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In this paper, we will analyze the bifurcation dynamics of an in vivo model of Plasmodium
falciparum. The main attention of this model is focused on the dynamics of cross-reactivity
from antigenic variation. We apply the techniques of coupled cell systems to study this model.
It is shown that synchrony-breaking Hopf bifurcation occurs from a nontrivial synchronous
equilibrium. In proving the existence of a Hopf bifurcation, we also discover the condition under
which possible 2-color synchrony patterns arise from the bifurcation. The dynamics resulting
from the bifurcation are qualitatively similar to known behavior of antigenic variation. These
results are discussed and illustrated with specific examples and numerical simulations.
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1. Introduction

Antigenic variation is a successful strategy for
pathogens to evade the immune system [Craig &
Scherf, 2003]. The exact process is not well-
understood yet. We first give a summary of the
currently accepted view on the subject here. Pre-
cursor cells of the immune system detect potential
pathogens via specific chemical determinants, such
as proteins and carbohydrates, on the surfaces of
pathogens or infected cells. These chemical markers
are called epitopes. Once detected, precursor cells
may differentiate into effector cells and eliminate
the potential threat. In the continual battle between
pathogens and the immune system, some pathogens
have evolved to have a wide variety and seemingly
ever changing surface markers. Antigen specific pre-
cursors may fail to recognize them as harmful mate-
rial immediately. This delay in recognition allows

the pathogen population time to grow so that it
can express another surface protein. By the time
the effectors have cleared away one variant, another
variant of the same pathogen would be growing.
This strategy of presenting many different variants
by the pathogens for the purpose of evading the
immune system is called antigenic variation. Dif-
ferent variants can arise from point mutations of
the pathogen, thus giving rise to new variants with
different genotypes. Alternatively, it can arise from
programmed variation of the surface markers. In
this case, the different surface markers are simply
the expression of the same genetic structures.

Plasmodium falciparum is a pathogen capable
of antigenic variation and it causes malaria in
humans. In this paper, we will analyze the bifur-
cation dynamics of an ordinary differential equa-
tion model of this protozoan parasite, originally

†Author for correspondence

1350021-1

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

3.
23

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
W

E
ST

E
R

N
 O

N
T

A
R

IO
 o

n 
04

/1
8/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218127413500211


March 7, 2013 9:7 WSPC/S0218-1274 1350021

B. S. Chan & P. Yu

proposed by Recker et al. [2004]. Research shows
that the variants of P. falciparum presented inside
the hosts are different phenotypes stemming from
the var gene [Turner, 2002]. On the surface of these
different variants are various epitopes. This model
assumes that there are major epitopes that are
unique to each variant and minor epitopes that
are shared across variants. It has been hypothe-
sized that the major epitope from each variant elic-
its longterm CTL response that is variant specific.
On the other hand, the minor epitopes that are
shared by multiple variants elicit transient CTL
response that will cross-react to any strains which
share the minor epitope. The dynamics resulting
from this feature of antigenic variation was the focus
in [Recker et al., 2004] and will be further examined
analytically in this work.

Given that the interactions between P. fal-
ciparum and the immune system are not well
understood, there are mathematical models in the
literature studying the dynamics. Single variant
model of the in-host dynamics has been consid-
ered by Saul [1998] and Gravenor and Lloyd [1998].
Mutation dynamics of multistrain pathogens have
been studied in [De Leenheer & Pilyugin, 2008b].
Furthermore, stochastic models of antigenic varia-
tion have been reviewed in [Frank & Barbour, 2006].
For deterministic models, Recker et al. [2004] pro-
posed a differential equation model, which describes
the effects of antigenic variations on immune effec-
tors and pathogens. This aforementioned model
allows one to connect different sets of differential
equations to examine the effects of immune cross-
protection incited from shared epitopes between
variants. Specific cases from the aforementioned
model have been further studied numerically and
analytically in [Blyuss & Gupta, 2009]. Mitchell
and Carr [2010, 2012] considered the effects of time
delay in the production of cross-reactive immune
cells for the model in [Recker et al., 2004] in their
works.

In this paper, we will add to the study of anti-
genic variation models by examining the bifurcation
structure analytically for a general case described
in [Blyuss & Gupta, 2009]. In Sec. 2, we will
describe the model on antigenic variation described
in [Blyuss & Gupta, 2009]. Next, we will show that
the linear structure for this model can be studied
using the techniques as described by Golubitsky and
Lauterbach [2009] in Sec. 3. In Sec. 4, we use the
simplified linear structure and techniques in [Yu,

2005] to analytically determine the Hopf bifurca-
tion which occurs from the fully synchronous equi-
librium. Numerical simulations showing the earlier
analytic results are provided in Sec. 5. In Sec. 6,
we discuss the biological implications based on
insights gained from the mathematical analysis of
the model.

2. The Model

In 2004, Recker et al. proposed their multivariant
within-host antigenic variation model of malaria,
which was further studied in [Blyuss & Gupta,
2009] and its characteristics are described here. It is
assumed that each variant of the pathogen, repre-
sented by yi, shares minor epitopes with other vari-
ants. Each major variant is unique and we assume
that the major epitope belonging to the variant elic-
its a long-lived immune response zi. Similarly, the
minor epitopes also bring forth immune responses
from the host, but the responses caused by the
minor epitopes wi are assumed to be transient and
cross-reactive. A particular variant i and its inter-
actions with the immune system are described by

dyi

dt
= yi(φ − α1zi − α2wi),

dzi

dt
= β1yi − µ1zi,

dwi

dt
= β2

(
yi +

∑
l∼i

yl

)
− µ2wi.

