

3 q+
22 + 2b−

2 b+
3 q+

22 − 2b+
2 b−

3 q+
22 − 2b−

2 b−
3 q+

22

+ 14b+
2 b+

3 q−
22 + 14b−

2 b+
3 q−

22 − 14b+
2 b−

3 q−
22 − 14b−

2 b−
3 q−

22 + 16(b+
2 )2q−

23

+ 32b+
2 b−

2 q−
23 + 16(b−

2 )2q−
23.

Since a+
3 (b+

2 + b−
2 ) �= 0, the only possibility for V5(ε) = 0 is M6 = M7 = 0. Considering 

M6 = 0, if b+
2 + 7b−

2 �= 0, we have b+
3 = −(7b+

2 +b−
2 )b−

3
b+

2 +7b−
2

; and if b+
2 = −7b−

2 , we obtain M6 =
−48b−

2 b−
3 = 0 which yields b−

3 = 0 due to b−
2 < 0. Thus, we consider the following two 

subcases.
(i.2.1) If b+

3 = −(7b+
2 +b−

2 )b−
3

b+
2 +7b−

2
, setting M7 = 0 yields

q−
23 = 1

(b+
2 + 7b−

2 )2
[−36(b−

3 )2 + b+
2 b−

3 q+
22 + 7b−

2 b−
3 q+

22 + 7b+
2 b−

3 q−
22 + 49b−

2 b−
3 q−

22].

Then, we obtain the 6th generalized Lyapunov constant,

V6(ε) = − 128

315b+
2 (b+

2 + 7b−
2 )

a+
3 b−

3

[
b+

2 + b−
2 + (q+

22 + q−
22)ε

2]3
ε5.

If b−
3 = 0, we have V6(ε) = 0, and this necessary condition is included in the condition III. 

Otherwise, we have V6(ε) �= 0 when b+
2 + b−

2 �= 0.
(i.2.2) If b−

3 = b+
2 + 7b−

2 = 0 we have

q−
23 = 1

192(b−
2 )2

[−3(b+
3 )2 + 4b−

2 b+
3 q−

22 + 28b−
2 b+

3 q−
22]

from M7 = 0. Then the 6th generalized Lyapunov constant has the following form

V6(ε) = − 8
− 2

a+
3 b+

3

[
6b−

2 + (q+
22 + q−

22)ε
2]3

ε5 �= 0.

6615(b2 )
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Assume that b+
3 = 0, we have V6(ε) = 0. Combining the necessary conditions from (i.2.1) 

and (i.2.2), we obtain the condition III. Otherwise we have V6(ε) �= 0 when a3 �= 0.

(ii) Assume that b−
2 + b+

2 = 0. Consider two subcases: (ii.1) a+
2 = 0 and (ii.2) a+

2 �= 0.
(ii.1) If a+

2 = 0, setting each ε term in V3(ε) zero we have

a−
3 = − a+

3 ,

p−
23 = 1

3
(−3p+

23 + 2p+
22q

+
22 + 2p+

22q
−
22).

Then, the 4th generalized Lyapunov constant is given by

V4(ε) = − 8

45

(
M8 + M9ε

2) ε5,

where

M8 = − 3b+
3 p+

22 + 3b−
3 p+

22 − 6a+
3 q+

22 + 4b+
2 p+

22q
+
22 − 6a+

3 q−
22 + 4b+

2 p+
22q

−
22,

M9 = 6p+
23q

+
22 − 4p+

22(q
+
22)

2 + 6p+
23q

−
22 − 4p+

22q
+
22q

−
22 + 3p+

22q
+
23 − 3p+

22q
−
23.

(ii.1.1) If q−
22 = −q+

22, it follows from M8 = M9 = 0 that either b−
3 = b+

3 , q−
23 = q+

23, or 
p22 = 0. The first choice leads to a necessity condition included in the condition IV. For the 
second choice, we have the 5th generalized Lyapunov constant,

V5(ε) = 15

64

(
a+

3 + p+
23ε

2)(b+
3 − b−

3 + q+
23ε

2 − q−
23ε

2) ε5,

which yields a+
3 = p+

23 = 0 by setting V5(ε) = 0, leading to a condition included in the 
condition II. Combining the subcases (i.1) and (ii.1.1) we have the condition II.
(ii.1.2) If q−

22 �= −q+
22, we have

a+
3 = 1

6(q+
22 + q−

22)
(−3b+

3 p+
22 + 3b−

3 p+
22 + 4b+

2 p+
22q

+
22 + 4b+

2 p+
22q

−
22),

p+
23 = 1

6(q+
22 + q−

22)

[
4p+

22(q
+
22)

2 + 4p+
22q

+
22q

−
22 − 3p+

22q
+
23 + 3p+

22q
−
23

]
by setting M8 = M9 = 0. Then, we obtain the 5th generalized Lyapunov constant,

V5(ε) = − 5π

384(q+
22 + q−

22)
p+

22

(
M10 + 2M11ε

2 + M12ε
2) ε5,

where
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M10 = 3(b+
3 − b−

3 )(3b+
3 − 3b−

3 − 4b+
2 q+

22 − 4b+
2 q−

22),

M11 = b+
3 (q+

22)
2 + 7b−

3 (q+
22)

2 + 8b+
3 q+

22q
−
22 + 8b−

3 q+
22q

−
22 + 7b+

3 (q−
22)

2 + b−
3 (q−

22)
2

+ 9b+
3 q+

23 − 9b−
3 q+

23 − 6b+
2 q+

22q
+
23 − 6b+

2 q−
22q

+
23 − 9b+

3 q−
23 + 9b−

3 q−
23 + 6b+

2 q+
22q

−
23

+ 6b+
2 q−

22q
−
23,

M12 = 2(q+
22)

2q+
23 + 16q+

22q
−
22q

+
23 + 14(q−

22)
2q+

23 + 9(q+
23)

2 + 14(q+
22)

2q−
23 + 16q+

22q
−
22q

−
23

+ 2(q−
22)

2q−
23 − 18q+

23q
−
23 + 9(q−

23)
2.

