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a b s t r a c t

In this paper, we study the dynamics of a mathematical model on primary and secondary
cytotoxic T-lymphocyte (CTL) response to viral infections by Wodarz et al. This model
has three equilibria and their stability criteria are discussed. The system transitions from
one equilibrium to the next as the basic reproductive number, R0, increases. When R0
increases even further, we analytically show that periodic solutions may arise from the
third equilibrium via Hopf bifurcation. Numerical simulations of the model agree with
the theoretical results and these dynamics occur within biologically realistic parameter
range. The normal form theory is also applied to find the amplitude, phase and stability
information on the limit cycles. Biological implications of the results are discussed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

From the advances in immunology over the past few decades, we are now able to understand the dynamics of infections
at the cellular level. This detailed level of understanding allows researchers to simulate the interactions between pathogens
and the host immune system using computer models. Of the many different mechanisms of the immune system, defenses
against viral infections are of interest because many of the diseases caused by them, e.g. hepatitis B and AIDS, are chronic
and incurable [1,2].

A virus cannot replicate on its own and it must take over host cells and use them in order to replicate. Once invaded by
the viruses, these infected cells will cause a cytotoxic T-lymphocyte (CTL) response from the immune system. Cells involved
in the CTL response are also known as killer T-cells because they are responsible for apoptosis, i.e., programmed cell death,
of the infected cells. Through the lysis of the infected cells, the viruses are prevented from further replication [2]. The CTL
response is also notable because it sometimes damages the body in its attempt to clear the virus. Over half the tissue damage
in hepatitis is actually caused by the CTL response [1,3].

To model the immune response during a viral infection, researchers first consider the basic interactions between the
immune system and the virus using the following system of differential equations [4,5]:

ẋ = λ − dx − βxv,

ẏ = βxv − ay,
v̇ = ky − µv,

(1)

where variables x, y and v represent the density of the healthy cells, the infected cells, and the virus, respectively. Healthy
cells are produced at rate λ and they died out naturally at rate dx. These cells may come into contact with the virus and
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become infected cells at rateβxv. Infected cells died out naturally at rate ay. From the infected cells, the viruses are replicated
at rate ky and they are cleared naturally at rate µv.

To recover from a viral infection, cytotoxic T-lymphocyte effectors (CTLe) of the immune system will clear away the
infected cells to prevent further viral replications. To model these extra dynamics, researchers modified model (1) by
assuming that the virus population is at a quasi-steady state, i.e. v = (k/µ)y, and let z represent the CTLe population
to get a simple model of viral interaction with CTL response [5,6]:

ẋ = λ − dx − βxy,
ẏ = βxy − ay − pyz,
ż = cyz − bz.

(2)

Compared to model (1), healthy cells in this model become infected cells at rate βxy and the infected cells are removed by
z at pyz. The CTL population increases nonlinearly at rate cyz and they are removed at rate bz.

After a viral infection, the CTLs that were responsible for clearing away the infected cells become cytotoxic T-lymphocyte
precursors (CTLp) and they have receptors specifically for detecting the virus from the previous infection [3]. Upon contact
with the virus during a subsequent infection, the precursors differentiate and become cytotoxic T-lymphocyte effectors
(CTLe) and these cells are again responsible for clearing away the invading virus. Hence, the following model from [7] more
accurately describes the dynamics of CTL response in the immune system:

ẋ = λ − dx − βxy
ẏ = βxy − ay − pyz
ẇ = cyw − cqyw − bw
ż = cqyw − hz.

(3)

For this system, the healthy cells, x, and the infected cells, y, are described similarly as in system (2). Instead of just one class
of CTL response, there are the CTLp represented by w and the CTLe represented by z. These precursors emerge at rate cyw.
They may become effectors at rate cqyw or cleared away naturally at rate bw. Similarly, the effectors are created at rate
cqyw and cleared at rate hz.

Dynamics of system (3) was analyzedmostly by numerical methods in [7]. In this study, we provide a rigorous analysis of
system (3) similar to those done in [8,9]. To start, we show that the system is awell-posed biologicalmodel in Section 2. Local
analysis of equilibria for system (3) was partially carried out in [7], so we complete the local as well as the global stability
analysis in Section 3. Aside from stability, we will analyze bifurcation dynamics using conditions established by Yu [10] in
Section 4.2. We provide some numerical illustrations to the system in Section 5. Finally, the biological significance of the
results are discussed in Section 6.

2. Well-posedness of the model

For a biological model to be well-posed, only non-negative initial conditions are considered and the solution must not
be negative. Let the parameters in (3) be positive constants. Directly solving for x, the solution is

x(t) = e−
 t
0 (d+βy(s))dsx(0) + λ

∫ t

0
e−

 t
s (d+βy(u))duds.

For t > 0 and x(0) ≥ 0, one can see that x(t) > 0. In a similar fashion, we can show that the other three variables have
solutions as

y(t) = y(0)e
 t
0 [βx(s)−a−pz(s)]ds,

w(t) = w(0)e
 t
0 [cy(s)(1−a)−b]ds,

and z(t) = e−ht

z(0) +

∫ t

0
cqy(s)w(s)ehsds


.

