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In this paper, we study dynamics in a container crane model with delayed position feed- 
back, with particular attention focused on non-resonant double Hopf bifurcation. By using 
multiple time scales and center manifold reduction methods, we obtain the equivalent nor- 
mal forms near a double Hopf critical point in this neutral delayed differential system.
Moreover, bifurcations are classified in a two-dimensional parameter space near the criti- 
cal point. Numerical simulations are presented to demonstrate the applicability of the the- 
oretical results.
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1. Introduction 

Recently, much attention has been focused on the study of delayed different ial equations, since they may exhibit complex 
dynamical behaviors [1–3]. Some delayed differential equations were proposed via delayed feedback scheme, such as [4–7].
In many practical problems, the changing rates of some state variables not only depend on the state values at present and 
earlier instances, but also are influenced by the changing rates of the state variables in the past. Thus, neutral delayed dif- 
ferential equation s (NDDE) have been proposed in the study of population dynamics, neural network, engineering problems,
etc. [8–10]. Since then, NDDE models have attracted attentions of researchers, and some results have been obtained with 
focus on local stability and global asymptotic behaviors of trivial solutions [11–15]. Several interesting articles on the 
bifurcation theory of NDDE, such as normal form of Hopf bifurcatio n, global existence of periodic solutions, equivariant Hopf 
bifurcation theory, have been published [16–23]. A few papers considered the existence of positive periodic solutions in
neutral delayed ecological models by using a continuatio n theorem based on coincidence degree theory or other analytical 
techniques [24–26].

As we all know, it is important to compute normal forms of differential equations in the study of nonlinear dynamical 
systems [27,28]. Multiple time scales (MTS) [29,30] and center manifold reduction (CMR) [27,28] are two useful tools for 
computing the normal forms of different ial equation s. Multiple time scales method is systematic and can be directly applied 
to the original nonlinear dynamical system, not only to ordinary different ial equation s (ODE) but also to delayed differential 
equations (DDE), without applicati on of center manifold theory. In fact, this approach combines the two steps involved in
using center manifold theory and normal form theory into one unified procedure to obtain the normal form and nonlinear 
transformat ion simultaneou sly [31,32]. Moreover, MTS method only contains algebraic manipulati on, which greatly facili- 
tate computer impleme nt in symbolic computati ons. By comparison, the CMR method is more complex, especially in
DDE, which requires integration in computation. For a given ODE, the basic idea of the center manifold theory is to apply 
successive coordina te transformat ions to systematical ly construct a simpler system which has less dimension compare d
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to the original system, and thus greatly simplifies the dynamical analysis of the system. For DDE, however , one needs to first
change the DDE to a operator differential equation, and then decompose the solution space of their linearized form into sta- 
ble and center manifolds. Next, with adjoint operator equation s, one computes the center manifold by projecting the whole 
space to the center manifold, and finally calculates the normal form restricted to the center manifold (e.g. see [33–36]). Nay- 
feh [32] used these two approaches to derive equivalent normal forms of Hopf bifurcatio n in delayed nonlinear dynamical 
systems. Ding et al. [37] applied the two methods to obtain the normal forms near a double Hopf critical point in a DDE, and 
showed the equivalence of the two normal forms.

Some results have been obtained for the normal forms of NDDE. Nayfeh and Baumann [4] developed a nonlinear NDDE 
model, which describes controlled container crane system, by modeling the crane-hoist-pay load assembly as a double pen- 
dulum, and derived the normal form of Hopf bifurcatio n by using the MTS method. Wang and Wei [19] extended the com- 
putation of Hopf bifurcatio n properties (such as the direction of bifurcation and the stability of bifurcatin g periodic 
solutions) introduced by Kazarinoff et al. [38] to NDDE by using the normal form theory and center manifold theorem. Wee- 
dermann [16] computed the normal forms of NDDE by using the CMR method introduce d by Faria and Magalh ~aes [33] for
DDE. Then, Weedermann [17], Wang and Wei [18] extended the idea in [34] to the NDDE with paramete rs. To our best 
knowledge, MTS and CMR methods have not been used to consider the normal forms associated with high co-dimensional 
bifurcations in NDDE. In this paper, we will derive the normal form of double Hopf bifurcatio n in a container crane model 
with delayed position feedback [4] by using the two methods, and further show that the MTS is simpler than the CMR,
though the results from the two methods are equivalent.