If p+
22 = 0 or b+

2 = 3(b−
3 −b+

3 )

4(q+
22+q−

22)
, we have a+

3 = 0, which is included in the condition II. Oth-

erwise, we have b−
3 = b+

3 from M10, which leads to a necessity condition included in the 
condition IV.
(ii.2) If a+

2 �= 0, letting the ε3-order and ε5-order terms in V3(ε) equal zero we obtain the 
conditions:

q−
22 = 3a+

3 + 3a−
3 − 2a+

2 q+
22

2a+
2

,

p−
23 = − a+

3 p+
22 + a−

3 p+
22 − a+

2 p+
23

a+
2

.

Then, we have the 4th generalized Lyapunov constant, given by

V4(ε) = 8

15a+
2

(
a+

2 M13 + M14ε
2 + M15ε

4) ε3,

where

M13 = − 2a+
3 b+

2 − 2a−
3 b+

2 + a+
2 b+

3 − a+
2 b−

3 ,

M14 = 3(a+
3 )2 + 3a+

3 a−
3 − 2a+

3 b+
2 p+

22 − 2a−
3 b+

2 p+
22 + a+

2 b+
3 p+

22 − a+
2 b−

3 p+
22

− 2a+
2 a+

3 q+
22 − 2a+

2 a−
3 q+

22 + (a+
2 )2q+

23 − (a+
2 )2q−

23,

M15 = 3a+
3 p+

23 + 3a−
3 p+

23 − 2a+
3 p+

22q
+
22 − 2a−

3 p+
22q

+
22 + a+

2 p+
22q

+
23 − a+

2 p+
22q

−
23.

Setting M13 = M14 = 0, we obtain the conditions:

b−
3 = 1

a+
2

(−2a+
3 b+

2 − 2a−
3 b+

2 + a+
2 b+

3 ),

q−
23 = 1

(a+
2 )2

[
3(a+

3 )2 + 3a+
3 a−

3 − 2a+
2 a+

3 q+
22 − 2a+

2 a−
3 q+

22 + (a+
2 )2q+

23

]
.

Then, two subcases follow from M15 = 0: (ii.2.1) a+
3 + a−

3 = 0 and (ii.2.2) p+
23 = a+

3 p+
22

a+
2

.

(ii.2.1) If a+
3 + a−

3 = 0, which is combined with the necessary conditions from (ii.1.1) to 
yield the condition IV.
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(ii.2.2) If p+
23 = a+

3 p+
22

a+
2

, then we have V4(ε) = 0 and obtain the 5th generalized Lyapunov 
constant,

V5(ε) = − 5π

128(a+
2 )3

(a+
3 + a−

3 )(a+
2 + p+

22ε
2)
[
2a+

2 M16 + M17ε
2] ε5,

where

M16 = − 7a+
3 b+

2 − a−
3 b+

2 + 4a+
2 b+

3 ,

M17 = 21(a+
3 )2 + 3a+

3 a−
3 − 14a+

2 a+
3 q22 − 2a+

2 a−
3 q+

22 + 8(a+
2 )2q+

23.

Setting M16 = M17 = 0 results in

b+
3 = 7a+

3 b+
2 + a−

3 b+
2

4a+
2

,

q+
23 = − 1

q+
23

[
21(a+

3 )2 + 3a+
3 a−

3 − 14a+
2 a+

3 q+
22 − 2a+

2 a−
3 q+

22

]
,

under which the 6th generalized Lyapunov constant becomes

V6(ε) = 8

105(a+
2 )4

(a+
3 + a−

3 )3(a+
2 + p+

22ε
2)(2a+

2 b+
2 − 3a+

3 ε2 + 2a+
2 q+

22ε
2) ε7 �= 0

with a+
3 + a−

3 �= 0.

The above results give the necessary nilpotent center conditions for system (7) at the origin 
when the origin of the first system of (7) is a cusp. Now we consider the center conditions 
associated with the origin of the first system of (7) being a monodromic singular point with 
multiplicity three if and only if one of the following holds:

a+
2 = b+

2 = 0, b+
3 >

3

4
(a+

3 )2;

b+
2 = 0, a+

2 �= 0, b+
3 >

1

2
(a+

2 )2.

(26)

If b−
2 < 0, the origin in the second system of (7) is a cusp, which is a similar case to that discussed 

above, leading to the condition V in Theorem 1.1. Hence, we assume that one of the conditions 
in (22) holds. Then, the origin in the second system of (7) is also a monodromic singular point.

Setting the second generalized Lyapunov constant (25) zero, we find two cases: either a+
2 =

a−
2 = 0 or a+

2 a−
2 �= 0 when the conditions in (22) and (26) are satisfied. The detailed analysis for 

the two cases are given below.
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3.3. Case 3: a+
2 = a−

2 = 0

The second generalized Lyapunov constant becomes

V2(ε) = 4

3
(p+

22 − p−
22) ε3.

Setting V2(ε) = 0 yields the condition p−
22 = p+

22. Then, the 3rd generalized Lyapunov constant 
is given by

V3(ε) = − π

8

[
3(a+

3 + a−
3 ) + (3p+

23 + 3p−
23 − 2p+

22q
+
22 − 2p+

22q
−
22)ε

2] ε3.