All solutions are positive for t > 0 if y(0) > 0, w(0) > 0, and z(0) ≥ 0.
Aside from positivity, boundedness is another criteria for a well-posed biological model. Given that the exponential

functions have negative exponents, we show that x(t) for t > 0 is bounded by

x(t) < e−
 t
0 d ds


x(0) + λ

∫ t

0
e−

 t
s d duds


= e−dt


x(0) + λ

∫ t

0
e−d(t−s)ds


= e−dt


x(0) +

λ

d


1 − e−dt .
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Combining the boundedness of x(t) and the positivity of z(t), one can see that the integrand in y(t) must also be bounded.
Since the integrand is bounded, y(t) must be bounded for t > 0. Using the same boundedness argument for y(t), we can
show that w(t) is also bounded. For z(t), we know that z(0)e−ht is bounded. As for the other part of the solution, it may be
unbounded as t → ∞. We apply l’Hopital’s rule to get

lim
t→∞

e−ht
∫ t

0
cqy(s)w(s)ehsds H

= lim
t→∞

cqy(t)w(t)eht

heht
=

cqy(∞)w(∞)

h
.

By the boundedness of y(t) and w(t), z(t) is also bounded. Hence, we have shown system (3) to be a well-posed biological
model.

First, we discuss the stability of E0 and E1 and their bifurcation. In the next section, we will discuss the stability of E2 and
Hopf bifurcation. For system (3), the three equilibria are given by

E0 =


λ

d
, 0, 0, 0


, (4)

E1 =


a
β

,
λβ − da

aβ
, 0, 0


, and (5)

E2 =


λ

dR1
,

b
cQ

,
h

pqbcd


R0

R1
− 1


,

1
pcdQ


R0

R1
− 1


, (6)

where

Q = (1 − q),

R0 =
λβ

ad
,

and R1 = 1 +
βb
cdQ

.

The stability of the equilibria is based on the Jacobian matrix of (3):

J(x, y, w, z) =

−d − yβ −βx 0 0
yβ −βx − a − pz 0 −py
0 cw(1 − q) cy(1 − q) − b 0
0 cqw cqy −h

 . (7)

3. Stability of E0 and E1

3.1. Infection-free equilibrium E0

By the way of (7), we obtain the characteristic polynomial at the equilibrium E0 as follows.

ΛE0(s) = det[λI − J(E0)] = (s + d)(s + b)(s + h)

s + a −

β

d


.

For an equilibrium to be locally asymptotically stable, all the roots of the characteristic polynomial must be located in
C−

= {z ∈ C : Re(z) < 0}. Given that all the parameters of the system are positive, the system is locally asymptotically
stable at this equilibrium if

λβ − da < 0 or R0 ,
λβ

ad
< 1,

where R0 represents the basic reproductive number.
To show that this equilibrium is globally stable, we will follow the method of fluctuation employed by Hirsch et al. [11]

and Jiang et al. [8]. To start, we denote

f∞ = lim inf
t→∞

f (t) and f ∞
= lim sup

t→∞

f (t)

for any continuous and bounded function f : [0, ∞) → R. As shown in Section 2, the solutions x(t), y(t), w(t), and z(t)
are always non-negative and bounded from above for any well-posed initial conditions. Hence, lim inft→∞ and lim supt→∞

always exist for each component. By the theorems on fluctuations [12], there exists a sequence tn such that if tn → ∞

whenever n → ∞, then

lim
n→∞

x(tn) = x∞ and lim
n→∞

ẋ(tn) = 0. (8)
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Suppose t = tn, then the first equation from system (3) gives

ẋ(tn) + dx(tn) + βx(tn)y(tn) = λ.

As n → ∞, one can apply identities in (8) and the previous equation becomes

dx∞
≤ (d + βy∞)x∞

≤ λ. (9)

By similar arguments on the other equations in system (3), we have

ay∞
≤ (a + pz∞)y∞

≤ βx∞y∞, (10)

bw∞
≤ c(1 − q)y∞w∞, (11)

and hz∞
≤ cqy∞w∞. (12)

Now, we can derive from Eqs. (9) and (10) to get

ay∞
≤ βx∞y∞

≤
λβ

d
y∞. (13)

Suppose y∞ > 0, inequality (13) implies

1 ≤
λβ

ad
= R0,

which contradicts R0 < 1, and so y∞
= 0. Given y∞

= 0, Eqs. (11) and (12) imply that w∞
= 0 and z∞

= 0. Since
the solutions are non-negative and lim inf ≤ lim sup, we must have y(t), w(t), z(t) → 0 as t → ∞. Because y(t) → 0
asymptotically, the first equation in (3) becomes ẋ = λ − dx. Similar to the results in [13], the solution x(t) → λ/d as
t → ∞. By the local stability result established earlier and the global attractive property shown here, we have proven the
following theorem.

Theorem 1. When R0 < 1, the infection-free equilibrium E0 is globally asymptotically stable.

3.2. Infectious equilibrium without CTL response E1

When R0 > 1, E0 becomes unstable and a new equilibrium E1 emerges. For this equilibrium solution to be physically
meaningful, we must have R0 > 1. Similarly, with the aid of (7) the characteristic equation at E1 can be obtained as

ΛE1(s) = det[λI − J(E1)]

=
1

a2β
(s + h)(as2 + λβs + βλa − da2) [aβs + cQ (ad − βλ) + aβb] .

