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Abstract Clustering behaviours have been found in numerous multi-strain trans-
mission models. Numerical solutions of these models have shown that steady-states,
periodic, or even chaotic motions can be self-organized into clusters. Such clustering
behaviours are not a priori expected. It has been proposed that the cross-protection
from multiple strains of pathogens is responsible for the clustering phenomenon. In
this paper, we show that the steady-state clusterings in existing models can be analyt-
ically predicted. The clusterings occur via semi-simple double zero bifurcation from
the quotient networks of the models and the patterns which follow can be predicted
through the stability analysis of the bifurcation. We calculate the stability criteria for
the clustering patterns and show that some patterns are inherently unstable. Finally,
the biological implications of these results are discussed.

Keywords Multi-strain infection model · Semi-simple double zero bifurcation ·
Clustering · Stability
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1 Introduction

Pathogens, such as viruses and parasites, are detected by the immune system via
chemical on their surface. Based on the chemical detected, the immune system sends
specific antibodies to clear away the pathogen (Coico and Sunshine 2009). Some
pathogens can present themselves as many different variants in order to avoid detection,
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prolong infection, and infect another host. Many diseases, such as AIDS (Nowak
et al. 1995a), malaria (Recker et al. 2004), dengue fever (Recker et al. 2009), and the
common flu (Omori et al. 2010) are caused by pathogens that present themselves with
many subtypes.

Each strain or subtype of the pathogen elicits specific immune response from the
immune system. Some of these strains share epitopes, so they can also incite immune
responses that will target multiple subtypes. Immune responses that target multiple
types of such responses are called cross-protective or cross-reactive. If the host is
infected by one particular subtype, it may be partially protected against another vari-
ant. Scientists have devised various within-host (Nowak et al. 1995a; Nowak et al.
1995b; Gjini et al. 2010) and epidemiological models (Gog and Grenfell 2002; Omori
et al. 2010) to better understand the underlying dynamics of the multi-strain infections.
Many of these models separate different strains into subsystems of differential equa-
tions that are coupled based on the biological situations (Gupta et al. 1998; Recker
and Gupta 2005). These aforementioned models may be difficult to study analytically
due to the high number of strains, and even higher number of differential equations
involved, as well as the complex dynamics arising from the nonlinear couplings.

Given the difficulty in analyzing these models, different methods for bifurcation and
stability analyses of them have been discussed in various papers (Dawes and Gog 2002;
Guo et al. 2008). In similar fashion to the aforementioned papers, we will show that the
groupoid formalism, established by Golubitsky et al. (2005), is an apt tool for analyzing
multi-strain epidemiology models. This method is an evolution of the earlier symmetry
method and this newer method can analyze systems that do not have symmetry present
(Golubitsky and Stewart 2006). The use of the symmetry method for various topics in
mathematical biology has been well established (Golubitsky et al. 1999; Buono and
Golubitsky 2001; Buono and Palacios 2004) and the groupoid formalism has been
used to study a multi-strain in vivo model of Plasmodium falciparum (Chan and Yu
2012). Similar to this paper,Chan and Yu (2012) also studied local bifurcations of a
multi-strain model, but they did not discuss the use of center manifold reduction in
combination with the groupoid formalism.

To demonstrate the application of the groupoid formalism to multi-strain epidemi-
ological models, we will analyze the local bifurcations in two models. The first model
by Gupta et al. (1998) studied the effects of cross-immunity in multi-strain epidemi-
ology and there are three compartments describing the dynamics pertaining to each
strain. For each strain i , there is a portion of the population (zi ) which is immune and
there is another portion which is infectious (yi ). Furthermore, there is another portion
of the population (wi ) which is immune to any strain j that shares allele with strain i .
In this model, the dynamics particular to each strain are described by

żi = λi (1 − zi ) − μzi ,

ẇi = (1 − wi )
∑

j∼i

λ j − μwi ,

ẏi = λi ((1 − wi ) + (1 − γ )(wi − zi )) − σ yi ,

(1)

where λi = βyi is the force of infection term and j is indexed over strains which
share any allele with strain i , including i itself. As noted by Gupta et al. (1998), the
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behaviour of the model is largely unaffected by the exact functional form of the force
of infection term λi , so we choose the same form used by Recker and Gupta (2005).
We use the parameter β to represent the factors affecting the transmission of strain i .
As for the other parameters, 1/μ and 1/σ are respectively the average life expectancy
of the host and the average duration of the infections. The strength of cross-protection
as a result of the share allele is measured by the parameter γ . Hence, the probability
of transmission by any strain j is reduced by a factor of (1 − γ ).

The second model by Recker and Gupta (2005) may be considered as a continuation
of other multi-strain multi-lcous epidemiology models, such as the one by Gupta et al.
(1998) and another by Ferguson and Andreasen (2002). Specifically, the model by
Recker and Gupta (2005) studied the effect of the number of variants shared between
different strains on strain-structure. With zi , wi , and yi similarly defined as in model
(1), another compartment is added. The new class, vi , denotes the portion of the
population that are immune to strains that share more than one allele with strain i . For
this model, the system describing the dynamics of each strain i has the form

żi = λi (1 − zi ) − μzi ,

ẇi = (1 − wi )
∑

j∼i

λ j − μwi ,

v̇i = (1 − vi )
∑

k∼i

λk − μvi ,

ẏi = λi ((1 − wi ) + (1 − γ1)(wi − zi ) + (1 − γ2)(vi − zi )) − σ yi ,

(2)

where λi = βi yi is the force of infection, j ∼ i indicates the strains which share
alleles with strain i , and k ∼ i indicates the strains which share more than one allele
with strain i .

As noticed by Calvez et al. (2005), the solutions of strains in the previously men-
tioned models and other related models (Gupta et al. 1996; Gupta and Galvani 1999)
may form clusters of partially synchronized solutions. It has been shown numerically
that solutions within each cluster may synchronize as steady-state, periodic, or even
chaotic solutions. In this paper, we will show that the clustering behaviour found in
the model by Gupta et al. (1998) as well as the one by Recker and Gupta (2005) can
be analytically explained through the groupoid formalism. Specifically, the steady-
state clusterings are formed via semi-simple double zero bifurcation of their 2-colour
quotient networks. For each of the models, we assume the subsystems describing the
dynamics of the strains have the same parameter values.

The rest of the paper is organized as follows. In Sect. 2, we outline the general
approach in finding and understanding the related bifurcation and clustering patterns
resulting from the bifurcation. Specific calculations related to each model are illus-
trated in Sect. 3. In Sect. 4, we numerically demonstrate the analytic results found in
Sect. 3. Finally, conclusions and discussions are given in Sect. 5.