Letting the ε3-order and ε5-order terms in V3(ε) equal zero we obtain the conditions,

a−
3 = − a+

3 ,

p−
23 = 1

3

(− 3p+
23 + 2p+

22q
+
22 + 2p+

22q
−
22

)
.

Then, we have the 4th generalized Lyapunov constant, given by

V4(ε) = 8

45

[
3(b+

3 + b−
3 )p+

22 + 6a+
3 (q+

22 + q−
22) + M18ε

2] ε5,

where

M18 = 6p+
23q

+
22 − 4p+

22(q
+
22)

2 + 6p+
23q

−
22 − 4p+

22q
+
22q

−
22 + 3p+

22q
+
23 − 3p+

22q
−
23.

Setting the ε5-order term in V4(ε) zero yields three necessary center conditions: (i) a+
3 = 0

and b−
3 = b+

3 , which leads to conditions included in the condition VI; (ii) a+
3 = p+

22 = 0, giving 
the condition VII; and (iii) a+

3 �= 0 and q−
22 = 1

2a+
3

(−b+
3 p+

22 + b−
3 p+

22 − 2a+
3 q+

22).

For the case (iii), by M18 = 0 we have

q+
23 = 1

3a+
3

(3b+
3 p+

23 − 3b−
3 p+

23 − 2b+
3 p+

22q
+
22 + 2b−

3 p+
22q

+
22 + 3a+

3 q−
23).

Then, we have the 5th generalized Lyapunov constant, given by

V5(ε) = − 5π

1152(a+
3 )2

(b+
3 − b−

3 )
[
54(a+

3 )3 − a+
3 M19ε

2 − M20ε
4] ε5,

where

M19 = − 7b+
3 (p+

22)
2 − b−

3 (p+
22)

2 − 36a+
3 p+

23 + 12a+
3 p+

22q
+
22,

M20 = − 21b+
3 (p+

22)
2p+

23 + 21b−
3 (p+

22)
2p+

23 − 54a+
3 (p+

23)
2 + 14b+

3 (p+
22)

3q+
22

− 14b−(p+ )3q+ + 36a+p+ p+ q+ − 24a+(p+ )2q− .
3 22 22 3 22 23 22 3 22 23
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Since a+
3 �= 0, we have b+

3 = b−
3 from V5(ε) = 0. Combining the conditions from the subcases 

(i) and (iii), we have the condition VI.

3.4. Case 4: a+
2 a−

2 �= 0

Setting each εk-order term in V2(ε) zero yields the necessary center conditions a−
2 = a+

2 and 
p−

22 = p+
22. Then, the 3rd generalized Lyapunov constant is given by

V3(ε) = − π

8

[
3a+

3 + 3a−
3 − 2a+

2 q+
22 − 2a+

2 q−
22 + (3p+

23 + 3p−
23 − 2p+

22q
+
22 − 2p+

22q
−
22) ε2] ε3.

Letting the ε3-order and ε5-order terms in V3(ε) equal zero we obtain the conditions,

a−
3 = 1

3
(−3a+

3 + 2a+
2 q+

22 + 2a+
2 q−

22),

p−
23 = 1

3

(
3p+

23 + 2p+
22q

+
22 + 2p+

22q
−
22

)
.

Then, 4th generalized Lyapunov constant becomes

V4(ε) = 1

90

[
48a+

2 (b+
3 + b−

3 ) + 16M21ε
2 + 225a+

2 p+
23πε3 + 16M22ε

4 + 225p+
22p

+
23πε5] ε3,

where

M21 = 3b+
3 p+

22 − 3b−
3 p+

22 + 6a+
3 q+

22 − 4a+
2 (q+

22)
2 + 6a+

3 q−
22 − 4a+

2 q+
22q

−
22 + 3a+

2 q+
23 − 3a+

2 q−
23,

M22 = 6p+
23q

+
22 − 4p+

22(q
+
22)

2 − 6p+
23q

−
22 − 4p+

22q
+
22q

−
22 + 3p+

22q
+
23 − 3p+

22q
−
23.

Letting the εk-order terms (k = 3, 5, 6, 7) in V4(ε) equal zero we obtain the following conditions:

b−
3 = b+

3 , p+
23 = 0, q−

23 = 1

3a+
2

[
6a+

3 q+
22 − 4a+

2 (q+
22)

2 + 6a+
3 q−

22 − 4a+
2 q+

22q
−
22 + 3a+

2 q+
23

]
.

Then, M22 is reduced to

M22 = − 6

a+
2

a+
3 p+

22(q
+
22 + q−

22).

If q−
22 = −q+

22, we obtain a−
3 = −a+

3 , yielding the condition VIII. Otherwise, we obtain the 5th 
generalized Lyapunov constant, given by

V5(ε) = − 1

1440a+
2

(q+
22 + q−

22)
[
300(a+

2 )2b+
3 π + 25πM23ε

2 − 6144a+
2 a+

3 p+
22ε

3

− 50p+
22πM24ε

4 − 6144a+
3 (p+

22)
2πε5] ε5,

where
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M23 = 27(a+
3 )2 + 12a+

2 b+
3 p+

22 − 15a+
2 a+

3 q+
22 − 2(a+

2 )2(q+
22)

2 + 3a+
2 a+

3 q−
22

− 2(a+
2 )2q+

22q
−
22 + 12(a+

2 )2q+
23,

M24 = 9a+
3 q+

22 + a+
2 (q+

22)
2 − 12a+

3 q−
22 + a+

2 q+
22q

−
22 − 6a+

2 q+
23.