The rest of the paper is organized as follows. In Section 2, we consider the existence of non-resonant double Hopf bifur- 
cation in a container crane model with delayed position feedback, and use two methods to derive the normal form associated 
with double Hopf bifurcation. Then, bifurcation analysis and numerical simulations are presented in Section 3. Finally, con- 
clusion is drawn in Section 4.
2. Analytical study 

In this section, we consider a container crane model with delayed position feedback [4], and use the MTS and CMR meth- 
ods to derive the normal form of double Hopf bifurcation. The equation of the model is described by
€/ðtÞ þ a1/ðtÞ þ 2l _/ðtÞ þ k€/ðt � sÞ ¼ ��a3/
3ðtÞ � �a4/ðtÞ _/2ðtÞ � �a4/

2ðtÞ€/ðtÞ � �k/ðt � sÞ _/2ðt � sÞ

� �ka5/
2ðtÞ€/ðt � sÞ � 1

2
�k/2ðt � sÞ€/ðt � sÞ; ð1Þ
where / is the oscillating angle, s the time delay, l the inherent damping coefficient, k ¼ � k̂
b�aR, where k̂ is the feedback gain 

(we also call k the feedback gain in this paper), � is a small dimensionle ss paramete r and a0isði ¼ 1;3;4;5Þ are scaled param- 
eters in terms of known constants, given by
a1 ¼
gâ1

4bðb� aRÞ2
; a3 ¼

4gâ3

ðb� aRÞ2
; a4 ¼

â2
1 þ 96ðb� aRÞâ5

16b2ðb� aRÞ2
; a5 ¼

3â5

b� aR
;

with
a ¼ d� c
c

; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � 1

4
a2c2

r
; â1 ¼ 4b2 þ 4a2bRþ a2ð1þ aÞc2;

â3 ¼
16b4 þ 16a2ð8þ 12aþ 3a2Þb3Rþ 4a2ð2þ 14aþ 15a2 þ 3a2Þb2c2 þ 3a4ð1þ aÞ2c4

96b3 ;

â5 ¼
4b2 þ 4að2þ 3aÞbRþ 3a2ð1þ aÞc2

8b
;

where g is gravitational acceleration, d is the length of trolley, c is the length of spreader bar, L is the connection length be- 
tween trolley and spreader bar, and R is the distance between the center of gravity of trolley and spreader bar. Further, the 
physical measureme nts (see [4]) implies a > 0; b > 0; b� aR > 0. Thus, all the parameters take positive values. The details of
the modeling process and derivation of the full nonlinear Eq. (1) can be found in [4], and thus we omit the derivation of the 
model and the lengthy expressions of the paramete rs here for brevity.
2.1. System formulation 

Let /ðtÞ ¼ x1ðtÞ and _/ðtÞ ¼ x2ðtÞ. Then, rescale the time by t#ðt=sÞ to normalize the delay so that system (1) can be rewrit- 
ten as
d
dt

Dxt ¼ L0xt þ FðxtÞ þ Gðxt ; _xtÞ; ð2Þ
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where
Dxt ¼
x1ðtÞ
x2ðtÞ

� �
þ

0 0
0 k

� �
x1ðt � sÞ
x2ðt � sÞ

� �
;

L0xt ¼ s
0 1
�a1 �2l

� �
x1ðtÞ
x2ðtÞ

� �
;

FðxtÞ ¼ s
0

��a3x3
1ðtÞ � �a4x1ðtÞx2

2ðtÞ � �kx1ðt � 1Þx2
2ðt � 1Þ

� �

and
Gðxt ; _xtÞ ¼
0

��a4x2
1ðtÞ _x2ðtÞ � �ka5x2

1ðtÞ _x2ðt � 1Þ � 1
2 �kx2

1ðt � 1Þ _x2ðt � 1Þ

 !
:

The characterist ic equation of the linearized equation of (2), evaluated at the trivial equilibriu m x1 ¼ x2 ¼ 0, is given by:
ð1þ ke�kÞk2 þ 2lskþ a1s2 ¼ 0: ð3Þ
To find possible periodic solutions, which may bifurcate from a Hopf or double Hopf critical point, let k ¼ ixsði2 ¼ �1;x > 0Þ
be a root of (3). Substituting k ¼ ixs into (3) and separating the real and imaginary parts yields 
�x2 �x2k cosðxsÞ þ a1 ¼ 0;

kx2 sinðxsÞ þ 2lx ¼ 0;
ð4Þ
from which we obtain the solution for x2 as
x2 ¼
a1 � 2l2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � 2l2Þ2 � a2