2 General approach

As mentioned in Sect. 1, we will show analytically that the clustering solutions of some
multi-strain infection models are the results of semi-simple double zero bifurcation of
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their 2-colour quotient networks. Given that the general approach to both models is
the same, we provide our approach to the problem in this section and leave the specific
details to each model in Sect. 3.

The steps presented in Sects. 2.1 and 2.2 are appropriate for any epidemiological
models that can be described by the groupoid formalism. In Sect. 2.3, we restricted the
scope of this paper to the general 2-colour case of the models by Gupta et al. (1998)
and Recker and Gupta (2005), but one may extend the analysis to more complicated
colouring patterns as necessary. Our discussions in Sects. 2.4 and 2.5 are specific
to analyzing the semi-simple double zero bifurcations in the aforementioned general
2-colour quotient networks and one may adapt these steps to analyze other types of
bifurcations.

2.1 Coupled cell network representation

The first step in this analysis is to represent the models of Gupta et al. (1998) and Recker
and Gupta (2005) as coupled cell networks by the groupoid formalism introduced
by Stewart et al. (2003) and refined by Golubitsky et al. (2005). This method is a
systematic way to represent systems of coupled differential equations using directed
graphs and analyze synchronization patterns resulting from bifurcations. Each node
in the directed graph represents a specific set of differential equations. Shapes of the
nodes denote specific set of differential equations, so identical sets of differential
equations are represented in the graph with nodes of the same shape. In the two
models, the dynamics related to each strain is described by system (1) or (2). In each
model, all strains have the same parameter values, so all the nodes in the graph have
the same shape.

Similarly, each directed edge, or arrow, in the graph represents the coupling between
different sets of differential equations. In our cases, two sets of differential equations
are coupled if they share alleles. Based on the model by Gupta et al. (1998), there is
only one type of coupling terms, so there would be one type of arrows. As for the
model by Recker and Gupta (2005), there are different types of couplings based on
the number of shared alleles between strains. In this case, two different types of edges
represent different couplings.

Having defined the sets of nodes and edges for each of the models, we now represent
these models as coupled cell networks. For example, if we let each node in Fig. 1
represent the differential equations of system (1), then this directed graph gives a
coupled cell representation of the 2 locus–2 allele form of the model by Gupta et al.
(1998). As mentioned before, each strain has identical parameters, so all of them are
represented with a circle in the digraph. Given that only one type of couplings is
present in the system, there is only one type of arrows. For another example, the 3
locus–2 allele form of the model from Recker and Gupta (2005) is shown in Fig. 2.

Again, based on the identical parameter assumption, we only have one type of
nodes in this figure. As we can see from system (2), there are two types of couplings
in this model, so correspondingly, we have two different types of edges in its coupled
cell network.

We want to point out that the directed graph of the coupled cell network is concep-
tually similar to the idea of strain space as discussed by Ferguson and Galvani (2003).
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Fig. 1 The directed graph
representing the coupled cell
network of the 2 locus–2 allele
form of the model by Gupta
et al. (1998): each node
represents the set of differential
equations in system (1) and each
arrow represents the coupling
between strains that share allele;
alleles {a, b} are used at the first
locus and alleles {x, y} at the
second locus

Fig. 2 The three-dimensional
directed graph representing the
coupled cell network of the 3
locus–2 allele form of the model
by Recker and Gupta (2005):
each node represents the set of
differential equations in
system (2); a dashed arrow
represents the coupling between
two strains when they only share
one allele and a solid arrow
represents the coupling between
two strains when they share
more than one allele; allele sets
{a, b}, {m, n}, and {x, y} are
used respectively at the first,
second, and third locus; double
headed arrows minimizing the
number of arrow drawn, are used
to indicate that there is an arrow
originating from each node of
the pair

Various authors (Gog and Swinton 2002; Gog and Grenfell 2002; Calvez et al. 2005)
have used undirected graphs to represent the relationship between the strains in their
models.

2.2 Possible 2-colouring patterns

To study the possible clustering formations after bifurcation, the concept of balanced
colouring in a coupled cell network is needed (Golubitsky et al. 2005). We need a way
to indicate patterns of synchrony and this can be achieved rigorously using equivalence
relations to partition the nodes of the system. We can partition the nodes in the directed
graph according to some equivalence relation ��. Conversely, any partition of the nodes
will also form an equivalence relation. If all the nodes of the same class receive the
same input sets, then such colouring is balanced.

We can graphically check whether a particular equivalence relation, ��, is balanced.
In the directed graph, nodes are of the same colour if they are in the same��-equivalence
class. Then, we colour the tails of these nodes using the same colour as well. An
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(a) (b) (c)

Fig. 3 Three possible different colouring patterns for the 2 locus–2 allele form of the model by Gupta et al.
(1998), where black and white represent the two possible classes in each of the coupled cell network. a In
this case, each black node receives one input from a white node and one input from a black node. Similarly,
each white node receives one input from a white node and one input from a black node. b In this case, each
black node receives two inputs from white nodes, but no input from a black node. Similarly, each white
node receives two inputs from black nodes and no input from a white node. c In this case, there are three
black nodes. Node bx receives inputs only from other black nodes. Nodes ax and by receive inputs from
black and white nodes

equivalence relation, ��, is balanced if and only if the inputs of the nodes in the same
class have isomorphic inputs, i.e. same number of edges that have the same colour. A
colouring pattern with k colours is a k-colouring of the system. To illustrate balanced
colouring, we have provided a few different 2-colourings of the aforementioned 2
locus–2 allele example in Fig. 3. We can see that the networks in Fig. 3a and b are
balanced while the network in Fig. 3c is not.

The models by Gupta et al. (1998) and Recker and Gupta (2005) can accommodate
finite number of strains of pathogens in the system. Since each node represents the
dynamics generated by one strain of the pathogen, there would be the same number of
nodes in the coupled cell network. As such, it will not be feasible to study all balanced
k-colourings for all the possible m locus–n allele forms of the multi-strain models.
Instead of studying all possible k-colourings, we restrict the scope of this study to only
the possible balanced 2-colourings.

2.3 Quotient networks

For the general m locus–n allele form of the multi-strain model, there would be nm

strains. Suppose k is the number of differential equations in the system required to
describe the dynamics of each strain. To analyze possible bifurcations of the model,
we would have to deal with a knm-dimensional system. Instead of directly dealing
with the potentially high-dimensional system, we can use the balanced colourings of
the coupled cell network to reduce the system to its quotient network and analyze a
less complicated network (Golubitsky et al. 2005). Given that we are only interested
in 2-colourings of the system, we only need to study a 2k-dimensional system after
the quotient reduction.