With b+
3 > 1

2 (a+
2 )2, we have V5(ε) �= 0 when a+

3 p+
22 = 0 and q+

22 + q−
22 �= 0.

To this end, we finish the proof for the necessity of the conditions in Theorem 1.1. Next, we 
prove the sufficiency of these eight nilpotent center conditions.

If the condition I in Theorem 1.1 holds, (7) is reduced to

(ẋ, ẏ) =

⎧⎪⎨⎪⎩
(
y, −(b+

2 x2 + b+
3 x3)

)
, if x ≥ 0,(

y, −b−
3 x3

)
, if x < 0.

(27)

The two systems in (27) are Hamiltonian systems, having respectively the Hamiltonian functions,

I+(x, y) = 1

2
y2 + 1

3
b+

2 x3 + 1

4
b+

3 x4 and I−(x, y) = 1

2
y2 + 1

4
b−

3 x4,

which implies that the condition I+(0, y) ≡ I−(0, y) in Proposition 2.1 is satisfied. So the origin 
of system (27) is a nilpotent center.

Similar to the proof for the condition I, we can derive the Hamiltonian functions (which are 
polynomials similar to the above I±(x, y)) for system (7) with the condition II, or V or VII to 
show that the origin of (7) is a nilpotent center for these three cases.

If the condition III in Theorem 1.1 holds, (7) becomes

(ẋ, ẏ) =
{(

y − a+
3 x3, −b+

2 x2), if x ≥ 0,(
y − a−

3 x3, −b−
2 x2), if x < 0,

(28)

with − 
a−

3
a+

3
= − 

b−
2

b+
2

≡ h > 0, �= 1. Then, system (28) can be rewritten as

(ẋ, ẏ) =
{(

y − a+
3 x3, −b+

2 x2), if x ≥ 0,(
y + ha+

3 x3, hb+
2 x2), if x < 0.

(29)

Then, we apply the integrating factors:

μ+ = 9(a+
3 )2

3(a+
3 )2x3 − 3a+

3 y − b+
2

and μ− = 9(a+
3 )2

−3(a+
3 )2hx3 − 3a+

3 y − b+
2

respectively to the first and second systems of (29) to obtain the first integrals:{
I+(x, y) = −3a+

3 y + b+
2 ln |−3(a+

3 )2x3 + 3a+
3 y + b+

2 |, for x ≥ 0,

I−(x, y) = −3a+y + b+ ln |3h(a+)2x3 + 3a+y + b+|, for x < 0,
3 2 3 3 2
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Fig. 2. Phase portraits for (a) system (27) with b+
2 = 1, b+

3 = −2, b−
3 = 1, (b) system (28) with a+

3 = 1, b+
2 = 2, a−

3 =
−2, b−

2 = −4, and (c) system (30) with a+
2 = 1, a+

3 = 2, b+
2 = 1, b+

3 = −2.

which clearly shows that I+(0, y) ≡ I−(0, y), implying that the origin of the system (29) and so 
the system (28) is a center.

If the condition IV in Theorem 1.1 holds, (7) can be rewritten as

(ẋ, ẏ) =

⎧⎪⎨⎪⎩
(
y − (a+

2 x2 + a+
3 x3), −(b+

2 x2 + b+
3 x3)

)
, if x ≥ 0,(

y − (a+
2 x2 − a+

3 x3), −(−b+
2 x2 + b+

3 x3)
)
, if x < 0,

(30)

which is symmetric with respect to the y-axis, and by Proposition 2.2 we know that the origin of 
(30) is a nilpotent center. Similarly, since (7) is symmetric with respect to the y-axis when the 
condition VI or VIII holds, the origin of system (7) is a nilpotent center.

In the following, we present examples for the above systems (27), (28) and (30) to show global 
phase portraits with a nilpotent center at the origin.

Example 3.2. The global phase portraits of the switching Liénard systems (27), (28) and (30)
with three sets of parameter values show a nilpotent center at the origin, as illustrated in the 
Poincaré disc of Fig. 2.

4. The proof of Theorem 1.2

We recall the notion of Poincaré compactification of switching differential systems. This com-
pactification identifies R2 with the interior of the closed unit Poincaré disc D2 centered at the 
origin of coordinates, and extends the switching differential systems to the boundary of D2, 
which is called the circle of the infinity. The switching manifold is indicated by the dash line 
“− − −” in D2. The singular points on the boundary of Poincaré disc are called infinite singular 
points. More details about the Poincaré compactification for switching polynomial systems can 
be found in [8].

With the results in [29], we have the proposition which characterizes the global center of 
switching polynomial systems.

Proposition 4.1. [Propositions 5, [29]] Consider the switching polynomial system (10) which 
has a unique finite center at the singular point. Assume that the infinity of (10) is not filled of 
278



T. Chen, F. Li and P. Yu Journal of Differential Equations 379 (2024) 258–289
singular points. Then, the center is global if and only if all the infinite singular points in D2, if 
they exist, are such that the local phase portrait of each infinite singular point is consisting of 
two hyperbolic sectors, where the two separatrices are on the circle of the infinity.