There are two first-degree factors and one second degree factor. Given that all the parameters are positive, the first root is
obviously stable. For the roots of the second-degree factor to be in C−, all its coefficients must have the same sign. Hence,
its roots would be stable if and only if R0 > 1. This condition is same as the condition for the equilibrium to be biologically
meaningful, so we only need to check the remaining root. This equilibrium is locally stable if and only if

cQ (ad − βλ) + aβb > 0 ⇔ cdQ (R0 − 1) − βb < 0

⇔ R0 − 1 −
βb
cdQ

< 0,

⇔ R0 < 1 +
βb
cdQ

, R1.

Not only that the system is locally stable at this equilibrium, one can show that this equilibrium is globally stable.

Theorem 2. When 1 < R0 < R1, the infectious equilibrium without CTL response is globally asymptotically stable.

Proof. To prove that the system is globally asymptotically stable, we will use the Lyapunov stability theory to show that
the system must converge to a region in hyperspace and upon entering such region, the solutions must converge to the
equilibrium asymptotically. Based on the Lyapunov function candidates suggested in [14], we investigate the system using

V (x, y, w, z) = m

x − x1 − x1 ln

x
x1

+ y − y1 − ln
y
y1


+ m̃ (w + z) ,
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where m as well as m̃ are positive coefficients yet to be determined, and x1 as well as y1 are the equilibrium expressions
of x and y at E1. Clearly, V (E1) = 0, which is the unique global minimum of the function. Now, we need to show that the
equilibrium is globally attractive. The derivative of V with respect to time along the trajectory of the system is

V̇ = m

ẋ −

x1
x
ẋ + ẏ −

y1
y
ẏ


+ m̃


ẇ +
1
q
ż


= m


λ +
ad
β

−


dx +

λa
βx


+


λ −

ad
β


−

λβ − ad
a

x − pyz +
λβ − ad

aβ
pz


+ m̃(cyw − bw − hz)

= −mλ


x1
x

+
x
x1

− 2
2

− (m̃h + mp(y − y1))z + m̃c

y −

b
c


w

= −
mλ

xx1
(x − x1)2 − (m̃h + mp(y − y1))z + m̃c


y −

b
c


w.

First, suppose y > y1 and we choose m ≫ m̃, then V̇ < 0. This result implies that the trajectory enters the region bounded
by y < y1 + ϵ at some finite time T1 > 0 and then it will stay in this region for t ∈ [T1, ∞). Noticing that

b
cQ

− y1 =
b
cQ

−
λβ − ad

aβ

=
d
β


1 +

bβ
cdQ

−
λβ

ad


=

d
β

(R1 − R0)

> 0 for 1 < R0 < R1,

we can always select the appropriate m and m̃ to ensure that b/cQ > y1 > y − ε, i.e., y < b/cQ + ε for arbitrary small ε.
Hence, at some finite time T > T1, the solution must enter y ≤ b/cQ and stay in this region for t ∈ [T , ∞).

Having shown that ymust be bounded above by b/cQ in finite time, we now proceed to prove that the solution trajectory
will approach E1 asymptotically. Using the inequality in (11), we have

bw∞
≤ c(1 − q)y∞w∞ or


b
cQ

− y∞


w∞

≤ 0. (14)

For t ∈ [T , ∞), (14) will only hold if w∞
= 0. Asymptotically, system (3) has the same dynamics as

ẋ = λ − dx − βxy
ẏ = βxy − ay

(15)

and this subsystem has two equilibria at

Ê0 =


λ

d
, 0


and Ê1 (x1, y1) .

It can be easily verified that when 1 < R0 < R1, subsystem (15) is unstable at Ê0 and locally stable at Ê1. Applying the
Lyapunov stability theory to the subsystem, we choose the Lyapunov function as

V̂ (x, y) = m

x − x1 − x1 ln

x
x1

+ y − y1 − ln
y
y1


.

Then

˙̂V = −
λ

xx1
(x − x1)2 < 0,

for x ≠ x1. For 1 < R0 < R1, subsystem (15) is globally asymptotically stable at Ê1 implying that the equilibrium E1 of
system (3) is globally asymptotically stable. �

4. Stability of E2 and Hopf bifurcation

4.1. Infectious equilibrium with CTL response E2

As R0 increases and passes R1, E1 becomes unstable and the system moves to the third equilibrium E2. By Eq. (7), we
obtain the characteristic equation at E2:

ΛE2(s) = det[λI − J(E2)] = s4 + α1s3 + α2s2 + α3s + α4,
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where

α1 = dR1 + h,

α2 = ad
R0

R1
(R1 − 1) + h


dR1 + a


R0

R1
− 1


,

α3 = ah


(b + dR1)


R0

R1
− 1


+ d

R0

R1
(R1 − 1)


,

and α4 = abdh(R0 − R1).

It is clear that all αi > 0, i = 1, 2, 3, 4 due to R0 > R1 > 1.
Unlike the previous characteristic polynomials at other equilibria, ΛE2 cannot be factored into polynomials of lesser

degree. Hence, local stability of this equilibrium cannot be as easily identified. Instead, we will use the Routh–Hurwitz
criterion to analyze its local stability. The criterion states that the corresponding equilibrium is locally asymptotically stable
if and only if all the Hurwitz determinants of the characteristic polynomial are positive [15]. For a four dimensional system,
the relevant Hurwitz determinants are

∆1 = α1,

∆2 = α1α2 − α3,

∆3 = α3∆2 − α2
1α4,

and ∆4 = α4∆3.