(1)

In this model, specific variant i of the pathogen is
produced at the constant rate φ, and this pathogen
population is eliminated by the long-lived and
transient immune responses at rates α1 and α2,
respectively. The host immune system produces the
long-lived response at rate β1 when it is stimulated
by yi and it has a natural decaying rate of µ1. We
use l ∼ i to denote the set of all variants that share a
minor epitope with variant i. Given that the tran-
sient response is triggered by any variants of the
pathogen that shares a particular minor epitope,
the growth rate of the transient response is propor-
tional to yi +

∑
l∼i yl at rate β2 and it has a natural

decaying rate of µ2.
As shown in [Recker et al., 2004], this model

can be extended to study the effects of many
major variants with numerous minor epitopes.
The general case can be difficult to analyze with
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analytic methods due to large number of variables.
Potentially, there can be many different configu-
rations based on biological conditions. Mathemat-
ically, these configurations correspond to different
coupling structures consisting of system (1). In this
paper, we will study the case proposed in [Blyuss &
Gupta, 2009] when each variant can have two minor
epitopes and there are finite number of minor
epitope variants.

3. Antigenic Variation Model as a
Product Network

To study the effects of cross-reactivity, one would
describe the dynamics of each variants of P. falci-
parum with the set of differential equations in sys-
tem (1) and couple these systems based on shared
epitopes amongst variants. As stated in [Blyuss &
Gupta, 2009], the simplest nontrivial case is when
each variant of the pathogen has two different minor
epitopes. Even with such few variants and cou-
plings, it is still difficult to analyze the dynamics of
the system analytically. In this section, we will show
that when each variant of the P. falciparum has only
two minor epitopes, the model can be described as
the product network of two all-to-all networks as
described in [Golubitsky & Lauterbach, 2009]. By
recasting the model in a connected network, we can
utilize the methods of coupled cell systems [Golu-
bitsky et al., 2005] to analyze stability and bifurca-
tion of equilibria and their dynamics are studied in
Sec. 4.

To carry out the analysis, we first describe the
theory necessary. In the terminology employed by
Golubitsky and Stewart [2006] and the references
therein, a cell, or node, of the directed graph, repre-
sents a system of ordinary differential equations and
a coupled cell system is a network of nodes coupled
with each other. Couplings between the differential
equation systems are graphically represented using
a digraph. The shape, or label, of a node is used
to indicate a particular system of differential equa-
tions. Let C denote the set of nodes and ∼C denote
an equivalence relation of nodes on C. Similarly, the
shape of the arrow, or a directed edge, indicates the
type of coupling between two nodes. Let E denote
the set of edges and ∼E denote an equivalence rela-
tion of edges on E . For each e ∈ E , the functions
H : E → C and T : E → C denote the node at
the head and tail of e, respectively. Two arrows are
equivalent if they have equivalent tails and heads

(i.e. for e1, e2 ∈ E , e1 ∼E e2 ⇒ H(e1) ∼C H(e2) and
T (e1) ∼C T (e2)).

In general, the framework of coupled cell sys-
tems allows for different types of nodes and cou-
plings mixed together in one system. A system that
has only one type of node is called homogenous and
similarly, a system with only one type of arrow is
called regular. In other words, a regular homogenous
n-node network is composed of identical systems
of differential equations which are coupled together
with identical coupling terms.

Using the method described in [Golubitsky &
Lauterbach, 2009], any two coupled cell systems
can be formed as a product network. Suppose that
N1 and N2 are two regular homogenous coupled
cell networks with node sets C = {c1, . . . , cn1} and
D = {d1, . . . , dn2}, respectively. We form a product
network N = N1 � N2 by replacing each node ci

in N1 by a copy of N2. Let pij represent the node
in N that is from the jth node in the copy of N2

which replaces the ith node in N1. There is a cou-
pling from node pij to plj if and only if there is a
coupling from ci to cl in N1. Furthermore, there is
a coupling from pij to pil if and only if there is a
coupling from dj to dl. This convention for forming
a product network allows for the nodes as well as
the couplings from N1 and N2 to be distinct from
each network.

Applying the aforementioned theory in the con-
text of the antigenic variation models [Recker et al.,
2004; Blyuss & Gupta, 2009], each node represents
the differential equations in system (1), which in
turn describes the dynamics for a particular vari-
ant i of the pathogen. As mentioned earlier, when
two major variants share a variant of the minor
epitope, they are coupled with each other. Based
on the third equation in system (1), the coupling
between any variants must be the same. Since there
is only one set of differential equations and one kind
of couplings, any coupled cell network formed by
coupling copies of system (1) together would be a
regular homogenous coupled cell network. For the
case when there are two minor epitopes, we suppose
that there are n1 classes with the first minor epitope
and n2 classes with the second minor epitope.

In the next theorem, we will show that the
model of antigenic variation can be constructed
through the product networks of two all-to-all con-
nected networks. Given that the digraphs for the
networks constructed using the following theorem
lack the self-couplings on each node that are present
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in the digraphs of the networks shown in [Blyuss &
Gupta, 2009], we will show in Theorem 2 that
the networks are ODE-equivalent as described in
[Dias & Stewart, 2005].

Theorem 1. Suppose there are two minor epitopes
for each variant of the pathogen and there are n1

and n2 classes for each minor epitope, respectively.
Let N1 be an n1-node all-to-all connected network
and similarly let N2 be an n2-node all-to-all con-
nected network. Let nodes in N1 and N2 be rep-
resented by system (1). Then, the product network
N = N1 � N2 satisfies the biological requirement
as set out in [Blyuss & Gupta, 2009]. That is,
each variant which shares a minor epitope must be
coupled.

Proof. We label the nodes of N1 as c1, . . . , cn1

and those of N2 as d1, . . . , dn2 . To construct N =
N1 �N2, we replace the ith node in N1 with a copy
of N2. There are n1n2 nodes in N and we denote
these new nodes as pij, with index i corresponding
to the ith node in N1 that has been replaced with
N2. The index j refers to the jth node in N2 which
replaces the ith node in N1.