Suppose the origin of the switching Liénard system (7) is the unique monodromic finite sin-
gular point. Then, the remaining finite singular points, given by

e+ = (x+, y+) =
(

−b+
2

b+
3

,− (b+
2 )2(a+

3 b+
2 − a+

2 b+
3 )

(b+
3 )3

)
and

e− = (x−, y−) =
(

−b−
2

b−
3

,− (b−
2 )2(a−

3 b−
2 − a−

2 b−
3 )

(b−
3 )3

)
.

in the first and the second systems of (7) must be virtual, i.e., x+ < 0 and x− > 0. Hence, we 
have the necessity conditions:

G+
1 = {b+

2 = 0, b+
3 �= 0},

G+
2 = {b+

2 > 0, b+
3 ≥ 0} (31)

and

G−
1 = {b−

2 = 0, b−
3 �= 0},

G−
2 = {b−

2 < 0, b−
3 ≥ 0}. (32)

Next, we consider the infinite singular point of (7). For studying the dynamical behaviors
in the circle of the infinity, we use the local charts: Uk = {(z1, z2) ∈ D2 : zk > 0} and Wk =
{(z1, z2) ∈ D2 : zk < 0}, k = 1, 2, with the corresponding diffeomorphisms,

φk : Uk → R2, ψk : Wk →R2, (33)

defined by φk(z1, z2) =
(

z2
z1

, 1
z1

)= (u, w) and ψk(z1, z2) =
(

z1
z2

, 1
z2

)= (u, w). Here, the coordi-
nates (u, w) play different roles in the distinct local charts. Thus, the corresponding vector fields 
of (7) in the local charts U1 and W1 are given by

(
u̇

ẇ

)
=
(

−b+
3 + a+

3 u − b+
2 w + a+

2 uw − u2w2

w(a+
3 + a+

2 w − uw2)

)
(34)

and

(
u̇

ẇ

)
=
(

−b−
3 + a−

3 u − b−
2 w + a−

2 uw − u2w2

w(a− + a−w − uw2)

)
, (35)
3 2
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respectively. We derive the possible infinite singular points 
( b±

3
a±

3
, 0
)

or 
( b±

2
a±

2
, 0
)

which are nodes. 

It follows from Proposition 4.1 that the origin of (7) cannot be a global center in these cases. 
Hence, the systems (34) and (35) cannot have these infinite singular points when the origin of (7)
is a global center. Therefore, the conditions (31) and (32) become

G+
1 = {a+

2 = a+
3 = b+

3 = 0, b+
2 > 0},

G+
2 = {a+

3 = 0, b+
2 > 0, b+

3 > 0},
G+

3 = {a+
3 = 0, b+

2 = 0, b+
3 �= 0}

(36)

and

G−
1 = {a−

2 = a−
3 = b−

3 = 0, b−
2 < 0},

G−
2 = {a−

3 = 0, b−
2 < 0, b−

3 > 0},
G−

3 = {a−
3 = 0, b−

2 = 0, b−
3 �= 0}.

(37)

Then we consider the following cases.
(i) Firstly, we consider the case G+

1 ∩G−
1 , for which system (7) becomes a quadratic switching 

Liénard system. Since the expression of the quadratic switching system (7) in W2 is the one in U2

multiplied by −1, the flows in the local phase portrait around the origin of W2 have the opposite 
direction compared to the ones in U2. Thus, we only need to study the dynamics around the 
origin in U2. Then, in the local chart U2 we have the following system,

(
u̇

ẇ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
w + b+

2 u3

b+
2 u2w

)
, if u ≥ 0,

(
w + b−

2 u3

b−
2 u2w

)
, if u < 0,

(38)

where both the two origins of the first and the second system of (38) are nilpotent singular points. 
Note that if the origin of U2 is an infinite singular point, it must come from the combination of 
the two origins of the first and the second systems of (38). Since b+

2 > 0 and b−
2 < 0, it is easy to 

verify that the origin of the first system of (38) is an unstable node while the origin of the second 
one of (38) is a stable node. Thus, it follows from Proposition 4.1 that the origin of (7) cannot be 
a global center.

The above analysis shows that the infinite singular point of the quadratic switching Liénard 
system (7) in U2 does not consist of two hyperbolic sectors. This implies that three is the lowest 
degree of the first and the second systems of the switching Liénard system (7) to have a global 
nilpotent center. Thus, we only need to consider the case G+ ∩ G−, i, j = 2, 3.
i j
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(ii) For the case G+
i ∩ G−

j , i, j = 2, 3, we obtain the following system from (7),

(
u̇

ẇ

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
b+

3 u4 − a+
2 u2w + b+

2 u3w + w2

u2w(b+
3 u + b+

2 w)

)
, if u ≥ 0,

(
b−

3 u4 − a−
2 u2w + b−

2 u3w + w2

u2w(b−
3 u + b−

2 w)

)
, if u < 0,

(39)

in U2 with u ≥ 0 and u < 0, respectively. Since system (7) is a cubic switching system, the 
local qualitative property of the origin of W2 has the same sense with respect to the one in U2. 
Obviously, the origins of the first and second system in (39) in U2 are singular points which are 
linearly zero. In order to understand the local qualitative properties around these two singular 
points, we apply a direct blow-up (u, v) → (u, w) with v = w

u
to eliminate the common factor u, 

yielding

(
u̇

v̇

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
u(b+

3 u2 − a+
2 uv + b+

2 u2v + v2)

(a+
2 u − v)v2

)
, if u ≥ 0,

(
u(b−

3 u2 − a−
2 uv + b−

2 u2v + v2)

(a−
2 u − v)v2

)
, if u < 0,

(40)

where the two origins are singular points with linearly zero. We do a further blow-up (u, v) →
(u, V ) with V = v

u
, to obtain the following system,

(
u̇

V̇

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
u(b+

3 − a+
2 V + b+

2 uV + V 2)

−V (b+
3 − 2a+

2 V + b+
2 uV + 2V 2)

)
, if u ≥ 0,

(
u(b−

3 − a−
2 V + b−

2 uV + V 2)