From any balanced 2-colourings, we can always reduce the systems based on mod-
els to the quotient networks shown in Figs. 4 and 5. Each balanced colouring induces
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Fig. 4 The directed graph representing the general quotient network for all balanced 2-colourings of the
model by Gupta et al. (1998): The topological parameters, si , indicating the number of self-connections
for each class, and similarly, the topological parameters, mi , indicating the number of connections received
from the other class, for i ∈ {1, 2}

Fig. 5 The directed graph representing the general quotient network for all balanced 2-colourings of
the model by Recker and Gupta (2005): The parameters, si1 and si2, indicating respectively the number
of dashed and solid self-connections received for each class, and similarly, the parameter, mi1 and mi2
indicating respectively the number of dashed and solid connections received from the other class

a canonical quotient network. The nodes of the quotient network represent the equiv-
alence classes in a balanced ��-equivalence relation. Because we are interested in the
2-colourings, there would be two nodes in the quotient network. From the balanced
colouring, we pick one node from each colour class to define the parameters of the
quotient network. Given that the nodes of the same equivalence class receive isomor-
phic inputs, the choice of nodes for each class does not change the resulting quotient
network. For each equivalence class, we define inputs received by the nodes repre-
senting this class in the quotient network to be identical to the inputs received by the
node we selected in the original network.

To reduce the complexity of the digraph of the quotient network, we denote the
number of inputs on the digraph of the quotient network with their topological para-
meters shown in the figures. Details for constructing quotient networks from balanced
k-colourings can be found in the works by Golubitsky et al. (2005) and Golubitsky and
Stewart (2006). For example, the colouring pattern in Fig. 3a corresponds to quotient
parameters mi = 1 and si = 1; similarly, the colouring pattern in Fig. 3b corresponds
to quotient parameters mi = 2 and si = 0.

2.4 The semi-simple double zero bifurcation

After forming the coupled cell networks and quotient reductions, we can now begin the
dynamic analysis. For each of these models, we show that a semi-simple double zero
bifurcation occurs from the trivial equilibrium of the quotient network. At a locally
stable equilibrium, a bifurcation occurs when some of the eigenvalues with negative
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real part cross smoothly from the left side of the complex plane into the right side
due to changes in the system parameters. Hence, we must understand the eigenvalue
structure of the Jacobian in order to understand the type of bifurcation occurring.

Suppose spec (J) = {σ1, . . . , σn}, then σi is a repeated eigenvalue for J if there is
a j , such that σi = σ j and i �= j . Let κi , the algebraic multiplicity, be the number of
times σi is repeated and let ηi , the geometric multiplicity, be the number of linearly
independent eigenvectors associated with σi . By the definition of eigenvalues, we must
have κi ≥ ηi . An eigenvalue is called semi-simple when κi = ηi . Thus, a semi-simple
double zero bifurcation refers to the bifurcation of a twice repeated zero eigenvalue
associated with two linearly independent eigenvectors.

2.5 Jordan canonical form and center manifold reduction

With a semi-simple double zero bifurcation, we can further simplify the system by
transferring it to its Jordan canonical form. To start, we perform a linear change of
coordinates so that the bifurcation occurs at (x, β̃)T = (0, 0)T ∈ R

2k+1, where x is
the generalized coordinates of the system and β̃ is the bifurcation parameter.

Let nc and ns respectively be the numbers of eigenvalues with zero real-part and
negative real-part of the Jacobian. For this type of bifurcation, there would be two
eigenvalues with zero real part and 2k − 2 eigenvalues with negative real part. Using
the eigenvectors of J to form a transformation matrix, the system can be rewritten in
block matrix form as

ẋc = Axc + f(xc, xs)

ẋs = Bxs + g(xc, xs)
(xc, xs) ∈ R

2 × R
2k−2, (3)

where A ∈ R
2×2 and B ∈ R

(2k−2)×(2k−2). With the eigenvalues having zero real-
part, the Centre Manifold Theorem guarantees that there exists a smooth manifold
Wc = {(xc, xs)|xs = h(xc)} near the equilibrium point such that the local behaviour
in the centre direction of the system is qualitatively the same as that on the manifold
(Wiggins 2003). The 2k − 2 nonessential generalized coordinates are represented on
the centre manifold as

xi+2 = hi = ai x2
1 + bi x2

2 + ci β̃
2 + di x1x2 + ei x1β̃ + fi x2β̃ + · · · ,

where i ∈ {1, . . . , 2k − 2}.
By differentiating xs = h(xc), we get ẋs = Dh(xc)ẋc. Substituting the equations

in (3) into the previous identity and rearranging the equation, we get

Dh(xc)[Axc + f(xc, h(xc))] − Bh(xc) − g(xc, h(xc)) = 0. (4)

Coefficients of the expansions hi can be explicitly calculated by solving Eq. (4). Using
these coefficients, we can express the dynamics on the centre manifold as

ẋc = Axc + f(xc, h(xc), β̃). (5)
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2.6 Stability of semi-simple double zero bifurcation

Following the centre manifold reduction, essential dynamics of the model has been
described by

ẋ1 = f1(x1, x2, β̃)

ẋ2 = f2(x1, x2, β̃), (6)

where i ∈ {1, 2} and fi ’s are scalar nonlinear functions representing the same dynam-
ics in Eq. (5). Given that a semi-simple double zero bifurcation occurs, we now explic-
itly calculate the stability conditions for the bifurcating solutions (Iooss and Joseph
1990, Chapter V.8). To proceed, we define a convenient set of coordinates and their
corresponding equations as

x̂i = xi

β̃
and f̂i = fi (x1, x2, β̃)

β̃2
= 0. (7)

At the bifurcation value of β̃ = 0, the equations f̂i0 = f̂i (x̂1, x̂2, 0) are conic sections
and the points of intersections of these two conics are the possible bifurcation solutions.
These conics can have two, three or four intersection points. The trivial solution (0, 0)

is always one of the intersection points. To find the stability of bifurcation solutions,
let

J0(x̂1, x̂2) =
⎡

⎣
∂ f̂10(x̂1,x̂2,0)

∂ x̂1

∂ f̂10(x̂1,x̂2,0)

∂ x̂2

∂ f̂20(x̂1,x̂2,0)

∂ x̂1

∂ f̂20(x̂1,x̂2,0)

∂ x̂2

⎤

⎦ (8)

and σi0 be the eigenvalues of J0. Similarly, let J be the Jacobian for system (6) and σi be
its eigenvalues. Because of the parametrization chosen in Eq. (7), a direct calculation
shows that J(β̃) = β̃J0 + O(β̃2). The determinants and the eigenvalues of J and J0
are related as

det J = β̃2 det J0 + O(|β̃3|)

and

σi = β̃σi0 + O(|β̃2|).