The rule in creating a product network dic-
tates that there is a coupling from pij to pil if and
only if there is a coupling from dj to dl. This rule
implies that all nodes with the same index i must
have a coupling between them. Since nodes having
the same index i must share the same variant of a
minor epitope, this rule and the fact that N2 is an
all-to-all connected network ensure that all nodes
sharing a variant of the minor epitope belonging to
N2 are coupled. With the rules regarding the sec-
ond index, there is a coupling from node pij to plj

if and only if there is a coupling from ci to cl in
N1. Again, this rule and the fact that N1 is also an
all-to-all connected network ensure that all nodes
sharing the variant of minor epitope in N1 must be
coupled. Hence, we have shown that all nodes that
share a variant minor epitope would share a cou-
pling as described in [Blyuss & Gupta, 2009]. �

We provide an example of applying Theorem 1
in Fig. 1. Two 2-node all-to-all connected networks
are combined to represent the dynamics with four
variants and each having two minor epitopes. The
same dynamics are described by a different example
in [Blyuss & Gupta, 2009], but the digraph shown
in that paper has self-couplings for each node that
are not present in our work. While the representing

Fig. 1. An example of forming a new network with two other
networks based on Theorem 1: N1 and N2 are both 2-node
all-to-all connected networks; and the resulting network has
four nodes in the network.

digraphs differ, we will show that these two repre-
sentations are equivalent.

As mentioned by Golubitsky et al. [2005], two
different digraphs representing coupled cell systems
can have the same admissible vector fields and such
networks are called ODE-equivalent. Let x ∈ R

3,
then the admissible vector fields for the represen-
tation shown in [Blyuss & Gupta, 2009] have the
form

H(x1,x2,x3,x4)

= (h(x1,x1,x2,x4), h(x2,x2,x1,x2),

h(x3,x3,x2,x4), h(x4,x4,x3,x1)),

where h : (R3)4 → R
3 is a smooth function. For the

system shown in Fig. 1, the admissible vector fields
take the form

F (x1,x2,x3,x4) = (f(x1,x2,x4), f(x2,x1,x2),

f(x3,x2,x4), f(x4,x3,x1)),

where f : (R3)4 → R
3 is a smooth function. One

can see that the set {H} of all H is the same
as the set of {F} of all F . For any given f , we
can set h(xi,xi,xj ,xk) = f(xi,xj ,xk), so clearly
{H} ⊆ {F}. Conversely, for any given h we can set
f(xi,xj ,xk) = h(xi,xi,xj ,xk), so that {F} ⊆ {H}.
Hence, we have shown that {F} = {H} and thus
shown that the two formulations of the networks
are ODE-equivalent in the sense of Dias and Stew-
art [2005]. In general, we can summarize the equiv-
alence between the systems formed in Theorem 1
and the networks formed in [Blyuss & Gupta, 2009]
in the next theorem.
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Theorem 2. Suppose N1 and N2 are all-to-all con-
nected networks and each has n1 and n2 nodes,
respectively. Then, any network N = N1 � N2

formed using Theorem 1 describes the same Sn1 ×
Sn2 model of antigenic variation as described in
[Blyuss & Gupta, 2009].

Proof. A direct comparison of the digraph repre-
senting N and the one representing that in Sn1 ×
Sn2 system will show that they only differ by
the lack of self-couplings in the digraph represent-
ing N . We can repeat our earlier argument for
ODE-equivalence between the examples in Fig. 1
and the same as the example shown in [Blyuss &
Gupta, 2009] for networks of any size. With ODE-
equivalence and each node in the networks repre-
senting the same system (1), the system trivially
describes the same model of antigenic variation as
needed. �

In studying this antigenic variation model, N1

and N2 have the same type of nodes and coupling
structures, so N1 � N2 is the same as N2 � N1.
For the sake of clarity and convenience, we intro-
duce new index notations for systems formed under
Theorem 1. Suppose N = N1 � N2, then we form
the system as

dyij

dt
= yij(φ − α1zij − α2wij),

dzij

dt
= β1yij − µ1zij ,

dwij

dt
= β2


yij +

n∑
l∈Ii

ylj +
m∑

l∈Jj

yil


− µ2wij,

(2)

where i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}. Let xij =
(yij, zij , wij)T and let Ii and Jj represent index
sets consisting of the indices which are connected
to node ij via the first and the second positions,
respectively. We define the function F : R

3 → R
3

such that the vector differential equation

dxij

dt
= F(xij ,xIi,j,xi,Jj ) (3)

represents the general network formed in
Theorem 1.

4. Stability and Bifurcation Analysis

The system formed based on Theorem 1 has 2n1n2

equilibria [Blyuss & Gupta, 2009]. Of all these

equilibria, there are two fully synchronous equilib-
ria, given by

x∗
1 = (y∗1, z

∗
1, w

∗
1)

T = (0, 0, 0)T , and

x∗
2 = (y∗2, z

∗
2, w

∗
2)

T

=
(

φµ1µ2

α1β1µ2 + ncα2β2
,

β1φµ2

α1β1µ2 + ncα2β2
,

β2φµ1

α1β1µ2 + ncα2β2

)T

,

where x∗
i represents the equilibrium expression for

each node and nc = n1 + n2 − 2 denotes the num-
ber of connections per node. Clearly, x∗

1 corresponds
to trivial dynamics for a biological model. We will
investigate the stability at these equilibria as well
as possible bifurcations from these equilibria. Sta-
bility of the synchronous equilibria will be analyzed
using the product network structure and bifurca-
tions will be analyzed based on balanced coloring
and quotient networks.