−V (b−
3 − 2a−

2 V + b−
2 uV + 2V 2)

)
, if u < 0,

(41)

where the common factor u2 has been eliminated.
When (a+

2 )2 − 2b+
3 < 0, for u = 0 the first system of (41) has a saddle at E1 = (0, 0). Going 

back through the change of variables we get that the local phase portrait of the right origin in 
U2 has two hyperbolic sectors and one parabolic sector, see Fig. 3. When (a+

2 )2 = 2b+
3 �= 0, for 

u = 0 the first system of (41) has two singular points at E1 = (0, 0) (a saddle) and at E2 = (
a+

2
2 , 0)

(a saddle-node). Again, going back through the change of variables we find that the local phase 
portrait of the right origin in U2 has two hyperbolic and two parabolic sectors, see Fig. 4. When 
(a+

2 )2 − 2b+
3 > 0, for u = 0 the first system of (41) has three singular points at E1 = (0, 0) (a 

saddle), E2,3 = ( 1
2 (a+

2 ± ((a+
2 )2 − 2b+

3 )1/2, 0
)

(a saddle and a node). Going back through the 
change of variables we obtain that the local qualitative property of the right origin in U2 has two 
hyperbolic and two parabolic sectors, see Fig. 5. In the last two cases the local phase portrait of 
the origin in U2 can only consist of two hyperbolic sectors.

Similarly, if (a−
2 )2 − 2b−

3 < 0, we derive that the local qualitative property around the left 
origin in the second system of (39) has two hyperbolic sectors if and only if (a−)2 − 2b− < 0. 
2 3
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Fig. 3. Local phase portraits around the origin of the local chart U2 with (a+
2 )2 − 2b+

3 < 0 for (a) the first system of (41), 
(b) the first system of (40), and (c) the first system of (39).

Fig. 4. Local phase portraits around the origin of the local chart U2 with (a+
2 )2 − 2b+

3 = 0 for (a) the first system of (41), 
(b) the first system of (40), and (c) the first system of (39).

Fig. 5. Local phase portraits at the origin of the local chart U2 with (a+
2 )2 − 2b+

3 > 0 for (a) the first system of (41), (b) 
the first system (40), and (c) the first system of (39).

By combining the right of origin in the first system of (39) and the left of the origin in the second 
system of (39), the local phase portrait of the origin in U2 consists of two hyperbolic sectors, 
where the two separatrices are on the circle of the infinity. Thus, the switching Liénard system 
(7) can only have a global center at the origin if condition

G ={a±
3 = 0, b+

2 ≥ 0, b−
2 ≤ 0, (a+

2 )2 − 2b+
3 < 0, (a−

2 )2 − 2b−
3 < 0} (42)

holds. Thus, by Theorem 1.1 we have proved Theorem 1.2.
In fact, combining the conditions I, II, V and VII of Theorem 1.1 and the above condition 

G, we obtain the condition G1 of Theorem 1.2. From the condition III of Theorem 1.1, we have 
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a+
3 a−

3 �= 0 which contradicts the condition G, and thus the origin of system (7) cannot be a global 
center. From the conditions IV, VI and VIII of Theorem 1.1 together with the condition G, we 
obtain the condition G2 of Theorem 1.2.

5. The proof of Theorem 1.3

In this section, we prove the existence of 5 small-amplitude limit cycles by perturbing the 
nilpotent origin of the cubic switching Liénard system (7) under the center condition IV. More 
precisely, with the center condition IV, we perturb system (7) to obtain

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
y − (a+

2 x2 + a+
3 x3) + dε9 +

6∑
k=1

εk+1δkx +
5∑

k=1

εk(p+
k2x

2 + p+
k3x

3)

−ε2x − (b+
2 x2 + b+

3 x3) +
5∑

k=1

εk(q+
k2x

2 + q+
k3x

3)

⎞⎟⎟⎟⎟⎟⎠ , if x ≥ 0,

⎛⎜⎜⎜⎜⎜⎝
y − (−a+

2 x2 + a+
3 x3) +

6∑
k=1

εk+1δkx +
5∑

k=1

εk(p−
k2x

2 + p−
k3x

3)

−ε2x − (b+
2 x2 − b+

3 x3) +
5∑

k=1

εk(q−
k2x

2 + q−
k3x

3)

⎞⎟⎟⎟⎟⎟⎠ , if x < 0.

(43)
Denote by one parameter vector

λ∗ = (a+
2 , a+

3 , b+
2 , b+

3 , d, δi,p
±
j2,p

±
j3, q

±
j2, q

±
j3),

i = 1, 2, ..., 6, j = 1, 2, ..., 5. Further, introducing the scaling (x, y, t) → (
ε2y, ε3x, t

ε

)
into (43), 

we obtain a system up to ε6-order terms,

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
−y − b+

2 y2 − b+
3 ε2y3 −

5∑
k=1

εkq+
k2y

2 −
5∑

k=1

εk+2q+
k3y

3

x +
6∑

k=1

εkδky − (a+
2 εy2 + a+

3 ε3y3) −
5∑

k=1

εk+1p+
k2y

2 −
5∑

k=1

εk+3p+
k3y

3

⎞⎟⎟⎟⎟⎟⎠ ,

if y ≥ 0,⎛⎜⎜⎜⎜⎜⎝
−y + b+

2 y2 − b+
3 ε2y3 −

5∑
k=1

εkq−
k2y

2 −
5∑

k=1

εk+2q−
k3y

3

x +
6∑

k=1

εkδky−(a+
2 εy2−a+

3 ε3y3)+dε6−
5∑

k=1

εk+1p−
k2y

2−
5∑

k=1

εk+3p−
k3y

3

⎞⎟⎟⎟⎟⎟⎠ ,

if y < 0.