Moreover, ∆2 and ∆3 can be written more explicitly as

∆2 = A2(h − b)2 + B2(h − b) + C2,

∆3 = ah

A3(h − b)2 + B3(h − b) + C3


,

where

A2 = a

R0

R1
− 1


+ dR1,

B2 = ab

R0

R1
− 1


+ d(2b + dR1)R1,

C2 = d [b(b + dR1)R1 + adR0(R1 − 1)] ,

A3 = a(b + dR1)


R0

R1
− 1

2

+ d2R1(R0 − R1) + d2R0(R1 − 1) + ad
R0

R1
(R1 − 1)


R0

R1
− 1


,

B3 = (b + dR1)


ab

R0

R1
− 1

2

+ d2R1(R0 − R1) + d2R0(R1 − 1)


+ bd

R0

R1
(R1 − 1)

[
a

R0

R1
− 1


+ dR1

]
,

C3 = d2
R0

R1
(R1 − 1) [(b + dR1) [a(R0 − R1) + bR1] + adR0(R1 − 1)] .

(16)

It is easy to see that all the coefficients Ai, Bi and Ci are positive for any parameter values, since R0 > R1 > 1 for this case.
Therefore, ∆2 > 0, ∆3 > 0 as long as h > b. In other words, the infectious equilibrium with CTL response, E2, is always
stable if the death rate of the CTLe is higher than that of the CTLp.

In order to obtain more precise stability conditions for the infectious equilibrium with CTL response E2, we first prove
the following lemma to show that if both ∆2 and ∆3 can become zero (requiring h < b); then ∆3 will cross zero before ∆2
does.

Lemma 3. For R0 > R1, ∆2 is positive when ∆3 crosses zero for some change in parameters.

Proof. Suppose ∆3 = 0, then we can rewrite the expression as

∆2 =
α2
1α4

α3
.

Since each αi is positive as long as R0 > R1, we have ∆2 > 0. On the other hand, suppose ∆2 = 0, then we have
∆3 = −α2

1α4 < 0. The proof is complete. �

Thus, to consider the stability E2, we only need to consider the possibility of ∆3 = 0.
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Now, let

∆ = B2
3 − 4A3C3, h∗

= b −
B3

2A3
,

h∗

1 = b −
B3 +

√
∆

2A3
(∆ > 0), and h∗

2 = b −
B3 −

√
∆

2A3
(∆ > 0).

It is easy to see that h∗

1 < h∗ < h∗

2 < b. Then, we have the following theorem.

Theorem 4. The stability of the infectious equilibrium with CTL response E2 belongs to one of the following cases:
(i) when ∆ < 0, E2 is always stable;
(ii) when ∆ = 0, E2 is always stable if h∗

≤ 0; or is stable for h ∈ (0, h∗) ∪ (h∗, ∞) if h∗ > 0;
(iii) when∆ > 0, E2 is always stable if h∗

2 ≤ 0, or is stable for h ∈ (h∗

2, ∞) if h∗

2 > 0 > h∗

1 , or is stable for h ∈ (0, h∗

1)∪(h∗

2, ∞)
if h∗

1 > 0.

Proof. The proof is straightforward by considering the sign of the quadratic polynomial A3(h − b)2 + B3(h − b) + C3, and
thus the details are omitted here for brevity. �

4.2. Hopf bifurcation analysis

In the previous sections, we showed that, as R0 increases, E0 loses its stability and transitions to E1. As R0 further increases,
E1 would also lose its stability and go to E2. In this section, we will show that Hopf bifurcation can occur from E2 if R0
increases even further with other conditions on the parameter h. Bifurcations are usually determined by the eigenvalues
of the Jacobian matrix, but they are often difficult to determine explicitly for high dimensional systems. The next theorem
states the necessary and sufficient condition for finding Hopf critical point without finding the eigenvalues and its proof can
be found in [10].

Theorem 5. For x ∈ Rn, µ ∈ R, and f : Rn
× R → Rn, assume that the general nonlinear ordinary differential system

ẋ = f (x, µ)

has a locally asymptotically stable equilibrium. The necessary and sufficient condition for a Hopf bifurcation to occur from the
equilibrium is

∆n−1 = 0,

with αn and ∆i > 0, where 1 ≤ i ≤ n − 2.

For the present study, this theorem implies that a Hopf bifurcation from E2 would occur when ∆3 crosses from the positive
to the negative and at the same time, ∆1 > 0 and ∆2 > 0 hold. From Lemma 3, we know that the only possible bifurcation
which can occur from the infectious equilibrium with CTL response E2 is a Hopf bifurcation and it may only occur if h < b.
In particular, we have the following theorem.

Theorem 6. Let RH denote the Hopf critical point. Then,
(i) when ∆ < 0, RH = ∞, that is, there is no Hopf bifurcation;
(ii) when ∆ = 0, RH = ∞ if the corresponding h∗

≤ 0, or RH is finite if the corresponding h∗ > 0 (which only gives a single
value for E2 unstable); so there is no Hopf bifurcation;

(iii) when ∆ > 0, RH = ∞ if the corresponding h∗

2 ≤ 0, giving no Hopf bifurcation, or there is one finite critical value RH if
the corresponding h∗

2 > 0 > h∗

1 , giving rise to a Hopf bifurcation, or there are two finite critical values RH1 and RH2 if the
corresponding h∗

1 > 0, giving rise to two Hopf bifurcations.