4.1. Local stability near x∗
1

To understand the stability of the two synchronous
equilibria, we describe the Jacobian structure of a
system formed using product networks. Suppose N1

and N2 are two coupled cell systems with A1 and
A2 as the respective adjacency matrix. Based on the
adjacency matrices, linearized internal and coupling
dynamics, we can directly find the expression of the
Jacobian at any fully synchronous equilibria [Gol-
ubitsky & Lauterbach, 2009]. If N1 has n1 nodes
and N2 has n2 nodes, then the Jacobian matrix for
N = N1 � N2 can be written as

J = η ⊗ Ir1 ⊗ Ir2 + γ1 ⊗ A1 ⊗ Ir2 + γ2 ⊗ Ir1 ⊗ A2,

where ⊗ denotes tensor products between two
matrices, η ∈ R

k×k is linearized internal dynamics
of N2 and γ1, γ2 ∈ R

k×k are the linearized coupling
dynamics in networks N1 and N2, respectively. Fur-
thermore, the eigenvalues of J are the same as the
eigenvalues of

Mu,v = η + uγ1 + vγ2, (4)

where u ∈ spec(A1) and v ∈ spec(A2). In other
words, one knows the entire eigenvalue structure
of a product network system by only knowing the
linearized internal dynamics, linearized coupling
dynamics, and the eigenvalues of the adjacency
matrices of N1 and N2.
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In application to antigenic variation model, we
shall now find the linearized internal dynamics, lin-
earized coupling dynamics, and the eigenvalues of
the adjacency matrices of N1 and N2. Through a
direct calculation, the linearized internal dynamics
of each node is

η = (dF)xij =




φ − α1z − α2w −α1y −α2y

β1 −µ1 0

β2 0 −µ2




and the linearized coupling dynamics is

γ = (dF)xIi,j
= (dF)xi,Jj

=




0 0 0

0 0 0

β2 0 0


.

As for the eigenvalues of the adjacency matrices, we
established in Theorem 1 that N1 and N2 must be
all-to-all connected networks for the antigenic varia-
tion model. An n-node all-to-all network adjacency
matrix has the form

An =




0 1 1 . . . 1

1 0 1 . . . 1
...

. . .
...

1 . . . 0 1

1 . . . 1 0




∈ R
n×n.

We now describe the eigenvalues of An in the fol-
lowing lemma.

Lemma 1. The eigenvalues for the adjacency
matrix of an n-node all-to-all coupled are n− 1 and
−1. The eigenvalues n − 1 and −1 have multiplici-
ties 1 and n − 1, respectively.

Proof. Since the row sum for each row in An is n−1,
n−1 is going to be an eigenvalue with (1, 1, . . . , 1)T

as its eigenvector. Furthermore, a direct calculation
shows that −1 is also an eigenvalue and its associ-
ated n − 1 eigenvectors are



−1

1

0

0
...

0




,




−1

0

1

0
...

0




, . . . ,




−1

0

0

0
...

1




.

Therefore, the eigenvalue n−1 has multiplicity of 1
and the eigenvalue −1 has multiplicity of n−1. �

Since the linearized coupling for N1 and N2 are
the same, we can simplify Eq. (4) to

Mu,v = η + (u + v)γ.

In general, each Mu,v block has the form

Mu,v =




φ − α1z − α2w −α1y −α2y

β1 −µ1 0

(1 + u + v)β2 0 −µ2


. (5)

Given that spec(An1) = {n1 − 1,−1} and
spec(An2) = {n2 − 1,−1}, we only need to analyze
the eigenvalues of Mn1−1,n2−1, Mn1−1,−1, Mn2−1,−1,
and M−1,−1 to know all the eigenvalues for J at
each synchronous equilibrium. Instead of analyzing
the eigenvalues of an n1n2 × n1n2 matrix, we have
reduced the analysis to only four 3 × 3 matrices at
a synchronous equilibrium.

Theorem 3. The trivial equilibrium x∗
1 is always

unstable.

Proof. At x∗
1, the general Mu,v block for our system

becomes

Mu,v(x∗
1) =




φ 0 0

β1 −µ1 0

(1 + u + v)β2 0 −µ2


.

Each Mu,v block is lower triangular, so φ,−µ1

and −µ2 are the roots of the corresponding char-
acteristic polynomial regardless of the value of u
and v. Given that these constants are positive
for a biologically realistic model, there is always
an unstable root φ. Hence, the system is always
unstable at x∗

1. �

4.2. Local stability near x∗
2

We have shown in Theorem 3 that the trivial equi-
librium x∗

1 is always unstable. More importantly, we
showed that the real part of any eigenvalues cannot
be zero at this equilibrium for biologically realistic
conditions (i.e. positive parameters). Hence, there
would be no bifurcation from this equilibrium. In
this section, we show in Theorem 4 that x∗

2 can be
asymptotically stable.

Theorem 4. The nontrivial equilibrium x∗
2 is

locally asymptotically stable for appropriately small
values of α2β2.
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Proof. At x∗
2, the Mu,v block becomes

Mu,v(x∗
2) =




0 −α1y
∗
2 −α2y

∗
2

β1 −µ1 0

(1 + u + v)β2 0 −µ2


,

and the corresponding characteristic polynomial is

λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 = µ1 + µ2,

a2 = α1β1y
∗
2 + α2β2y

∗
2(1 + u + v) + µ1µ2,

a3 = α1β1µ2y
∗
2 + α2β2µ1y

∗
2(1 + u + v).

By the Routh–Hurwitz criterion, the equilibrium x∗
2

is asymptotically stable at x∗
2 if a1 > 0, a3 > 0, and

a1a2 − a3 > 0. Through a direct calculation, the
expression a1a2 − a3 is simplified to

a1a2 − a3 = (α1β1µ1 + (1 + u + v)α2β2µ2)y∗2

+ µ1µ2(µ1 + µ2).