(44)
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Note that we let the constant term be zero, i.e., d = 0, when we compute εk-order Lyapunov 
constants. By using the generalized Lyapunov constants, we start from the ε-order terms to de-
termine the number of limit cycles. Thus, we need to find εk-order center conditions such that all 
the εk-order Lyapunov constants being zero when we want to obtain more limit cycles by using 
εk+1-order terms. That is to say that the origin of the system is a center up to εk-order, see [41]. 
Finally, we perturb the coefficient d of the constant term to obtain one more small-amplitude 
limit cycle.

More precisely, to prove the existence of small-amplitude limit cycles around the origin, we 
compute the higher-order Lyapunov constants Vjk for j = 1, 2, . . . , 5 and k = 1, 2, . . . , 6. We 
start from k = 1. For a fixed k, we choose appropriate parameter values such that as many as 
possible higher-order Lyapunov constants vanish.

First, for k = 1, we obtain that all ε-order Lyapunov constants are zero when δ1 = 0, i.e., 
Vj1 = 0 for all j .

Next, for k = 2, we have V12 = δ2π = 0 when δ2 = 0. Then, we solve V22 = 4
3 (p−

12 −p+
12) = 0

to obtain

p−
12 = p+

12,

under which the 3rd ε2-order Lyapunov constant becomes

V32 = π

4
a+

2 (q−
12 + q+

12).

Setting q−
12 = −q+

12 yields Vj2 = 0 for all j . So, for k = 2, we can have 2 limit cycles by perturb-
ing δ2 and p−

12 with V32 �= 0.
Now, consider k = 3. We have V13 = 0 with δ3 = 0 and V23 = 4

3 (p−
22 − p+

22). Solving V23 = 0
we have

p−
22 = p+

22.

Further, the 3rd ε3-order Lyapunov constant is obtained as

V33 = π

4
a+

2 (q−
22 + q+

22).

Setting q−
22 = −q+

22 yields Vj3 = 0 for all j , which indicates that for k = 3 we can have 2 limit 
cycles if choosing V33 �= 0 and perturbing δ3 and p−

22.
For k = 4, solving V24 = V34 = 0 we have

p−
32 = p+

32 and p−
13 = 2

3
a+

2 q−
32 + 2

3
a+

2 q+
32 − p+

13,

under which the 4th ε4-order Lyapunov constant becomes

V44 = − 8

45
a+

2 (4q−
32b

+
2 + 4b+

2 q+
32 + 3q−

13 − 3q+
13).

Setting V44 = 0 we have
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q−
13 = −4

3
b+

2 q−
32 − 4

3
b+

2 q+
32 − q+

13,

leading to Vj4 = 0 for all j . So, for k = 4 we can have 3 limit cycles by choosing V44 �= 0 and 
perturbing δ4, p−

32 and p−
13.

For k = 5, we similarly obtain

p−
42 = p+

42

by solving V25 = 0, and

p−
23 = 2

3
q−

32p
+
12 + 2

3
q−

42a
+
2 + 2

3
a+

2 q+
42 + 2

3
p+

12q
+
32 − p+

23

by solving V35 = 0. Then, the 4th ε5-order Lyapunov constant is given by

V45 = − 8

45
a+

2 (4q−
32q

+
12 + 4q−

42b
+
2 + 4b+

2 q+
42 + 4q+

12q
+
32 + 3q−

23 − 3q+
23).

Setting

q−
23 = −4

3
q+

12q
−
32 − 4

3
q−

42b
+
2 − 4

3
b+

2 q+
42 − 4

3
q+

12q
+
32 + q+

23,

under which Vj5 = 0 for all j . This implies that 3 limit cycles can be obtained for k = 4 if 
choosing V45 �= 0 and perturbing δ5, p−

42 and p−
23.

Finally, for k = 6, similarly by solving V16 = V26 = V36 = 0 we obtain

p−
52 = p+

52,

p−
33 = 2

3q−
32p

+
22 + 2

3q−
42p

+
12 + 2

3q−
52a

+
2 + 2

3a+
2 q+

52 + 2
3p+

12q
+
42 + 2

3p+
22q

+
32 − p+

33.

Then, we solve V46 = 0 for q−
33 to obtain

q−
33 = − 4

3a+
2

(q−
32a

+
2 q+

22 + 4q−
42a

+
2 q+

12 + 4q−
52a

+
2 b+

2 + 4a+
2 b+

2 q+
52

+ 4a+
2 q+

12q
+
42 + 4a+

2 q+
22q

+
32 − 6q−

32a
+
3 − 3a+

2 q+
33 − 6a+

3 q+
32),

under which the 5th ε6-order Lyapunov constant is reduced to

V56 = −5π

48
(2a+

2 b+
3 − 3a+

3 b+
2 )(q−

32 + q+
32).

So letting

(2a+
2 b+

3 − 3a+
3 b+

2 )(q−
32 + q+

32) = 0

yields Vj6 = 0 for all j . Therefore, for k = 6, we can obtain 4 limit cycles for choosing V56 �= 0.
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Summarizing the above results, 4 small-amplitude limit cycles can be obtained from the ε6-
order Lyapunov constants. Assume that p+

22 �= 0, a direct computation shows that

det

[
∂(V16,V26,V36,V46)

∂(δ6,p
−
52, q

+
32, q

+
33)

]
= 8π2

45
a+

2 p+
22 �= 0,

which implies that there exists 4 small-amplitude limit cycles by perturbing the parameters, in 
backward, δ6, p−

52, q+
32 and q+

33.
One more small-amplitude limit cycle is obtained by perturbing d , leading to a total 5 small-

amplitude limit cycles. For d and ε sufficiently small, the switching system (44) has a small 
sliding segment on the switching manifold y = 0 with the end points at (0, 0) and (xε, 0), where 
xε = −dε6 is the unique root of the equation ẏ = 0 in the second system of (44). Thus, the sliding 
segment shrinks to (0, 0) when ε goes to zero.