Proof. ∆3 = 0 is equivalent to find the roots of the quadratic polynomial equation A3(h−b)2−B3(h−b)+C3 = 0, where all
the three coefficients are positive and do not contain h. It is clear that when ∆ = B2

3 − 4A3C3 < 0, the quadratic polynomial
is positive for any positive parameter values, and thus E2 is always stable, implying that there is no Hopf bifurcation and so
the Hopf critical point is RH = ∞. When ∆ = 0, the quadratic polynomial equation has one root

h − b = −
B3

2A3
, or h = b −

B3

2A3
≡ h∗ for h > 0.

So if h∗
≤ 0, then E2 is always stable because h > 0 and no Hopf bifurcation can occur. If 0 < h∗ < b, we have a positive

solution for h, and E2 is stable except for the point h = h∗. Thus, the corresponding RH is a isolated point, that is, except for
this point, E2 is always stable. Thus, for ∆ = 0, generically there is no Hopf bifurcation. Finally, for ∆ > 0, it may have three
possibilities. The roots of the quadratic polynomial for this case is given by

h − b =
B3 ∓

√
∆

2A3
, or h = b −

B3 ±
√

∆

2A3
≡ h∗

1,2 for h > 0.
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If h∗

1 < h∗

2 ≤ 0, E2 is always stable (i.e. RH = ∞); if h∗

2 > 0 > h∗

1 , then E2 is stable for h > h∗

2 and there is a Hopf bifurcation
emerging from the point h = h∗

2 with a finite RH ; if h∗

1 > 0, then E2 is stable for h ∈ (0, h∗

1) ∪ (h∗

2, ∞), and there are two
Hopf bifurcations, which happen at the critical point h = h∗

1 and h = h∗

2 (the corresponding values in terms of R0 equal RH1
and RH2 ).

To verify if it is possible to have ∆ = 0, rewrite ∆ as

∆ =


R1(dR1 + b) − R0


d(2R1 − 1) + b

2
d2R4

1


b2d2R2

1a
2
− 2dR1


bd3R3

1 + βλ

−2d(R1 − 1) + b2


a

+ d6R6
1 + 2βλd3R3

1


b − 2d(R1 − 1)


+ β2λ2


b2 − 4d2(R1 − 1)R1


.

Since R1 does not contain a, we can solve the above equation ∆ = 0 to find a expressed in terms of other parameters. The
first factor gives

a =
λβ

d(2R1 − 1) + b


dR1(dR1 + b)

,

and the second quadratic polynomial of a yields

a = dR1

bd3R3

1 + βλ

−2d(R1 − 1) + b2


± 2d3R2

1


λβ(R1 − 1) [λβ(R1 − 1) − bR1(dR1 − b)].

The above expressions show that all the three cases ∆ < 0, ∆ = 0 and ∆ > 0 are possible. �

The next step is to study the stability of the limit cycles generated from the Hopf bifurcations. To achieve this, consider
the general system

Ẋ = JX + F(X), X ∈ Rn,

where JX is the linear part of the system. We first need to find the differential equations’ center manifold and then reduce
the system to its normal form.Without loss of generality, we assume that X = 0 is the fixed point of interest for the system.

Suppose J has nc eigenvalues with zero real-part and ns eigenvalues with negative real-part and n = nc + ns. Using the
eigenvectors of J to form a transformation matrix, the system can be rewritten in block matrix form as

ẋc = Axc + f (xc, xs)
ẋs = Bxs + g(xc, xs)

(xc, xs) ∈ Rnc × Rns , (17)

where A ∈ Rnc×nc and B ∈ Rns×ns . With the eigenvalues of zero real-part, the Center Manifold Theorem [16] guarantees
that there exists a smooth manifold Wc = {(xc, xs)|xs = q(xc)} near the equilibrium point such that the local behavior in
the center direction of the system is qualitatively the same as that on the manifold. By differentiating xs = q(xc), we get
ẋs = Dq(xc)ẋc . Substituting (17) into the previous identity and rearranging the equation, we get

Dg(xc)[Axc + f (xc, q(xc))] − Bg(xc) − g(xc, q(xc)) = 0. (18)

By solving for q(xc), we get a function describing the center manifold. In general, q(xc) cannot be solved explicitly. Instead,
substituting a Taylor expansion q(xc) = ax2 + bx3 + O(x4) into (18), we can find the coefficients for the expansion by
balancing the lower order terms. Based on q(xc), we now have a system in the reduced form:

ẋc = Axc + f (xc, q(xc)).