For small values of β̃, the determinants and the eigenvalues of J and J0 have the same
sign. If det J0 = σ10σ20 < 0, one of σ10 or σ20 must be positive and the bifurcating
solution must be unstable. When det J0 > 0, the real parts of σ10 and σ20 must have
the same sign. Hence, the bifurcating solution is stable when det J0 > 0 and both of its
eigenvalues have negative real part. In each of the multi-strain models, we have found
that there are four intersection points for the respective conics. Detailed calculations
pertaining to each model are presented in Sect. 3.
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3 Bifurcation and stability analysis

In the previous section, we outlined the necessary steps to understand the clustering
patterns of the multi-strain models. Specific details of the calculations are presented
here.

3.1 The model by Gupta et al. (1998)

For the general m locus–n allele form of the model by Gupta et al. (1998), the dynamics
of each strain is described by system (1). To understand the possible strain partitions,
we analyze the quotient network obtained from any 2-colour pattern.

Let each node in Fig. 4 represent system (1). Combining the topological parameters,
each node in the 2-colour quotient model represents

żi = λi (1 − zi ) − μzi ,

ẇi = ((1 + si )λi + miλ j )(1 − wi ) − μwi ,

ẏi = λi ((1 − wi ) + (1 − γ )(wi − zi )) − σ yi ,

where λi = βyi and i denotes the index for one of the nodes and j denotes the index
for the other node in Fig. 4. Equilibrium points of the quotient system are

p1 = (0, 0, . . . , 0)T ,

p2 = (z∗
1, w

∗
1, y∗

1 , 0, w∗
2, 0)T ,

p3 = (0, w∗
2, 0, z∗

1, w
∗
1, y∗

1 )T ,

and p4 = (z∗
3, w

∗
3, y∗

3 , z∗
3, w

∗
3, y∗

3 )T ,

where z∗
1, w

∗
1, y∗

1 , w∗
2, z∗

3, w
∗
3, and y∗

3 are implicit equilibrium expressions. At p1 or p4,
both nodes of the quotient system have identical states. Hence, p1 corresponds to the
trivial equilibrium and p4 corresponds to a fully synchronous nontrivial equilibrium in
the quotient system as well as the larger network. At the other two equilibrium states,
p2 and p3, the two nodes are asynchronized in the quotient system. These equilibrium
points correspond to possible partial synchrony patterns in the larger network.

After transferring the system to its Jordan canonical form at the trivial equilibrium,
the Jacobian at this point is

J =

⎡

⎢⎢⎢⎢⎢⎢⎣

β − σ 0 0 0 0 0
0 β − σ 0 0 0 0
0 0 −μ 0 0 0
0 0 0 −μ 0 0
0 0 0 0 −μ 0
0 0 0 0 0 −μ

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Given that the parameters of the system are always positive, the system is locally
stable at the equilibrium for β − σ < 0. To simplify the computation, we substitute
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the parameter β with β̃ � β − σ . Hence, the newly transformed system undergoes a
semi-simple double zero bifurcation at β̃ = 0 and the system can be written as

ẋc = Axc + f(xc, xs)

ẋs = Bxs + g(xc, xs) (xc, xs) ∈ R
2 × R

4, (9)

where

A =
[

0 0
0 0

]
,

B =

⎡

⎢⎢⎣

−μ 0 0 0
0 −μ 0 0
0 0 −μ 0
0 0 0 −μ

⎤

⎥⎥⎦ ,

and f as well as g are nonlinear functions of the system after the transformation.
As described in Sect. 2.5, we can now reduce the system to the centre manifold.

For i = 1, . . . , 4, let

xi+2 = hi = ai x2
1 + bi x2

2 + ci β̃
2 + di x1x2 + ei x1β̃ + fi x2β̃ + · · · . (10)

Then,

Dh =

⎡

⎢⎢⎣

2a1x1 + d1x2 + e1β̃ 2b1x2 + d1x1 + f1β̃

2a2x1 + d2x2 + e2β̃ 2b2x2 + d2x1 + f2β̃

2a3x1 + d3x2 + e3β̃ 2b3x2 + d3x1 + f3β̃

2a4x1 + d4x2 + e4β̃ 2b4x2 + d4x1 + f4β̃

⎤

⎥⎥⎦. (11)

By substituting Eqs. (9), (10) and (11) into Eq. (4), we obtain the necessary equations
to determine the 24 coefficients for the expansions and thus, the centre manifold as
well.

After the centre manifold reduction, we find that the two conics necessary to study
the stability of the possible solutions are

f̂10(x̂1, x̂2) = −σ(s1γ + 1)

m2
x̂2

1 + x̂1 − σ 2 (γ m1m2 + (m2γ − 2 − 2s1γ ))

μm2
x̂1 x̂2

+
(
m1m2(1 + s2γ ) + m2(s2 + 1)(γ − 1) − (s2 + 1)2(1 + s1γ )

)

m2μ2 x̂2
2

f̂20(x̂1, x̂2) = −γ σ x̂1 x̂2 + x̂2 + σ 2(γ − 1)

μ
x̂2

2 .

In this case, the four intersections of the two conics are

x̂∗
1 = (0, 0),
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x̂∗
2 =

(
m2

σ(1 + s1γ )
, 0

)
,

x̂∗
3 =

(
1 + s2

σ(1 + s2γ )
,

μ

σ 2(1 + s2γ )

)
,

and x̂∗
4 =

(
μ(γ (m2 − s1) − 1)

σ 2γ (γ (m1m2 − s1s2) − (s1 + s2) − 1)
,

γ (m2(m1 + 1) − s1(s2 + 1)) − m2 − s2 − 1

σ 2γ (γ (m1m2 − s1s2) − (s1 + s2) − 1)

)
.

Performing the necessary inverse operations, we find that each x̂∗
i corresponds to

equilibrium points pi of the quotient system. To check the stability at each point, we
must calculate the determinant found in Eq. (8) and the corresponding eigenvalues at
each point. A direct calculation shows that the determinants are

D1 = 1,

D2 = γ (m2 − s1) − 1

1 + s1γ
, (12)

D3 = γ (m1 − s2) − 1

1 + s2γ
, (13)

and D4 = [1 + γ (s2 − m1)][1 + γ (s1 − m2)]
γ 2(s1s2 − m1m2) + γ (s1 + s2) + 1

. (14)

The corresponding sets of eigenvalues of J0 at each intersection of the conics are

E1 = {1, 1},
E2 = {−1,−D2},
E3 = {−1,−D3},

and E4 = {−1,−D4}.