For the point (xe, 0) on the switching manifold y = 0 with xε < xe � 1, we define a bifurca-
tion function,

d(xe, ε) = 
+(xe, ε) − 
+−(xe, ε), (45)

for which has two small positive constants ε1 and ε2 such that 
+(xe, ε) : (0, ε1) → (−ε1, 0)

is the first half-bifurcation function of (44), and 
+−(xε, ε) : (xε, xε + ε2) → (xε − ε2, xε) is the 
second half-bifurcation function derived from the second system of (44) by the transformation 
(x, y, t) → (x, −y, −t). By the polar coordinate transformation x = r cos θ and y = r sin θ , we 
have


+(xe, ε) = V +
1 (ε)xe + O(x2

e ) and 
+−(xe, ε) = V −
0 (ε) + V −

1 (ε)xe + O(x2
e ), (46)

where

V −
0 (ε) = 2dε6 + O(ε7) and V ±

1 (ε) = ±1

2
δ6πε6 + O(ε7), (47)

It follows from (45) and (46) that V06 = −2d and V16|d=0 = δ6π . Hence, we obtain the ε6-order 
Lyapunov constants V06, V16, V26, V36 and V46, which are independent of the parameter vector 
λ∗. Therefore, we have proved the existence of 5 small-amplitude crossing limit cycles near the 
origin of cubic switching Liénard system (7).

To end this section, we provide an example with exact critical parameter vector λ∗ to demon-
strate the existence of 5 small-amplitude limit cycles. To achieve this, we need to find 5 positive 
roots which are solved from the displacement equation (19):

d(ξ) = V0(λ
∗) + V1(λ

∗)ξ + · · · + V4(λ
∗)ξ4 + V5(λ

∗)ξ5 + O(ξ6) = 0. (48)

As discussed above, we have Vj(λ
∗) = Vj6ε

6 + O(ε6), j = 0, 1, . . . , 5. Hence, (48) becomes

d(ξ) = (V06 + V16ξ + · · · + V46ξ
4 + V56ξ

5)ε6 + O(ε7) = 0. (49)

In general, it is a very challenging task to find the perturbed parameter vector to give a numerical 
realization. However, for our system the parameters in the displacement equation are linearly 
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decoupled. Thus, we can obtain these values by perturbing exactly one parameter for one higher-
order Lyapunov constant such that equation (48) has 5 positive roots.

In the following, we construct a concrete example. First, note that the critical parameter vector 
λ∗ given above satisfies that Vj6 = 0, j = 0, 1, . . . , 4, but V56 �= 0, and V56 does not contain any 
non-zero lower-order ε terms. Thus, we can take perturbations in the backward order: on q−

32 for 
V56, on q−

33 for V46, on p−
33 for V36, on p−

52 for V26, on δ6 for V16, and on d for V06. In particular, 
with the help of Maple taking the accuracy up to 60 decimal points, we set the free parameters 
to take the values:

a+
2 = b+

3 = p+
12 = p+

22 = p+
33 = p+

52 = q+
12 = q+

22 = q+
32 = q+

33 = q±
42 = q±

52 = 1,

a+
3 − 3 = b+

2 + 2 = q−
32 + 2 = 0,

(50)

and choose the following values for the perturbed parameters:

d∗ = d − 5 × 10−31, δ∗
6 = δ6 − 3.2 × 10−21,

p−∗
52 = p+

52 + 1.5 × 10−13, p−∗
33 = p−

33 − 8.5 × 10−8,

q−∗
33 = q−

33 + 0.0188.

(51)

With the above perturbed parameter values, we obtain the perturbed ε6-order Lyapunov constants 
as follows:

V06 = −1.0 × 10−30, V16 ≈ 1.0053096491 × 10−20,

V26 ≈ −2.0006218904 × 10−13, V36 ≈ 1.0013826592 × 10−7,

V46 ≈ −0.0100266667, V56 ≈ 6.5449846949,

(52)

for which the displacement equation (49) has 5 positive roots:

ξ1 ≈ 0.0015219219, ξ2 ≈ 7.3120695527 × 10−6, ξ3 ≈ 2.6762403416 × 10−6,

ξ4 ≈ 5.1472016794 × 10−8, ξ5 ≈ 9.9669521943 × 10−11,

(53)
which are approximations of the amplitudes for the bifurcating 5 small-amplitude limit cycles.

6. Conclusion

In this paper, we have studied the nilpotent center problem and the limit cycle bifurcation 
problem for switching nilpotent systems in R2. We have developed a higher-order Poincaré-
Lyapunov method to compute the generalized Lyapunov constants for switching nilpotent sys-
tems. By using this method, we derive the nilpotent center conditions for the origin of the 
switching cubic polynomial Liénard systems. Further, we characterize all the switching cubic 
polynomial Liénard systems to have a global nilpotent center. Finally, we construct a perturbed 
system with one of the center conditions to show the existence of 5 small-amplitude limit cycles 
bifurcating from the nilpotent center, which is a new lower bound of the maximal number of limit 
cycles in such switching cubic Liénard systems with a nilpotent singular point. The methodol-
ogy developed in this paper can be applied to investigate complex dynamics of other nonlinear 
systems with nilpotent singular points.
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