Now that we have the system reduced to the centermanifold, wewill find the normal form of the system associatedwith
the Hopf bifurcation. To transform the reduced system, we use nonlinear functions xc = y + hi(y), where each hi(y) is an
ith-degree homogeneous polynomial (2 ≤ i ≤ s). Given that we are interested in Hopf bifurcation in this paper, we assume
that nc = 2 and xc, y ∈ R2. Then the system can be transformed to

ẏ = Ay + f2(y) + f3(y) + · · · + fs(y) + DAhs(y) − DhsA(y) + O(|y|s+1),

where fi(y) represents the ith order terms in the expansion for the function f . We can choose the functions hs such that
fs(y) = DhsA(y) − DAhs(y). Essential terms must remain regardless of our choice of hs [16]. Hence, we can simplify the
system up to a finite degree of terms by applying the process repeatedly. After a simplification up to third order, the normal
form of a system associated with a Hopf bifurcation is

ẏ1
ẏ2


=


(ν0µ + ν1(y21 + y22))y1 − (ω + τ0µ + τ1(y21 + y22))y2
(ω + τ0µ + τ1(y21 + y22))y1 + (ν0µ + ν1(y21 + y22))


+ O(|y|5).

We transform these two equations to the polar coordinates as

ṙ = r(ν0µ + ν1r2) + O(r5)

θ̇ = ω0 + τ0µ + τ1r2 + O(r4),
(19)
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Fig. 1. Simulation of system (3) at λ = 3.

where r describes the amplitude and θ represents the phase of the periodic motion. By constructing a Poincaré map of the
polar coordinate system, one can show that the bifurcating limit cycle is asymptotically stable when ν1 < 0 and unstable
when ν1 > 0.

Wehave described a classical approach to determining the stability ofHopf bifurcation here. In order to perform the series
of transformations for finding the relevant coefficients, wemust first determine the analytic expressions of the eigenvectors
for the Jacobian to diagonalize it. We have not been successful in finding these expressions, thus we will not be able to
determine the stability of the Hopf bifurcation found in Theorem 6 analytically. An alternative numerical method based on
perturbation expansion is described in [17] and we use the associated algorithm to investigate stability for our system in
the next section.

5. Numerical simulation

In this section, we demonstrate the analytic results in the previous sections through numerical simulations. To show that
the system undergoes qualitative changes as R0 increases, we vary R0 by increasing λ and fix the rest of the parameters. The
parameter values are chosen as

β =
3

400
, d = c = h = q =

1
10

, b =
1
5
, a =

1
2
, and p = 1.

Their selections are biologically realistic and are based on [7,18] and the references therein. With these parameter values,
we have

R0 =
3
20

λ and R1 =
7
6
.

5.1. Infection-free equilibrium E0

For 0 < λ < 20
3 , λc

1, R0 < 1. Let λ = 3, then R0 =
9
20 . Analytic expression for E0 is stated in (4). As stated

in Theorem 1, E0 is globally asymptotically stable at these values. At the chosen parameters, the equilibrium values are
(x, y, w, z) = (30, 0, 0, 0). Numerical simulation for infection-free equilibrium E0 is shown in Fig. 1 and it shows that the
healthy cells settle to the expected equilibrium value and all other populations die out after a brief period of time.

5.2. Infectious equilibrium without CTL response E1

Increasing λ further, R0 passes one and E0 loses stability to E1. According to Theorem 2, E1 remains asymptotically stable
when 1 ≤ R0 < R1, i.e. λc

1 =
20
3 ≤ λ < 70

9 , λc
2. We choose λ = 7.5, so that the reproductive number is R0 = 1.125.
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Fig. 2. Simulations of system (3) at λ = 7.5.

Analytic equilibrium expression for E1 is shown in (5) and as shown in Fig. 2, the dynamics settle to the numerical values
of (x, y, w, z) = (66.6, 1.16, 0, 0). The healthy cell population decreased from the previous equilibrium and at the same
time, the infected population increased. As expected from the analytic analysis, the simulation shows that there is no CTL
response.

5.3. Infectious equilibrium with CTL response E2

When R0 increases and passes R1, E1 loses its stability and the system is then stable at the third equilibrium E2. The
reproductive number will be greater than R1 when λ > 70/9. Local stability conditions for this equilibrium were shown in
Theorem 4 using the Routh–Hurwitz stability theorem. Hence, we shall check the conditions for the theorem numerically.
Using the selected parameters, the characteristic equation in terms of λ is

ΛE2(s) = s4 +
13
60

s3 +


3λ
400

−
23
600


s2 +


3λ

1400
−

19
1200


s +


3λ

20 000
−

7
6000


.

From the characteristic polynomial, the relevant Hurwitz determinants are

∆2(λ) = −
29

56 000
λ +

271
36 000

,

and ∆3(λ) = −
87

78 400 000
λ2

+
5809

336 000 000
λ −

2783
43 200 000

.

Solving for λ when ∆3 = 0, we find that the roots are

λ1 =
1610
261

≈ 6.17 and λ2 =
847
90

≈ 9.41. (20)

Thus, E2 is stable when 70/9 < λ < 847/90. We choose λ = 8. Direct evaluations of ∆2 and the coefficients of the
characteristics polynomial at λ = 8 show that they are all positive. Hence, we have satisfied the local stability criteria from
the Routh–Hurwitz theorem.

According to the formulas given in (16), we have

A3 =
27

9800


λ −

3899
540

2

+
115 199
291 600


> 0,

B3 =
27

49 000


λ −

22 561
3240

2

+
12 175 079
10 497 600


> 0,

C3 =
1

5 600 000
λ(30λ − 133) > 0 for λ >

70
9

,
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Fig. 3. Simulations of system (3) at λ = 8.

which yields

∆ =
29

38 416 000 000
(18λ − 133)2


λ −

11 935
1566

2

−
1 250 921
613 089


.