For the semi-simple double zero bifurcation, a particular bifurcating solution is
stable when the determinant is positive while both corresponding eigenvalues remain
negative. We see that the trivial equilibrium is alway unstable while the other three
solutions can be stable depending on the topological parameters and the strength of
cross-protection parameter, γ .

Using the stability results of the bifurcating solutions, we now explain formation
of clusters. As mentioned in Sect. 2.3, each node of the quotient network represents
a subset of nodes of the larger network. At p2 or p3, the two nodes of the quotient
network have different solutions from each other, so the corresponding subsets of
nodes in the larger network must also have different solutions. Hence, when p2 or p3
is stable, each subset would be synchronized to a solution, but these two sets must be
non-overlapping. In other words, all steady-states partial synchrony corresponding to
2-colours patterns are the direct results of stable bifurcation from the trivial equilibrium
to p2 or p3.
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Furthermore, we can look to the parameter values of the stability conditions to
understand which specific synchrony pattern may occur. Expressions in (12), (13)
and (14) are respectively responsible for the stability of equilibria p2, p3, and p4.
These expressions are the combination of the strength of cross-protection parameter
from the differential system and more importantly, the topological parameters. The
topological parameters represent some balanced 2-colourings on the quotient network.
Hence, only the balanced partial synchrony patterns with parameters that could lead
to stable bifurcating solutions at p2 or p3 would be observed. Numerical examples of
different synchrony patterns of this model will be illustrated in Sect. 4.

On the other hand, if the conditions are such that p4 is stable, instead of a partially
synchronized pattern, all the nodes would be synchronized to one state. When this
equilibrium is stable, the two nodes in the quotient network have the same solutions.
Thus, the two subsets of the nodes in the larger network must also have the same
solution.

While we found synchrony-breaking behaviour through the occurrence of a semi-
simple double zero bifurcation, we note that partial-synchrony via synchrony-breaking
bifurcations can occur through other types of bifurcations. As long as the bifurcation
is stable and the corresponding colouring is balanced, partial synchrony would be
possible. For example, Chan and Yu (2012) found stable partial synchrony through a
synchrony-breaking Hopf bifurcation.

3.2 The model by Recker and Gupta (2005)

As mentioned in Sect. 1, the model from Recker and Gupta (2005) is an extension of
the model in Gupta et al. (1998). The authors incorporated a new compartment for
individuals being non-susceptible to pathogens strains sharing more than one allele
with a particular strain i . This new compartment introduces a new type of coupling
and thus there will be two types of arrows in the coupled cell network representation
of the system. Instead of reducing the system to the quotient network shown in Fig. 4,
any balanced 2-colourings of the system can be reduced to the quotient network shown
in Fig. 5.

Based on the equations in (2), each node in Fig. 5 has the form

żi = λi (1 − zi ) − μzi ,

ẇi = ((1 + si1 + si2)λi + (mi1 + mi2)λ j )(1 − wi ) − μwi ,

v̇i = (
(1 + si2)λi + mi2λ j

)
(1 − vi ) − μvi ,

ẏi = λi ((1 − wi ) + (1 − γ1)(wi − zi ) + (1 − γ2)(vi − zi )) − σ yi ,

where λi = βyi , i denotes the index for one node and j denotes the index for the other
node in Fig. 5. The equilibrium points of the quotient system are

p1 = (0, 0, . . . , 0)T ,

p2 = (z∗
1, w

∗
1, v∗

1 , y∗
1 , 0, w∗

2, v∗
2 , 0)T ,
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p3 = (0, w∗
2, v∗

2 , 0, z∗
1, w

∗
1, v∗

1 , y∗
1 )T ,

and p4 = (z∗
3, w

∗
3, v∗

3 , y∗
3 , z∗

3, w
∗
3, v∗

3 , y∗
3 )T ,

where z∗
1, w

∗
1, v∗

1 , y∗
1 , w∗

2, v∗
2 , z∗

3, w
∗
3, v∗

3 , and y∗
3 are implicit equilibrium expressions.

Similar to the previous system, both nodes of the quotient system have identical states
at p1 or p4. Again, p1 corresponds to the trivial equilibrium and p4 corresponds to a
fully synchronous nontrivial equilibrium in the quotient system as well as the larger
network. Furthermore, for the other two equilibrium states, p2 and p3, the two nodes
are again asynchronized in the quotient systems. They correspond to possible partial
synchrony patterns in the larger network.

Subsequent to transforming the system to its Jordan canonical form at the trivial
equilibrium, the Jacobian at this point is

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β − σ 0 0 0 0 0 0 0
0 β − σ 0 0 0 0 0 0
0 0 −μ 0 0 0 0 0
0 0 0 −μ 0 0 0 0
0 0 0 0 −μ 0 0 0
0 0 0 0 0 −μ 0 0
0 0 0 0 0 0 −μ 0
0 0 0 0 0 0 0 −μ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We perform similar simplification as before and transform the parameter β with
β̃ � β − σ . With β̃ as the bifurcation parameter, this system also undergoes a semi-
simple double zero bifurcation at β̃ = 0 and this system can be written as

ẋc = Axc + f(xc, xs)

ẋs = Bxs + g(xc, xs)
(xc, xs) ∈ R

2 × R
6, (15)

where

A =
[

0 0
0 0

]
,

B =

⎡

⎢⎢⎢⎢⎢⎢⎣

−μ 0 0 0 0 0
0 −μ 0 0 0 0
0 0 −μ 0 0 0
0 0 0 −μ 0 0
0 0 0 0 −μ 0
0 0 0 0 0 −μ

⎤

⎥⎥⎥⎥⎥⎥⎦
,

and f as well as g are nonlinear functions of the system after the transformation.
We again follow the method in Sect. 2.5 and reduce the system to its centre manifold.

For i = 1, . . . , 6, let
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xi+2 = hi = ai x2
1 + bi x2

2 + ci β̃
2 + di x1x2 + ei x1β̃ + fi x2β̃ + · · · . (16)

Then,

Dh =

⎡

⎢⎢⎢⎢⎢⎢⎣

2a1x1 + d1x2 + e1β̃ 2b1x2 + d1x1 + f1β̃

2a2x1 + d2x2 + e2β̃ 2b2x2 + d2x1 + f2β̃

2a3x1 + d3x2 + e3β̃ 2b3x2 + d3x1 + f3β̃

2a4x1 + d4x2 + e4β̃ 2b4x2 + d4x1 + f4β̃

2a5x1 + d5x2 + e5β̃ 2b5x2 + d5x1 + f5β̃

2a6x1 + d6x2 + e6β̃ 2b6x2 + d6x1 + f6β̃

⎤

⎥⎥⎥⎥⎥⎥⎦
. (17)

By substituting Eqs. (15), (16) and (17) into Eq. (4), we obtain the necessary equations
to determine the thirty-six coefficients for the expansions and thus, the centre manifold
as well.