1ð1� k2Þ
q

1� k2 ;
It is easy to see from the above equation that the existence of two positive solutions for x2 requires the following conditions 
1� k2
> 0 and a1 � 2l2 > a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

q
; ð5Þ
to be satisfied, under which we have 
x1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 � 2l2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l4 þ a2

1k2 � 4a1l2
q

1� k2

vuut
;

giving rise to double-Hop f bifurcation. It should be noted that the first inequality in (5) implies that the feedback gain should 
be chosen small, k < 1, while the second inequalit y means that the damping coefficient l should not be taken too large, as
expected.

Further, it follows from (4) that
sðjÞ1;2 ¼
1

x1;2
arccos

a1�x2
1;2

kx2
1;2

� �
þ 2jp

� �
; for kl < 0;

1
x1;2

2ðjþ 1Þp� arccos
a1�x2

1;2

kx2
1;2

� �� �
; for kl > 0;

8>>><>>>:

where j ¼ 0;1;2; . . .. The transversali ty condition s are obtained as
Re
ds
dk

� �����
s¼sðjÞ

1;2

¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l4 þ a2

1k2 � 4a1l2
q

k2x2
1;2

; j ¼ 0;1;2; . . . : ð6Þ
Thus, a possible double Hopf bifurcation occurs when two such families of surfaces intersect, with sc ¼ sðjÞ1 ¼ sðlÞ2 , where 

j; l ¼ 0;1;2; . . .. The equality sc ¼ sðjÞ1 ¼ sðlÞ2 implies that the linearized system on the trivial equilibrium has two pairs of
purely imaginary eigenvalues �ix1s and �ix2s. Assume x1 : x2 ¼ n1 : n2. Then a possible double Hopf bifurcation with 
the ratio n1 : n2 appears. When n1;n2 2 Zþ, it is called an n1 : n2 resonant double Hopf bifurcation; otherwis e, it is called a
non-resonant double Hopf bifurcation. In this paper, we only consider the non-reso nant double Hopf bifurcation.
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2.2. Multiple time scales 

We consider the influence of feedback gain k and time delay s on the controlled system (2), and thus treat k and s as two 

bifurcation parameters. From sc ¼ sðjÞ1 ¼ sðlÞ2 ; l; j ¼ 0;1;2; . . ., we get the critical value kc. We take perturba tions as k ¼ kc þ �k�
and s ¼ sc þ �s� in (2). Suppose system (2) undergoes a double Hopf bifurcation from the trivial equilibriu m at the critical 
point: k ¼ kc , s ¼ sc . Further, by the MTS, the solution of (2) is assumed to take the form:
x1ðtÞ ¼ x1;0ðT0; T1; . . .Þ þ �x1;1ðT0; T1; . . .Þ þ � � � ;
x2ðtÞ ¼ x2;0ðT0; T1; . . .Þ þ �x2;1ðT0; T1; . . .Þ þ � � � ;

ð7Þ
where Tj ¼ �jt; j ¼ 0;1;2; . . .. The derivative with respect to t is now transformed into 
d
dt
¼ @

@T0
þ � @

@T1
þ � � � ¼ D0 þ �D1 þ � � � ;
where the differential operator Di ¼ @
@Ti
; i ¼ 0;1;2; . . ..

Suppose the characterist ic equation of the linear differential system, d½Dxt �
dt ¼ L0xt , has two pairs of purely imaginary roots 

�ix1s and �ix2s, and no other roots with zero real part. Let h1 ¼ ðh11;h12ÞT and h2 ¼ ðh21;h22ÞT be the eigenvector s of the 

characterist ic matrix, corresponding to the eigenvalues ix1s and ix2s, respectively . Further, let h�1 ¼ ðh
�
11;h

�
12Þ

T and

h�2 ¼ ðh
�
21;h

�
22Þ

T be the normalized eigenvector s of the adjoint matrix of the characteristic matrix, correspond ing to the eigen- 
values �ix1s and �ix2s, respectively , satisfying the inner product,
hh�j ;hji ¼ �h�j
T
hj ¼ 1; j ¼ 1;2:
By a simple calculation, we have 
hj ¼ ðhj1; hj2ÞT ¼ ð1; ixjÞT;

h�j ¼ ðh
�
j1; h

�
j2Þ

T ¼ a1

a1 þx2
j

;
ixj

a1 þx2
j

 !T

; j ¼ 1;2:
ð8Þ
To deal with the delayed terms, we expand xi;jðT0 � 1; T1 � �ðt � 1Þ; . . .Þ at xi;jðT0 � 1; T1Þ for i ¼ 1;2; j ¼ 0;1;2; . . .. Then,
substituting the solutions with the multiple scales into (2) and balancing the coefficients of �nðn ¼ 0;1; � � �Þ yields a set of
ordered linear different ial equations.