Clearly, the expressions for a1, a3, and a1a2−a3 are
all positive for u, v, |u + v + 1| > 0. We know from
Lemma 1 that u ∈ spec(An1) = {n − 1,−1} and
v ∈ spec(An2) = {m − 1,−1}. For any nontrivial
case of the system, Mn1−1,n2−1, Mu,−1, and M−1,v

will always produce eigenvalues with negative real
part.

Given that the eigenvalues from the other three
blocks must all have negative real part, we focus on
M−1,−1. When u, v = −1, a3 and a1a2 − a3 become

a3 = (α1β1µ2 − α2β2µ1)y∗2
and

a1a2 − a3 = (α1β1µ1 − α2β2µ2)y∗2

+ µ1µ2(µ1 + µ2).

It is easy to see that for small enough combina-
tions of α2β2µ2, the stability condition from Routh–
Hurwitz criterion is satisfied. Therefore, x∗

2 can be
locally asymptotically stable for small values of
α2β2µ2. �

4.3. Bifurcation analysis

To analyze the bifurcations from the synchronous
nontrivial equilibrium x∗

2, we introduce the con-
cepts of balanced coloring and quotient network
from [Golubitsky et al., 2005] to aid the process.

The notion of balanced coloring is related to the
inputs of each node and finding patterns of syn-
chrony for the nodes in a coupled cell system. To
start, we need to define the set of inputs for each
node in the network.

Definition 4.1. For c ∈ C, the input set of c is

I(c) = {e ∈ E : H(e) = c}.

An element of I(c) is called an input edge or input
arrow of c.

Definition 4.2. The relation ∼I of input equiva-
lence on C is defined by c ∼I d if and only if there
exists an arrow type preserving bijection

β : I(c) → I(d).

That is, for every input arrow i ∈ I(c)

i ∼E β(i).

Any such bijection β is called an input isomorphism
from node c to node d.

At a synchronous equilibrium, all the nodes
have the same states. When subsets of nodes are
synchronized with each other, these nodes may be
equilibria, periodic or even chaotic states, forming
a pattern of synchrony or a polysynchronous sub-
space. For a given polysynchronous subspace, we
can define an equivalence relation �� such that the
subspace is defined as

∆�� = {x ∈ P : c �� d ⇔ xc = xd},

where P denotes the appropriate phase space for
x. This equivalence relation partitions the nodes in
synchrony into equivalence classes and it forms the
polysynchronous subspace. We can define a specific
type of equivalence relations based on the inputs
received by each node [Golubitsky et al., 2005]:

Definition 4.3. Suppose a coupled cell system is
associated with digraph G. Let the node set C denote
the set of nodes of G and let E denote the set of edges
of G. An equivalence relation �� on the node set C is
balanced if for every c, d ∈ C with c �� d, there exists
an input isomorphism β such that T (i) �� T (β(i))
for i ∈ I(c), where T (i) is a function denoting the
node at the end of edge i and I denotes the input
set for c.

There can be many different equivalence rela-
tions for a given network. Based on a given balanced
equivalence relation, one could associate a color for
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each class of nodes. Hence, a balanced relation ��
with k classes is equivalent to a balanced k-coloring
of a digraph.

The notion of balanced equivalence is impor-
tant in simplifying a coupled cell system. Based on
a balanced equivalence relation �� on a network N ,
we can always reduce the system to a quotient net-
work N��. The dynamics of the reduced network can
be lifted to the original network [Golubitsky et al.,
2005]. In other words, finding a balanced coloring
allows one to analyze a reduced quotient system
and any dynamics of the simpler system must also
be in the original system. Suppose the network N
has the node set C = {c1, . . . , cn} and �� is a bal-
anced equivalence relation on N with m classes. We
outline the steps to construct the quotient network
N�� from N :

(1) Let c denote the ��-equivalence class of c ∈ C.
The nodes in C�� are the ��-equivalence classes
in C; that is,

C�� = {c : c ∈ C}.

Thus we obtain C�� by forming the quotient
of C by ��, that is, C�� = C/ ��.

(2) Define

c ∼C�� d ⇔ c ∼C d.

The relation ∼C�� is well defined since ��
refines ∼C .

(3) Let S ⊂ C be a set of nodes consisting of pre-
cisely one node c from each ��-equivalence class.
The input arrows for a quotient node c are iden-
tified with the input arrows in node c, where
c ∈ S, that is, I(c) = I(c).

When viewing the arrow i ∈ I(c) as an
arrow in I(c), we denote that arrow by i. Thus,
the arrows in the quotient network are the pro-
jection of arrows in the original network formed
by the disjoint union

E�� =
⋃̇
c∈S

I(c).

The definition of the quotient network
structure is independent of the choice of the
representative nodes c ∈ S.

(4) Two quotient arrows are equivalent when the
original arrows are equivalent. That is,

i1 ∼E�� i2 ⇔ i1 ∼E i2,

where i1 ∈ I(c1), i2 ∈ I(c2), and c1, c2 ∈ S.

(a) (b)

Fig. 2. Two different 2-coloring possible for the S2 × S2

formulation of the system where each node represents
system (2).

(5) Define the heads and tails of quotient arrows by

H(i) = H(i) and T (i) = T (i).

(6) For e1, e2 ∈ E��, it is easy to verify that the
quotient network satisfies that e1 ∼E�� e2 ⇒
H(e1) ∼C H(e2) and T (e1) ∼C T (e2). The quo-
tient network is independent of the choice of
nodes in S because �� is balanced.

In the above procedure, one node is chosen from
each equivalence class in determining the arrow
structure. Since all nodes in the same class of a
balanced relation have isomorphic input sets, the
choice of the nodes in each class of N does not mat-
ter. Mathematical details of constructing a quotient
network from a coupled cell system can be found in
[Golubitsky et al., 2005].