In this case, we find that the conics for stability calculations are

f̂10(x̂1, x̂2) = −σ 2(m21γ1s22 + γ2m22 − γ1m22s21 − m22 + m21γ1)

m22μ
x̂2

1 + x̂1

−σ (γ1m21 + γ2m22)

m22
x̂1 x̂2,

f̂20(x̂1, x̂2) = −σ 3 ((1 + s22)(1 + s22 + m22)+)

m22μ2 x̂2

− σ 2

m22μ
x̂1 x̂2 + x̂2 − σ(1 + s11γ1 + s12γ2)

m22
x̂2

2 ,

and intersections of these two conics are

x̂∗
1 = (0, 0),

x̂∗
2 =

(
0,

m22

σ(1 + γ1s11 + γ2s12)

)
,

x̂∗
3 =

(
μ

σ 2 (1 + γ1s21 + γ2s22)
,

m22

σ (1 + γ1s21 + γ2s22)

)
,

and x̂∗
4 =

(
μ[(m21 − s11)γ1 + (m22 − s12)γ2 − 1]

σ 2[B1γ
2
1 + B2γ1 + B3γ1γ2 + B4γ2 + B5γ

2
2 + 1] ,

A1γ1 + A2γ2 + m22 + s22 + 1

σ [B1γ
2
1 + B2γ1 + B3γ2 + B4γ1γ2 + B5γ

2
2 + 1]

)
,

where

A1 = (s11 − m21)(1 + s22) + m22(s21 − m11),

A2 = s12 − m22 − m12m22 + s12s22,

B1 = s11s21 − m11m21,
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B2 = s11 + s21,

B3 = s12 + s22,

B4 = s12s21 − m12m21 − m11m22 + s22s11,

and B5 = s12s22 − m12m22.

Performing the necessary inverse operations, we find that each x̂∗
i corresponds to

equilibrium points pi of the quotient system. The relevant determinants corresponding
to the four equilibria are

D1 = 1,

D2 = γ1(m21 − s11) + γ2(m22 − s12) − 1

1 + γ1s11 + γ2s12
, (18)

D3 = γ1(m11 − s21) + γ2(m12 − s22) − 1

1 + γ1s21 + γ2s22
, (19)

and D4 = C1γ
2
1 + C2γ1 + C3γ1γ2 + C4γ2 + C5γ

2
2

σ [B1γ
2
1 + B2γ1 + B3γ2 + B4γ1γ2 + B5γ

2
2 + 1] ,

where

C1 = m11m21 + s11s21 − s21m21 − m11s11,

C2 = s11 − m21 + s21 − m11,

C3 = (m21 − s11)(m12 − s22) + m22(m11 − m21)

C4 = s12 − m22 + s22 − m12,

and C5 = m12m22 + s12s22 − s22m22 − m12s12.

The corresponding eigenvalues of J0 at each intersection of the conics are

E1 = {1, 1},
E2 = {−1,−D2},
E3 = {−1,−D3},

and E4 = {−1,−D4}.

Like the previous model, the trivial intersection point p1 is always unstable because
both the eigenvalues are always positive. We can see that for parameters such that Di

are positive, the corresponding eigenvalues are necessarily negative. Once again, the
other three equilibrium solutions can be stable depending on the topological parameters
and the strength of cross-protection parameters, γ1 and γ2.

Given that the stability scenarios of the bifurcating solutions of this model are the
same as the previous model, the reasons for cluster formation and a specific pattern
to occur are also the same and they will not be repeated here. Numerical examples of
different synchrony pattern for this model will also be illustrated in Sect. 4.
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4 Numerical results

In this section, we numerically demonstrate some possible clustering patterns.

4.1 Numerical results of the model by Gupta et al. (1998)

There are three possible 2-colour patterns for the 2 locus–2 allele version of the
model from Gupta et al. (1998) and they are shown in Fig. 3. Already mentioned
in Sect. 2.2, the pattern shown in Fig. 3c is not a balanced colouring, so it does not
occur numerically. The pattern in Fig. 3a is balanced and in its 2-colour quotient form,
the parameter values are si = 1 and mi = 1. Similarly, the pattern in Fig. 3b is
also balanced and in its 2-colour quotient form, the parameter values are si = 0 and
mi = 2. Analytically, we calculate from Eqs. (12) and (13) that for the clustering to
be stable, we must have

mi − s j >
1

γ
. (20)

Given that γ is a positive parameter, a direct calculation shows that the pattern in
Fig. 3a cannot occur and the pattern in Fig. 3b will occur for appropriate choice of γ .
The numerical results in Fig. 6 agree with the analytic predictions. The two patterns
shown are symmetrical to each other and they are induced by choosing different initial
conditions.

Extending the 2 locus–2 allele form, numerical results and the corresponding
2-colour patterns of the 3 locus–2 allele model are shown in Figs. 7 and 8. Clusters
of numerical solutions found in Figs. 7a and 8a correspond to the colouring patterns
shown in Figs. 7b and 8b, respectively. We can derive the corresponding parameters
for the 2-colour quotient network from the balanced colouring. Combining the topo-

0 500 1000 1500 2000 2500
0

0.5

1

ax

0 500 1000 1500 2000 2500
0

0.5

1

ay

0 500 1000 1500 2000 2500
0

0.5

1

bx

0 500 1000 1500 2000 2500
0

0.5

1

by

t

(a)

0 500 1000 1500 2000 2500
0

0.5

1

ax

0 500 1000 1500 2000 2500
0

0.5

1

ay

0 500 1000 1500 2000 2500
0

0.5

1

bx

0 500 1000 1500 2000 2500
0

0.5

1

by

t

(b)

Fig. 6 Simulation results of the 2 locus–2 allele form of system (1) for σ = 10, γ = 0.85, μ = 0.02,
β = 15, showing the clustering patterns of zi for each strain. The patterns in a and b are obtained by using
different initial conditions
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Fig. 7 Results for the 3 locus–2 allele version of the model from Gupta et al. (1998): a Simulated time
history of zi for σ = 10, R0 = 1.1, γ = 0.58, μ = 0.02 with identical initial conditions for strains any,
bnx , bmx and amy; and b the balanced 2-colour pattern corresponding to the numerical results, with each
dark node receiving four inputs from white nodes and two from the other dark nodes; similarly, each white
node receiving four inputs from dark nodes and two from the other white nodes, and the corresponding
2-colour quotient network having the parameter values mi = 4 and si = 2
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Fig. 8 Results for the 3 locus–2 allele version of the model from Gupta et al. (1998): a Simulated time
history of zi for σ = 10, R0 = 1.1, γ = 0.58, and μ = 0.02 with identical initial conditions for strains any
and bmx ; and b The balanced 2-colour pattern corresponding to the numerical results and with each dark
node receiving six inputs from white nodes and none from the other dark node; similarly, each white node
receiving one input from dark nodes and five from the other white nodes, and the corresponding 2-colour
quotient network having the parameter values m1 = 2, s1 = 4, m2 = 6 and s2 = 0

logical parameters as well as the system parameters, a direct calculation shows that
the stability condition in Eq. (20) is satisfied.