First, for the �0�order terms, we have 
D0x1;0 � scx2;0 ¼ 0;
D0x2;0 þ kcD0x2;0;s þ a1scx1;0 þ 2lscx2;0 ¼ 0;

ð9Þ
where xj;0 ¼ xj;0ðT0; T1; T2Þ and xj;0;s ¼ xj;0ðT0 � 1; T1; T2Þ; j ¼ 1;2. Since �ix1s and �ix2s are the eigenvalues of the linear 
operator L0, the solution of (9) can be expresse d in the form of
x1;0ðT0; T1Þ
x2;0ðT0; T1Þ

� �
¼ G1ðT1Þh1eix1sT0 þ G1ðT1Þ�h1e�ix1sT0 þ G2ðT1Þh2eix2sT0 þ G2ðT1Þ�h2e�ix2sT0 ; ð10Þ
where hjðj ¼ 1;2Þ is given by (8).
Next, for the �1�order terms of (2), we obtain 
D0x1;1 � scx2;1 ¼ �D1x1;0 þ s�x2;0;

D0x2;1 þ kcD0x2;1;s þ a1scx1;1 þ 2lscx2;1 ¼ �D1x2;0 � kcD1x2;0;s þ kcD0D1x2;0;s

� a1s�x1;0 � 2ls�x2;0 � k�D0x2;0;s � sca3x3
1;0 � sca4x1;0x2

2;0 � kcscx1;0;sx2
2;0;s

� a4x2
1;0D0x2;0 � kca5x2

1;0D0x2;0;s �
1
2

kcx2
1;0;sD0x2;0;s;

ð11Þ
where xj;1 ¼ xj;0ðT0; T1; T2Þ and xj;1;s ¼ xj;0ðT0 � 1; T1; T2Þ; j ¼ 1;2. Substituting solution (10) into (11) and simplifying, we can 
obtain linear nonhomogene ous equations for x1;1 and x2;1, which have a solution if and only if the so-called solvability con- 
dition is satisfied [30]. That is, the right-hand side of nonhomogene ous equation is orthogonal to every solution of the adjoint 
homogeneous problem. Then @G1

@T1
and @G2

@T1
are solved to yield 
@G1

@T1
¼ b1G1 þ P1G2

1G1 þ P2G1G2G2;

@G2

@T1
¼ b2G2 þ P3G2

2G2 þ P4G1G1G2;

ð12Þ
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where
bj ¼
2ðixja1 �x2

j lÞs� � ix3
j sce�ixjsc k�

a1 þx2
j þx2

j kce�ixjsc � ix3
j kcsce�ixjsc

; j ¼ 1;2;

P1 ¼ �
ix1scð2eix1scx2

1kca5 � 6a3 þ 4x2
1a4 þ e�ix1scx2

1kc þ 4e�ix1scx2
1kca5Þ

2ða1 þx2
1 þx2

1kce�ix1sc � ix3
1kcsce�ix1sc Þ

;

P2 ¼ �
ix1sc½4kca5x2

2 cosðx2scÞ þ e�ix1scx2
1kc þ 2a4x2

2 � 6a3 þ 2x2
1a4 þ 2e�ix1scx2

1kca5�
a1 þx2

1 þx2
1kce�ix1sc � ix3

1kcsce�ix1sc
;

P3 ¼ �
ix2scð2eix2scx2

2kca5 � 6a3 þ 4x2
2a4 þ e�ix2scx2

2kc þ 4e�ix2scx2
2kca5Þ

2ða1 þx2
2 þx2

2kce�ix2sc � ix3
2kcsce�ix2sc Þ ;

P4 ¼ �
ix2sc½4kca5x2

1 cosðx1scÞ þ e�ix2scx2
2kc þ 2a4x2

1 � 6a3 þ 2x2
2a4 þ 2e�ix2scx2

2kca5�
a1 þx2

2 þx2
2kce�ix2sc � ix3

2kcsce�ix2sc
:

ð13Þ
With the polar coordinates : G1 ¼ R1eiq1 , G2 ¼ R2eiq2 , letting xjc ¼ xjsc and Hj ¼ xjct þ qjðj ¼ 1;2Þ, we finally obtain the 
amplitude and phase equations of (12) on the center manifold as
dR1

dt
¼ Reðb1ÞR1 þ ReðP1ÞR3

1 þ ReðP2ÞR1R2
2;

dR2

dt
¼ Reðb2ÞR2 þ ReðP3ÞR3

2 þ ReðP4ÞR2
1R2;

dH1

dt
¼ x1c þ

dq1

dt
¼ x1c þ Imðb1Þ þ ImðP1ÞR2

1 þ ImðP2ÞR2
2;

dH2

dt
¼ x2c þ

dq2

dt
¼ x2c þ Imðb2Þ þ ImðP3ÞR2

2 þ ImðP4ÞR2
1:

ð14Þ
2.3. Center manifold reduction 

In this section, we compute the normal form near the double Hopf bifurcatio n critical point ðkc; scÞ using the CMR method.
The trivial equilibrium of (2) is x1 ¼ x2 ¼ 0. At the critical point ðk; sÞ ¼ ðkc; scÞ, we choose 
nðhÞ ¼
N0; h ¼ �1;
0; h 2 ð�1; 0�;

�
gðhÞ ¼

scN1; h ¼ 0;
0; h 2 ½�1;0Þ;

�

with
N0 ¼
0 0
0 kc

� �
; N1 ¼

0 1
�a1 �2l

� �
:

Then, the linearized equation of (2) at the trivial equilibrium is
d
dt
½Dxt � ¼ L0xt;
where Du ¼ uð0Þ �
R 0
�1 dnðhÞuðhÞ, L0u ¼

R 0
�1 dgðhÞuðhÞ;u 2 C ¼ Cð½�1;0�;R2Þ, and the bilinear form on C� � C (� stands for 

adjoint) is
hwðsÞ;uðhÞi ¼ wð0Þuð0Þ �
Z 0

�1

d
df

Z 1

0
wðs� 1ÞdnðhÞuðsÞds

� �
�
Z 0

�1

Z h

0
wðs� hÞdgðhÞuðsÞds;
in which u 2 C;w 2 C�. Then, the phase space C is decomposed by K ¼ f�ix1sc;�ix2scg as C ¼ P � Q , where 
Q ¼ f~u 2 C : ðw; ~uÞ ¼ 0; for all w 2 P�}, and the bases for P and its adjoint P� are given respectively by
UðhÞ ¼ eix1sch e�ix1sch eix2sch e�ix2sch

ix1eix1sch �ix1e�ix1sch ix2eix2sch �ix2eix2sch

 !

and
WðsÞ ¼

d1e�ix1scs � ix1d1
a1

e�ix1sc s

�d1eix1scs ix1
�d1

a1
eix1scs

d2e�ix2scs � ix2d2
a1

e�ix2sc s

�d2eix2scs ix2
�d2

a1
eix2scs

0BBBBBB@

1CCCCCCA;
where dj ¼ a1

a1þx2
j
þx2

j
kc e�ixjsc�ix3

j
kcsc e�ixjsc ; j ¼ 1;2.
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We also use the same bifurcation parameters given by k ¼ kc þ ke and s ¼ sc þ se in (2), where ke and se are perturbation 
parameters, and denote e ¼ ðke; seÞ. Rescale xi ! 1ffiffi

�
p xiði ¼ 1;2Þ, then (2) can be written as
d
dt
½Dxt � ¼ Lext þ Fðxt ; eÞ þ Gðxt ; _xt ; eÞ; ð15Þ
where
Lext ¼
ðsc þ seÞx2ðtÞ

�a1ðsc þ seÞx1ðtÞ � 2lðsc þ seÞx2ðtÞ

� �
;

Fðxt ; eÞ ¼
0

�ðsc þ seÞ½a3x3
1ðtÞ þ a4x1ðtÞx2

2ðtÞ þ ðkc þ keÞx1ðt � 1Þx2
2ðt � 1Þ�

� �

and
Gðxt ; _xðtÞ; eÞ ¼
0

�a4x2
1ðtÞ _x2ðtÞ � ½ke þ ðkc þ keÞa5x2

1ðtÞ þ 1
2 ðkc þ keÞx2

1ðt � 1Þ� _x2ðt � 1Þ

 !
:

Remark 1. For the MTS method, the solution of (2) with � (noticing that F and G contain �) is assumed to take form (7), and 
the solution of (15) without � is assumed to take the form:
x1ðtÞ ¼ �x1;0ðT0; T1; . . .Þ þ �2x1;1ðT0; T1; . . .Þ þ � � � ;
x2ðtÞ ¼ �x2;0ðT0; T1; � � �Þ þ �2x2;1ðT0; T1; � � �Þ þ � � � :
Under the two forms, we can get the same normal form by using MTS method. Therefore, it is fine if we use the CMR method 
to consider Eq. (15).

We now consider the enlarged phase space BC of functions from ½�1;0� to R2, which are continuous on ½�1;0Þ with a
possible jump discontinuity at zero. This space can be identified as C� R2. Thus, its elements can be written in the form 
û ¼ uþ X0c, where u 2 C, c 2 R2 and X0 is a 2� 2 matrix-valued function, defined by X0ðhÞ ¼ 0 for h 2 ½�1;0Þ and X0ð0Þ ¼ I.
In the BC, (15) becomes an abstract ODE,
dxt

dt
¼ Axt þ X0

~Fðxt ; eÞ; ð16Þ
where xt 2 C, and A is defined by
A : C1 ! BC;Axt ¼ x0tðhÞ þ X0½L0xt � Dx0t �
and
~Fðxt ; eÞ ¼ ½Le � L0�xt þ Fðxt ; eÞ þ Gðxt; _xt; eÞ:
By the continuo us projection p : BC#P, pðuþ X0cÞ ¼ U½ðW;uÞ þWð0Þc�, we can decompose the enlarged phase space by
K ¼ f�ix1sc;�ix2scg as BC ¼ P � Kerp, where Ker p ¼ fuþ X0c : pðuþ X0cÞ ¼ 0g, denoting the Kernel under the projection 
p. Let u ¼ ðu1; �u1;u2; �u2ÞT;v t 2 Q 1 :¼ Q \ C1 	 Kerp, and AQ1 the restrictio n of A as an operator from Q1 to the Banach space 

Kerp. Further, denote xt ¼ Uuþ v t . Then, Eq. (16) is decomposed as
du
dt
¼ BuþWð0ÞeF ðUuþ v t ; eÞ;

dv t

dt
¼ AQ1 v t þ ðI� pÞX0

eFðUuþ v t; eÞ;
ð17Þ
where B ¼ diagfix1sc;�ix1sc; ix2sc;�ix2scg.
Next, let M1

2 denote the operator defined in V6
2ðC

4 � KerpÞ, with 
M1
2 : V6

2ðC
4Þ#V6

2ðC
4Þ; ðM1

2pÞðu; eÞ ¼ Dupðu; eÞBu� Bpðu; eÞ;
where V6
2ðC

4Þ represents the linear space of the second order homogeneous polynomi als in six variables ðu1; �u1;u2; �u2; ke; seÞ
with coefficients in C4. Then, it is easy to verify that one may choose the decompositi on V6

2ðC
4Þ ¼ ImðM1

2Þ � ImðM1
2Þ

cwith

complemen tary space ImðM1
2Þ

c spanned by the elements keu1e1; seu1e1, ke�u1e2; se�u1e2, keu2e3; seu2e3, ke�u2e4; se�u2e4, where 
e0isði ¼ 1;2;3;4Þ are unit vectors.

Consequentl y, the normal form of (15) on the center manifold associated with the equilibrium ð0;0Þ near ke ¼ 0; se ¼ 0
has the form 



9276 Y. Ding et al. / Applied Mathematics and Computation 219 (2013) 9270–9281
du
dt
¼ Buþ 1

2
g1

2ðu;0; eÞ þ h:o:t:;
where g1
2 is the function giving the quadratic terms in ðu; eÞ for v t ¼ 0, and is determined by

g1
2ðu;0; eÞ ¼ ProjðImðM1

2ÞÞ
c � f 1

2 ðu;0; eÞ, where f 1
2 ðu;0; eÞ is the function giving the quadratic terms in ðu; eÞ for v t ¼ 0 defined

by the first equation of (17). Thus, the normal form, truncated at the quadratic order terms, is given by
du1

dt
¼ ix1scu1 þ 2d1ðix1 �

lx2
1

a1
Þseu1 �

ix3
1d1sce�ix1sc keu1

a1
;

du2

dt
¼ ix2scu2 þ 2d2ðix2 �

lx2
2

a1
Þseu2 �

ix3
2d2sce�ix2sc keu2

a1
;

ð18Þ
where dj ¼ a1

a1þx2
j
þx2

j
kc e�ixjsc�ix3

j
kcsc e�ixjsc ; j ¼ 1;2.