For a given network, there can be many differ-
ent k-colorings. For example, the network in Fig. 1
can have two different 2-coloring patterns and these
patterns are illustrated in Fig. 2. In general, a net-
work that has been reduced to its 2-coloring quo-
tient network has the form in Fig. 3. Given that
dynamics of the quotient network lifts to the orig-
inal network, we will analyze the general 2-color
quotient network with each node representing sys-
tem (2). We will show that synchrony-breaking
Hopf bifurcation occurs in the antigenic variation
model. Each node of network in Fig. 3 represents

Fig. 3. Minimizing the number of arrows used in Fig. 2 with
si representing the number of self-connections and mi the
number of external connections.
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dyi

dt
= yi(φ − α1zi − α2wi),

dzi

dt
= β1yi − µ1zi,

dwi

dt
= β2((si + 1)yi + miyj) − µ2wi,

(6)

where i denotes the index for one node and j
denotes the index for the other node in Fig. 3.

Suppose x��
i represents the equilibrium expression

for each node of the quotient network. The point
x��

1 = (0, 0, 0)T is the synchronous trivial equilib-
rium and the synchronous nontrivial equilibrium
point x��

2 is given by

x��
2 =




y��
2

z��
2

w��
2


 =




φµ1µ2h

φβ1µ2h

φβ2µ1k


,

where

h =
α1β1µ2 + α2β2µ1(s1 + s2 − nc + 1)

α2
1β

2
1µ

2
2 + α1β1µ2α2β2µ1(s1 + s2 + 2) + α2

2β
2
2µ

2
1((s1 + 1)(s2 + 1) − m1m2)

and

k =
α1β1µ2nc + α2β2µ1((s1 + 1)(s2 + 1) − m1m2)

α2
1β

2
1µ

2
2 + α1β1µ2α2β2µ1(s1 + s2 + 2) + α2

2β
2
2µ

2
1((s1 + 1)(s2 + 1) − m1m2)

,

are constants by the parameters of the system.
These terms are results of the configuration of the
2-color quotient network.

The nontrivial equilibrium is always positive for
the system formed according to Theorem 1 because
of its configuration, but this property does not
hold for all 2-color quotient networks for the sys-
tem. With certain combination of the parameters,
the nontrivial equilibrium for the reduced system
can have negative components due to the terms
(s1 + s2 − nc + 2) and ((s1 + 1)(s2 + 1)−m1m2) in
the expressions for h and k. Different configuration
of systems formed using system (2) resulting in pos-
sible negative values for the nontrivial equilibrium is
consistent with the results in [De Leenheer & Pilyu-
gin, 2008a]. To keep our analysis biologically realis-
tic, we assume that the combination of parameters
and the number of arrows for the system produce a
positive nontrivial equilibrium. In other words, we
now assume that the choice of parameters and con-
figuration always give positive h and k.

Based on the aforementioned assumption, we
will analyze possible bifurcations for system (6).
Conditions for Hopf bifurcation are stated in the
following theorem.

Theorem 5. For system (6), 2-color synchrony-
preserving bifurcations cannot occur from x��

2 . If

α1β1µ2

α2β2µ1
> nc − (1 + s1 + s2) >

α1β1µ1

α2β2µ2
, (7)

then synchrony-breaking Hopf bifurcation occurs
from x��

2 when

φ =
µ1 + µ2

h(α2β2µ2(nc − (1 + s1 + s2)) − α1β1µ1)
.

Proof. The Jacobian for the 2-color quotient sys-
tem is

J =

(
η + s1γ m1γ

m2γ η + s2γ

)
,

where η(x��
i , φ) is the matrix of linearized internal

dynamics and γ(x��
i , φ) is the matrix of the lin-

earized coupling dynamics. This Jacobian matrix
has the same structure as the case studied in [Gol-
ubitsky et al., 2005]. We see that nc = s1 + m1 =
s2 + m2. Let v ∈ R

3, then

J

(
v

v

)
=

(
(η + ncγ)v

(η + ncγ)v

)

and

J

(
m1v

−m2v

)
=

(
(η + (s1 + s2 − nc)γ)m1v

−(η + (s1 + s2 − nc)γ)m2v

)
.

Hence, the combined eigenvalues of η + ncγ and
η + (s1 + s2 − nc)γ are the eigenvalues of J .

Given that nc, s1 + s2 − nc ∈ Z, we shall study
the eigenvalues for the general matrix η + nγ for
any n ∈ Z. The corresponding characteristic poly-
nomial for η + nγ block is

λ3 + a1λ
2 + a2λ + a3 = 0,
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where

a1 = µ1 + µ2,

a2 = φµ1µ2h(α1β1 + α2β2(1 + n)) + µ1µ2,

a3 = φµ1µ2h(α1β1µ2 + α2β2µ1(1 + n)).

By the Routh–Hurwitz criterion, the x��
2 is asymp-

totically stable if a1 > 0, a3 > 0, and a1a2−a3 > 0.
Through a direct calculation, the expression a1a2 −
a3 simplifies to

a1a2 − a3 = φµ1µ2h(α1β1µ1 + (1 + n)α2β2µ2)

+ µ1µ2(µ1 + µ2). (8)

Clearly, the expressions for a1, a3, and a1a2−a3 are
all positive for n > 0. For any formulation of the sys-
tem, all the eigenvalues of the block η + ncγ always
have negative real part. Given that (v,v)T ∈ ∆ =
{(x,x)T ∈ (R3)2} is the eigenvector associated with
the η + ncγ block, we will not have any synchrony
preserving bifurcation from x��

2 .
We now focus our attention on the η + (s1 +

s2 −nc)γ block to find possible Hopf bifurcation. A
Hopf bifurcation occurs if the conditions a1 > 0 and
a3 > 0 hold true while a1a2 − a3 crosses from the
positive to the negative as a parameter of the sys-
tem varies [Yu, 2005]. For all parameter values, a1

is always positive and a3 is positive by the assump-
tion in the first inequality of (7). Hence, the Hurwitz
conditions for local stability are satisfied.