Hence, ∆ = 0 yields

λ =
11 935 ± 98

√
521

1566
,
133
18

,
133
18

≈ 6.192917246, 7.388888889, 7.388888889, 9.049739204.

Let λ∗
=

11 935+98
√
521

1566 ≈ 9.049739204. Then, ∆ < 0 for 70
9 < λ < λ∗, ∆ = 0 for λ = λ∗, and ∆ > 0 for λ > λ∗.

Therefore, E2 is always stable for 70
9 < λ < λ∗. When λ = λ∗, we have h∗

=
2839−25

√
521

43 080 ≈ 0.05265469799 > 0, so E2 for
this numerical example with the given value h =

1
10 ≠ h∗ is stable. When λ > λ∗, we have two roots from the quadratic

polynomial as

h∗

1,2 =
29 160λ2

− 436 086λ + 1 615 775 ± 5(18λ − 133)
√
84 564λ2 − 1 288 980λ + 4 739 329

(540λ − 3899)2 + 1 151 199
.

It can be shown that both h∗

1,2 > 0 for λ > λ∗. Thus, according to Theorem 4, we know that E2 is stable for (0, h∗

1)∪ (h∗

2, ∞).
Suppose λ = 9.2, then h∗

1 = 0.03181658398 and h∗

2 = 0.08247353652. The given value h = 0.10 > h∗

2 , implying
that E2 is stable. If we take λ = 10, then we have h∗

1 = 0.01728507103 and h∗

2 = 0.1270566231, which indicates that
h = 0.10 ∈ (h∗

1, h
∗

2), and so E2 is unstable.
Based on the analytic equilibrium expression of E2 given by (6), there should be non-zero CTL responses at this

equilibrium. In Fig. 3, the responses of each population settle to the expected equilibrium values of (x, y, w, z) =

(77.14, 2.22, 0.35, 0.8).

5.4. Hopf bifurcation

As stated in Theorem 6, there will be a Hopf bifurcation for large enough R0. By calculations in (20), ∆3 crosses zero and
becomes negative when λ = 847/90. Hence, Hopf bifurcation occurs at λH = 847/90. Or in terms of reproductive number,
we have RH = 847/600 ≈ 1.4115. Numerically, the Hurwitz determinants at R0 = RH are

∆2 =
637

240 000
, and ∆3 = 0.
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Fig. 4. Simulations of system (3) with oscillations at λ = 10 (µ = 53/90).

Fig. 5. Limit cycles of system (3) at λ = 10 (µ = 53/90).

To show that ∆3 crosses from the positive to the negative, we select λ = 98/10 ≈ 9.8, at which

h∗

1 = 0.01889876185, h∗

2 = 0.1198979582.

For the given value h = 0.10, E2 is unstable and limit cycles bifurcating from the Hopf critical point R0 = RH . In fact, when
h = 0.10, the relevant Hurwitz determinants become

∆2 =
883

360 000
, and ∆3 = −

677
432 000 000

.

Comparing the present numeric values to those evaluated earlier, we see that∆3 crosses from the positive into the negative
nondegenerately. By Theorem 5, one pair of complex conjugate eigenvalues crosses from C− into C+ and Hopf bifurcation
occurs. Numerical solutions of the system are plotted in Fig. 4, showing oscillations for each variable. In Fig. 5, a limit cycle
between the healthy cells, the infected cells and the CTLp populations is observed in the phase space.

Stability conditions for the periodic solution can be obtained from themethod of normal form theory, Lyapunov–Schmidt
reduction or Poincaré–Lindstedt expansion. While these methods proceed differently, they all require the explicit
expressions for the eigenvalues and the eigenvectors from the Jacobian of the system for analytic calculations. Asmentioned
earlier, we were unable to obtain the necessary expressions for such analysis, so we turned to a numerical algorithm given
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by [19] to investigate the stability of the orbits. This algorithm employs the method of multiple time scale to expand the
system in question at a critical Hopf bifurcation point. Solving the perturbed differential equations, one could determine the
constants which uniquely determines the normal form of the system.

We use a Maple implementation of the aforementioned algorithm to determine the stability at critical point RH =

847/90. In polar coordinates, the normal form for Hopf bifurcations is described in (19). Applying to our present situation,
we have µ = λ − λH = 10 − 847/90 = 53/90. The form is uniquely determined by the constants ν0, ν1, ω0, τ0 and
τ1. Imaginary component of the bifurcating eigenvalue pair is ω0 =

√
2/10. As shown in [8], the other constants are also

determined by the Maple implementation from [19] and they are

ν0 =
8370

1 006 943
, ν1 = −

7 159 359 703 000
25 412 370 525 507

,

τ0 =
√
2

23 400
1 006 943

, and τ1 = −
724 938 191 405 000
76 237 111 576 521

.

Since ν1 < 0, the bifurcating limit cycles are stable. Other than stability, we can also find the amplitude and frequency of
the periodic solutions. Based on the previously deduced parameters, we write the third-order normal form of (3) as

ṙ = r


8370
1 006 943

µ −
7 159 359 703 000
25 412 370 525 507

r2


,

θ̇ =

√
2

10
+

√
2

23 400
1 006 943

µ −
724 938 191 405 000
76 237 111 576 521

r2.