Based on the stability expressions shown and the numerical results found in Figs. 7
and 8, we see that different patterns can emerge under identical parameter conditions.
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Fig. 9 Results for 3 locus–2 allele version of the model from Gupta et al. (1998): a Simulated time history
of zi for σ = 10, R0 = 1.1, γ = 0.45, μ = 0.02 with mixed initial conditions; and b the corresponding
coupled cell system showing that all strains being synchronized in identical steady-state

Calvez et al. (2005) noticed the appearance of a particular pattern which is dependent
on initial conditions. The simulation results shown in Figs. 7 and 8 are simulated
with identical parameter values but different initial conditions. This phenomenon is
possible because both patterns satisfy the stability condition found for balanced 2-
colourings.

On the other hand, we can change the system parameter values such that the clus-
tering no longer occurs. In Fig. 9, we have decreased the value of γ so that, along with
the topological parameters corresponding to the network in Fig. 8b, the inequality in
Eq. (20) is no longer satisfied.

4.2 Numerical results of the model by Recker and Gupta (2005)

For the model by Recker and Gupta (2005), the stability criterion obtained from
Eqs. (18) and (19) is

γ1(mi1 − s j1) + γ2(mi2 − s j2) > 1, (21)

where i denotes the index for one node and j denotes the index for the other node
in Fig. 5. For this model, the numerical results and the corresponding balanced
2-colouring of the 3 locus–2 allele form of the system are shown in Figs. 10 and 11.
Applying Eq. (21) to the topological parameters of the quotient networks in Figs. 10b
and 11, we see that these patterns are clearly stable.

Like the previous model, we can choose the system parameter values such that the
clustering patterns become unstable. In Fig. 12, we decrease γ1 and γ2 so that the
clustering disappears and all the strains are synchronized.
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Fig. 10 Results for the 3 locus–2 allele version of the model from Recker and Gupta (2005): a Simulated
time history of zi for σ = 10, R0 = 1.2, γ1 = 0.5, γ2 = 0.8, μ = 0.09 with identical initial conditions
for strains amx , any, bny, and bmx ; and b the balanced 2-colour pattern corresponding to the numerical
results, and the corresponding 2-colour quotient network having the parameter values mi j = 2 and si j = 1,
for i, j ∈ {1, 2}
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Fig. 11 Results for the 3 locus–2 allele version of the model from Recker and Gupta (2005): a Simulated
time history of zi for σ = 10, R0 = 1.2, γ1 = 0.5, γ2 = 0.8, μ = 0.09 with identical initial conditions
for strains amx and bny; and b the balanced 2-colour pattern corresponding to the numerical results and
the corresponding 2-colour quotient network having the parameter values m1i = 1, m2i = 3, s1i = 2 and
s2i = 0, for i ∈ {1, 2}

4.3 Periodic and chaotic motions

As shown numerically by Gupta et al. (1998) and Recker and Gupta (2005), the
two models discussed in this work may have cyclical and chaotic solutions for some
parameter values. Since our previous discussion in Sect. 3 is limited to the semi-
simple double zero bifurcation and periodic solutions arise from Hopf bifurcations,

123



Bifurcation, stability, and cluster formation 1527

0 100 200 300 400 500 600 700 800
0

0.1
0.2

am
x

0 100 200 300 400 500 600 700 800
0

0.1
0.2

an
y

0 100 200 300 400 500 600 700 800
0

0.1
0.2

bn
x

0 100 200 300 400 500 600 700 800
0

0.1
0.2

bm
y

0 100 200 300 400 500 600 700 800
0

0.1
0.2

bn
y

0 100 200 300 400 500 600 700 800
0

0.1
0.2

bm
x

0 100 200 300 400 500 600 700 800
0

0.1
0.2

am
y

0 100 200 300 400 500 600 700 800
0

0.1
0.2

an
x

t

(a)

bmx

bnx bny

bmy

amx

anx any

amy

(b)

Fig. 12 Results for the 3 locus–2 allele version of the model from Recker and Gupta (2005): a Simulated
time history of zi for σ = 10, R0 = 1.2, γ1 = 0.45, γ2 = 0.48, μ = 0.09; and b the corresponding
coupled cell system showing that all strains being synchronized in identical steady-staten
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Fig. 13 Results for the 3 locus–2 allele version of the model from Recker and Gupta (2005): a Simulated
time history of zi for σ = 10, R0 = 1.2, γ1 = 0.5, γ2 = 0.8, μ = 0.09 with identical initial conditions
for strains amx , any, bny, and bmx , and b The balanced 2-colour pattern corresponding to the numerical
results, and the corresponding 2-colour quotient network having the parameter values mi j = 2 and si j = 1,
for i, j ∈ {1, 2}

our previous work based on bifurcation and stability analysis does not apply here.
In this section, we will investigate these two types of solutions numerically.

For the model by Recker and Gupta (2005), we can see from Fig. 13a and b that
periodic solutions of the system correspond to balanced colourings of the networks in
Figs. 10b and 11b. While our bifurcation and stability analysis does not apply here,
the results from balanced colouring seem to correspond to the clustering of periodic
solutions. This result suggests that partial synchrony patterns of periodic solutions
may also arise from bifurcations of the quotient network. Like our previous results
obtained based on the semi-simple double zero bifurcations, these different patterns
of synchrony can be induced numerically using different initial conditions.
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Fig. 14 Results for the 3 locus–2 allele version of the model from Recker and Gupta (2005): 11A Simulated
time history of zi for σ = 10, R0 = 1.2, γ1 = 0.5, γ2 = 0.8, μ = 0.09 with identical initial conditions for
strains amx and bny; and 11B The balanced 2-colour pattern corresponding to the numerical results and
the corresponding 2-colour quotient network having the parameter values m1i = 1, m2i = 3, s1i = 2 and
s2i = 0, for i ∈ {1, 2}

While keeping the parameter values the same as that for the periodic solutions, we
see from Fig. 14a that chaotic solutions may occur under different initial conditions.
Like the other solutions of the system, the different strains also synchronize with each
other chaotically. The synchrony pattern of the synchronized chaos corresponds to the
balanced colouring shown in Fig. 14b. The corresponding quotient network for this
balanced colouring is shown in Fig. 14c. While the numerical solutions in Figs. 13a, b,
and 14a are all produced using the same parameter values, their respective balanced
colourings do not have the same number of equivalence classes. This result suggests
that, for any given set of parameter values, the basin of attraction of the system may con-
tain multiple stable regions corresponding to multiple patterns of balanced colourings.