For the bifurcation analysis, we choose φ as the
bifurcation parameter. We see that for small enough
φ, a1a2 − a3 is necessarily positive. For bifurcation
to occur, the expression

φµ1µ2h(α1β1µ1 + (1 + s1 + s2 − nc)α2β2µ2)

+ µ1µ2(µ1 + µ2)

must cross from positive to negative. Given that
all the parameters of the system are positive, the
previous expression can only be negative if

α1β1µ1

α2β2µ2
< nc − (1 + s1 + s2).

Hence, we require the second inequality of Eq. (7).
As φ increases, the system reaches the critical point
when a1a2 − a3 = 0. Given that φ is linear in
a1a2 − a3, we can isolate φ in a1a2 − a3 = 0
to obtain the bifurcation condition. Because the
eigenvector associated with η + (s1 + s2 − nc)γ is
(m1v,−m2v)T and it is obviously not part of the

synchrony subspace. Therefore, there can only be
synchrony-breaking bifurcation from x��

2 . �

For the 2-coloring shown in Fig. 2(a), nc = 2,
si = 1 and mi = 1. A direct calculation shows
that 2 − (1 + 1 + 1) = −1. Since all the param-
eters are positive constants, the necessary condi-
tion in (7) cannot be satisfied and this pattern does
not occur via Hopf bifurcation. On the other hand,
the 2-coloring shown in Fig. 2(b), nc = 2, si = 0
and mi = 2 and the necessary condition can be
satisfied based on the selection of parameters. The
synchrony-breaking Hopf bifurcation from x��

2 to
this pattern will be considered numerically in the
next section.

5. Numerical Simulations

In this section, we use numerical tools to demon-
strate the analytic results obtained in earlier sec-
tions. For any system formed by Theorem 1, we
have shown in Theorem 5 that there exists a 2-color
pattern associated with a synchrony-breaking Hopf
bifurcation from the nontrivial synchronous equi-
librium. To show these analytical results, we fix the
parameters at α1 = 10−3, α2 = 10−3, β1 = 10−4,
β2 = 10−4, µ1 = 1/100 and µ2 = 1/50 [Blyuss &
Gupta, 2009] and use φ as the bifurcation parame-
ter as shown in Theorem 5.

5.1. System with four strains

In Fig. 4, we see that for φ = 0.5 the system
in Fig. 2 is at the nontrivial equilibrium. As we
increase the bifurcation value to φ = 1.5, we see
that oscillations from synchrony-breaking bifurca-
tion occur as shown in Fig. 5. Clearly, nodes 11
and 22 are synchronized and nodes 12 and 21 are
also synchronized. Based on this configuration, the
inequality in (7) is satisfied with our selection of
parameters. We also see that these two sets of nodes
are out of phase by T/2, where T is the period
of the periodic solution. These results agree with
the synchrony-breaking subspace being supported
by (m1v,−m2v)T . Given that m1 = m2 = 2 in
this case, the amplitudes of the oscillations for the
nodes are also in agreement with the earlier theo-
retical results.

5.2. System with eight strains

To show that the method presented in this paper
works for larger systems, we form a system with
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Fig. 4. Simulated pathogen populations (yij) of the system shown in Fig. 1 for φ = 0.5: A nontrivial synchronous equilibrium.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4
x 10

5

C
el

l 1
1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10
x 10

5

C
el

l 1
2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4
x 10

5

C
el

l 2
2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4
x 10

5

C
el

l 2
1

t

Fig. 5. Simulated pathogen populations (yij) of the system shown in Fig. 1 for φ = 1.5: Hopf bifurcation.
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Fig. 6. A network modeling the eight strains formed by two networks with n1 = 2 and n2 = 4.

n1 = 2 and n2 = 4. This configuration is depicted in
Fig. 6. Numerical simulations of this configuration
are shown in Figs. 7 and 8. The solutions shown
in these figures are in periodic synchrony that is
in accordance to the configurations in Figs. 9(a)

and 9(b), respectively. The two different color pat-
terns in Fig. 9 are produced using different initial
conditions.

The two patterns in Fig. 9 both have the quo-
tient parameters s1 = s2 = 1. Hence, the number
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Fig. 7. Simulated pathogen populations (yij) of the system shown in Fig. 6 for φ = 1: 2-color pattern, in agreement with
Fig. 9(a).
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Fig. 8. Simulated pathogen populations (yij) of the system shown in Fig. 6 for φ = 1: 2-color pattern, in agreement with
Fig. 9(b).

(a) (b)

Fig. 9. These are two synchrony patterns consistent with the results found analytically in Theorem 5 and numerical results
in Figs. 7 and 8. These patterns correspond to s1 = s2 = 1 and m1 = m2 = 3 for the 2-color quotient network.

of white nodes coupled to a white node is the same
number of black nodes coupled to a black node for
all the aforementioned patterns. In the numerical
simulations of these cases [Figs. 9(a) and 9(b)], the
solutions for the two classes are out of phase by half
the period. The phase shifted solutions here agree

with the results for the 4-strain system as well as
the work by Golubitsky et al. [2005, Corollary 9.3].