(21)

By setting the first equation in (21) to zero, the roots are

r = 0 and r =
171

715 935 970 300


5 171 871 333 929 279µ. (22)

The non-zero root in (22) corresponds to the amplitude of the bifurcation. Furthermore, the frequency of the said solution
is given by

ω =
√
2/10 +


√
2

23 400
1 006 943

−
2 022 577 554 019 950
7 209 067 137 417 929


µ.

6. Discussion and conclusion

Wodarz et al. built a model in [7] to investigate the interactions between healthy and infected cells as well as primary
and secondary CTL response cells. In terms of analytic investigation of the model, the authors only analyzed the structure of
the equilibria and some specific cases. For a higher dimension system, equilibrium behavior alone cannot fully describe the
full dynamics of the system. Stability and bifurcation analysis are important for the full range of possibilities. In this work,
we fully described the stability of the infection-free equilibrium E0, the infectious equilibriumwithout CTL response E1, and
the infectious equilibrium with CTL response E2.

Analytically, we showed that when 0 < R0 < 1, the infection-free equilibrium is globally asymptotically stable; when
1 < R0 < R1, the infection-free equilibrium becomes stable and the infectious equilibriumwithout CTL response is globally
asymptotically stable; when R1 < R0 < RH , the infectious equilibrium with CTL response may be locally asymptotically
stable; finally, given ∆ > 0, there exists a Hopf bifurcation from the infectious equilibrium with CTL response for an
appropriate choice of the system’s parameters. Given that R0, R1, RH , and ∆ are comprised of the parameters of the system,
we have shown how the parameters effect the dynamics of the model.

From Section 1, we see that system (3) is formed by splitting the CTL class in system (2) into two different response
classes. By a direct calculation, one can see that the basic productive number R0 for systems (2) and (3) are the same. Hence,
the parameters in the equations dealing with CTL responses have no effect on R0. In other words, the dynamics of the CTL
responses do not affect the way systems transition from infection free equilibrium to the infectious equilibria. Given that
the CTL cells have no role in preventing infections, this aspect of the model is consistent with biological situation.

Originally, the authors of [7] only explored aspects of system (3) numerically. In our analysis, we have identified periodic
solutions of the model in a rigorous manner. These sustained oscillations stem from the infectious equilibrium with CTL
response. For the immune system, this transition represents a change from homeostatic states to sustained fluctuations of
the cell populations in the model. The sustained oscillations from the Hopf bifurcation implies that upon primary infection,
the pathogen may not always be cleared entirely with the CTL responses. As one could see from Fig. 4, the number of the
infected cells may decrease, but over time, the population oscillates and cannot be completely eradicated. This phenomenon
can be viewed as an individual having a chronic disease that may flare up from time to time.

Through the expressions obtained from the stability and bifurcation analysis, we are able to better understand the
transition from a homeostatic state to oscillations triggered by a Hopf bifurcation. We showed that ∆ > 0 is a necessary
condition for Hopf bifurcation in Theorem 6. This condition constrains h < b for sustained oscillations to occur. These two
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constants are the decaying rates of the two classes of immune cells. When effectors have longer life span than precursors
(h < b), flare ups of the disease can occur. On the other hand, when the precursors have longer life span than the effectors
(h > b), the immune system is able to prevent flare ups and control the system at a steady state. This result, based on
expressions obtained from the bifurcation analysis, is in agreement with the analysis [20]. Like system (3), this model of
lymphocytic choriomeningitis virus has precursor and effector CTL classes and it also involves time-delay. Both thesemodels
predict that the immune system is more efficient in controlling the disease when the precursors outlive the effectors.

Traditionally, immunologists have ignored the oscillatory behavior of the immune system. They considered equilibrium
states as the natural states of the immune system and any other behavior, such as oscillations, were seen as transitional
states between two equilibria. Studies of the immune system and pathogen interactions show that equilibrium states may
not be the only consistent behavior in immune response [21]. To model the sustained oscillations in the aforementioned
studies using differential equations, one must look to a model that could incorporate possible Hopf bifurcations. For in-
host virus dynamics, models including intra-cellular delay [22,20] and experimental treatment [8] have shown sustained
oscillations. In this paper, we showed that, even without time-delay, the dynamics from the interactions of precursors and
effectors added to themodel of healthy and infected host cells could also produce a Hopf bifurcation. Thus, we have provided
another theoretical reason to explain the periodic dynamics in future research.

The interplay between virus and the host immune system is a complicated process, which involves cell production, viral
attachment, viral replication and pathogen clearance. While we have shown that oscillatory patterns can be obtained for a
wide range of parameters in a model, not all of these patterns are necessarily biologically realistic. Experimental works to
confirm such behavior are necessary and essential. With two classes of CTL cells considered, the model is rich with various
dynamics. This model maybe improved upon by considering other effects. In future works, different therapeutic options
maybe added to understand their effects on CTL productions as well as the overall health of the individual. One may also
introduce thedelay effects of viral gestation in latently infected cells to provide amore realisticmodel. These addeddynamics
are sure to make the mathematical model more challenging to analyze.
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