5 Discussion and conclusion

In this paper, we introduced the groupoid formalism by Golubitsky et al. (2005) as a
method for analyzing multi-strain epidemiology models. This approach takes advan-
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tage of the fact that strains in many multi-strain models are treated as interconnected
subsystems. Each of the subsystem is represented as a node of the digraph and the cou-
plings between them are represented by edges. We can now further simplify the system
by analyzing its quotient network. Using these simplifications, we were able to provide
analytic insights to the local bifurcations. Furthermore, we were able to explain partial
synchrony between the solutions of different strains through the groupoid framework
and stability analysis of the bifurcating solutions.

Specifically, we applied this framework to the models by Gupta et al. (1998) and
Recker and Gupta (2005). Both of these are multi-strain models that compartmentalize
the dynamics pertaining one strain to a subsystem of differential equations. While both
models are mutli-strain epidemiology models, there were different motivations and
assumptions. Because of these differences, the two different models have different
coupled cell network representations and different quotient networks as well. Even
with the differences, the bifurcation and stability analysis on the quotient networks of
both models turned out to be quite similar. We were able to prove that semi-simple
double zero bifurcations from the trivial equilibrium occur for both models. Aside
from proving that such bifurcations exist, we also calculated the specific bifurcating
solutions and their stability criteria.

With the stability criteria of the bifurcating solutions known explicitly, we showed
that the partial synchrony observed numerically are the results of stable bifurcating
solutions. The results show that the bifurcating solutions in which the two nodes of the
quotient network do not synchronize with each other are possible. Since the two nodes
of the quotient network represent different subsets of nodes of the larger network, the
asynchronous steady-state bifurcating solutions of the quotient network imply that the
subsets of nodes of the larger network will have different solutions. Thus, we have
analytically explained how clustering of strains occur.

Calvez et al. (2005) analyzed a modified version of the model by Gupta et al.
(1998) and they stated that “which cluster structure occurs in reality depends mostly
on the level of cross-protection” and our results from the stability analysis certainly
support their statement. One can see from Eqs. (20) and (21) that the cross-protection
parameters, γ for model (1) as well as γ1 and γ2 for model (2), are important in
the stability criteria. However, we show that cross-protection is not the only factor
governing the appearance of distinct strain structure. The topological parameters from
a balanced colouring pattern also factor into the appearance of strain clustering.

Aside from determining that appearance of strain structure is directly tied with
the stability of bifurcating solutions, the clustering pattern that may occur is also of
interest. Calvez et al. (2005) stated that it is “not clear why some cluster structures
arise while others do not”, but we were able to determine the pattern using the idea of
balanced colourings from the groupoid formalism. As required by the method, only
balanced colourings may occur, so some cluster structures cannot occur.

Furthermore, balanced colourings are characterized by their topological parame-
ters from the quotient network representation. Through our stability analysis, we
show that these parameters are important to stability and some patterns do not lead
to stable bifurcating solutions. Thus, only balanced clustering structure with pat-
terns that give stable bifurcating solutions may occur. Given system parameters, we
observed in Sect. 4 that more than one balanced colouring may be stable. In such situ-
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ations, the initial conditions may determine which of the pattern appear in numerical
simulations.

The transition from one pattern to another can be observed from the differences
between Figs. 7 and 9. As we decrease the parameter, γ , for model (1), the stable
discrete strain structure in Fig. 7a is destabilized and the strain structure disappeared.
Based on this observation, we may conclude that strain structure found in the model
by Gupta et al. (1998) is related to the effectiveness of cross-immunity. The more
effective the cross-protection, the more likely the discrete strain structure appears.
This observation is consistent with the idea that discrete strain structure is a result of
immune selection. In a similar fashion, we can destabilize the discrete strain structure
found in the model by Recker and Gupta (2005) by decreasing the parameters, γ1 and
γ2. For this model, the transition from discrete strain structure to no structure can be
observed in Figs. 10 and 12.

In addition to partially synchronized steady-states, partially synchronized periodic
and chaotic solutions have also been observed numerically. Unlike the analysis per-
formed by Dawes and Gog (2002), our bifurcation and stability analysis is local and
limited to steady-states. While our work is not directly applied to study these phe-
nomena, we would like to mention that the strain structures shown in Fig. 13a and
b match the patterns found in Figs. 10b and 11b. This agreement between numerical
results and balanced colourings suggest that other bifurcations, possibly secondary,
may occur from the quotient network causing the oscillatory behaviour. Besides
2-colour balanced colouring being compatible with clusters of periodic solutions,
we also observe that the chaotic synchronization shown in Fig. 14a also agrees with
the balanced 3-colouring shown in Fig. 14b.

A few possibilities exist for future works and we shall discuss them here. For
bifurcation and stability, we have restricted the analysis to 2-colourings of the sys-
tems. Given that there is strong agreement between the chaotic synchronization and
a balanced 3-colouring, it is clear that more complicated synchrony patterns are pos-
sible. Since each colour of a colouring represents a subset of nodes, analyses for
patterns with higher number of colours are necessary to understand the possible
dynamics.

Secondly, Dawes and Gog (2002) suggested the configuration of the strain space
with symmetries, such as a ring structure, may have affected the overall system and
we have continued to study strain-spaces with symmetries in this work as well. Some
of the symmetries are present because we have assumed that all strains have identical
parameters. This identical assumption leads to identical nodes, identical couplings,
and thus possible symmetries in the directed graph of the coupled cell representation.
Biologically, it would be unlikely that all strains behave identically, thus the identical
parameter assumption is not realistic. Choosing different parameters for various strains
in the strain-space would provide a more realistic model. We have also assumed that all
possible strains of the m locus–n allele model are present in the system and the effects
of cross-immunity exist identically and perfectly between strains that share alleles.
Since these assumptions are used for mathematical convenience and the groupoid
method applied to topologies without symmetries, it would be interesting to study more
realistic strain-spaces motivated by biological evidence that have less symmetries.
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Ultimately, as our knowledge of multi-strain pathogens and their interactions with
hosts increases, the demand for mathematical models that can describe newly observed
phenomena grows as well. In order to keep up with these needs, mathematical models
have become more intricate and complex over time. We have provided a method to
understand these models in a manner that has not been done before. This method also
allows newer models to have fewer assumptions and increase the realism. Understand-
ing gained from utilizing this method may provide invaluable insights.
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