6. Conclusions and Discussions

In our mathematical analysis, we have shown in
Theorem 1 that the general system described in
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[Blyuss & Gupta, 2009] can be formulated using
the product network method discussed in [Golu-
bitsky & Lauterbach, 2009]. The digraphs used in
this paper to represent the networks are differ-
ent from those used by Blyuss and Gupta [2009],
but they represent the same system because these
systems are equivalent in the sense of [Dias &
Stewart, 2005]. The formulation of the model as
two all-to-all networks allows us to analyze the
linear stability at any fully synchronous equilib-
rium. Instead of directly dealing with an n1n2 ×
n1n2 matrix, we have reduced the analysis to
four 3 × 3 matrices. Analytically, it is difficult to
determine the eigenvalues for large matrices. Our
reduction allows one to directly analyze the stabil-
ity at the trivial equilibrium. As stated in Theo-
rem 3, the trivial synchronous equilibrium is always
unstable. This result is important because we have
shown that any possible dynamics from a fully syn-
chronous equilibrium must arise from the nontrivial
equilibrium.

We have also obtained the necessary condi-
tion in (7) for the nontrivial equilibrium to be
stable and that for Hopf bifurcation to occur in
Theorem 5. In the proof, we have shown that
any type of synchrony-preserving dynamics cannot
arise form the nontrivial synchronous equilibrium
through bifurcation. Mathematically, we have ruled
out the possible dynamics. By ruling out synchrony-
preserving bifurcation in this model, we have shown
that the bifurcation dynamics is consistent with this
biological behavior for antigenic variation. As stated
in [Craig & Scherf, 2003], it is important that vari-
ants are not expressed at the same time for anti-
genic variation to be a successful strategy for the
pathogen. Our results imply that any synchrony
pattern arising from bifurcation would be consis-
tent with this biological requirement for antigenic
variation.

Other than ruling out synchrony-preserving
bifurcation, Theorem 5 also shows that synchrony-
breaking Hopf bifurcation can arise from this non-
trivial equilibrium. In [Recker et al., 2004], the
authors showed numerically that in some param-
eter ranges oscillations occur for the model (3)
and these oscillations described hierarchies of the
sequential appearance of variants. In this paper,
we have showed that the numerical pattern which
corresponds to the hierarchy of sequential immun-
odominant is a result of bifurcations and it corre-
sponds to 2-color patterns of synchrony.

Furthermore, for antigenic variation to be a suc-
cessful immune escape strategy, it is essential that
the pathogen must have the ability for some vari-
ants to be expressed while others stay relatively dor-
mant [Craig & Scherf, 2003]. It must also be able to
switch from the actively expressed variants to the
dormant variants. Analytically, we have shown that
the increase in growth rate will eventually cause the
system to go from the nontrivial synchronous equi-
librium to a synchrony-breaking Hopf bifurcation
and the switching mechanism is the Hopf bifurca-
tion. The peaks and valleys in the oscillations may
correspond to the active and dormant requirement
of antigenic variation.

The condition in Eq. (7) shows that not all
variants can necessarily be synchronized and syn-
chronization patterns must be based on the same
condition. This condition is based on the param-
eters of the system and the number of self-
connections in the 2-color quotient system. We can
rule out some patterns directly. For example, the
pattern shown in Fig. 2(a) corresponds to s1 =
s2 = 1 and m1 = m2 = 1 in the 2-color quo-
tient network. We can see that the inequality in (7)
cannot be satisfied for any biologically meaningful
parameter values.

As shown by Blyuss and Gupta [2009], the
strain space investigated in this work has Sn1 ×Sn2

symmetry. Other authors of intra-host multistrain
models, such as Dawes and Gog [2002], Gog and
Swinton [2002], have also purposed strain spaces
that have symmetry in them. This symmetry in
the strain space is based on the assumption that
all combination of epitopes are viable. However,
only certain combinations of the epitopes on the
pathogens may work for their target cells [Craig &
Scherf, 2003]. Thus, the strain space for a given
pathogen may not necessarily be symmetric. The
general coupled cell method used here does not
require any specific symmetry, so our approach
might be more suitable to investigate further spe-
cific biological scenarios.

Biologically, these 2-color patterns correspond
to all variants being synchronized in two sepa-
rate groupings. These separate groups are out of
phase by half of the period of the oscillations. The
2-color synchrony-breaking Hopf bifurcation fits the
requirement for antigenic variation to occur when
expressing variants and at different time as well
as other synchronized variants that stay relatively
dormant over time oscillations. Given that multiple
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variants are expressed at the same time in a 2-color
pattern, it reduces the potential effectiveness of
immune escape. The limitation of two groupings
barely fits the minimum of two variants needed
for features of antigenic variation as outlined in
[Turner, 2002]. The framework set out by Golubit-
sky et al. [2005] can be used to analyze k-coloring
and therefore it is possible to study finite number
of variants in synchrony-breaking patterns in future
works.

For future work, we can expand the analysis
in this paper by specifically analyzing patterns that
may be more biologically relevant. As the number of
the major variants in the model gets higher, there
are many more patterns, making it impossible to
enumerate all these patterns. One can certainly take
advantage of the framework of k-colorings provided
in [Golubitsky et al., 2005]. We believe that the
extension of our work from 2-color bifurcations to
k-color bifurcation would provide a more realistic
analysis for the model.

One can also further the research by modi-
fying assumptions made in this paper. In simpli-
fying the calculations, we have assumed that all
strains have identical parameters. Our analysis can
be extended to incorporate different parameters for
different strains by altering the coupled cell repre-
sentation. Instead of having only one type of nodes
in the digraph, different shapes of nodes can be used
to denote strains with different parameters.

Aside from the identical parameters assump-
tion, we have also restricted the analysis to only
2-colorings of the systems. Again, we made this
assumption to simplify the calculations. Since each
color in a coloring pattern corresponds to one clus-
ter, our analysis can only produce patterns with two
different groups of synchrony. A more general anal-
ysis for larger number of colors in the colorings can
generate more possible patterns.
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