To find the normal form up to third order, similarly, let M1
3 denote the operator defined in V4

3ðC
4 � KerpÞ, with 
M1
3 : V4

3ðC
4Þ# V4

3ðC
4Þ; ðM1

3pÞðu; eÞ ¼ Dupðu; eÞBu� Bpðu; eÞ;
where V4
3ðC

4Þ denotes the linear space of the third-order homogeneous polynomi als in four variables ðu1; �u1;u2; �u2Þwith coef- 

ficients in C4. Then, one may choose the decompo sition V4
3ðC

4Þ ¼ ImðM1
3Þ � ImðM1

3Þ
cwith complementar y space ImðM1

3Þ
c

spanned by the elements u2
1�u1e1;u1u2�u2e1, u1�u2

1e2; �u1u2�u2e2, u2
2�u2e3;u1�u1u2e3;u2�u2

2e4, u1�u1�u2e4, where e0isði ¼ 1;2;3;4Þ are
unit vectors.

Therefore, the normal form up to third-order terms is given by
du
dt
¼ Buþ 1

2!
g1

2ðu;0; eÞ þ
1
3!

g1
3ðu;0; eÞ þ h:o:t:; ð19Þ
where
1
3!

g1
3ðu;0;0Þ ¼

1
3!
ðI � P1

I;3Þf 1
3 ðu;0; 0Þ;
and f 1
3 ðu;0;0Þ is the function giving the cubic terms in ðu;v t ; eÞ for e ¼ 0, and v t ¼ 0 is defined by the first equation of (17).

Finally, the normal form on the center manifold arising from (17) becomes
_u1 ¼ ix1scu1 þ b1u1 þ P1u2
1�u1 þ P2u1u2�u2;

_u2 ¼ ix2scu2 þ b2u2 þ P3u2
2�u2 þ P4u1�u1u2:

ð20Þ
where bjðj ¼ 1;2Þ and Pjðj ¼ 1;2;3;4Þ are given by (13).
With the polar coordina tes: u1 ¼ R1eiH1 , u2 ¼ R2eiH2 , we finally obtain the amplitude and phase equations of (20) on the 

center manifold as
dR1

dt
¼ Reðb1ÞR1 þ ReðP1ÞR3

1 þ ReðP2ÞR1R2
2;

dR2

dt
¼ Reðb2ÞR2 þ ReðP3ÞR3

2 þ ReðP4ÞR2
1R2;

dH1

dt
¼ x1c þ Imðb1Þ þ ImðP1ÞR2

1 þ ImðP2ÞR2
2;

dH2

dt
¼ x2c þ Imðb2Þ þ ImðP3ÞR2

2 þ ImðP4ÞR2
1:

ð21Þ
It is seen from (14) and (21) that the two normal forms obtained by using the MTS method and the CMR method are 
identical.
3. Bifurcation analysis and numerical simulation 

In this section, we consider the following equations:
_R1 ¼ d1R1 þ Q 1R3
1 þ Q2R1R2

2;

_R2 ¼ d2R2 þ Q 3R3
2 þ Q4R2

1R2;
ð22Þ
where dj ¼ ReðbjÞðj ¼ 1;2Þ and Qj ¼ ReðPjÞðj ¼ 1;2;3;4Þ. Eq. (22) actually consists of the first two equations of (21). We first
give a bifurcation analysis for (22), and then present some numerical simulation results.
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3.1. Bifurcation analysis 

For the normal form (22), according to the signs of Q 1Q3, there exist two different cases, i.e. ‘‘simple case’’ (with no peri- 
odic solutions) and ‘‘difficult case’’ (with periodic solutions) [28]. Here, we are interested in the ‘‘difficult case’’, i.e., when 
Q 1Q3 < 0. Without loss of generalit y, we assume Q 1 > 0 and Q 3 < 0. Let r1 ¼ Q 1R2

1; r2 ¼ jQ3jR2
2 and ~t ¼ 2t. Then, we have 

the following planar system in terms of r1 and r2:
F

_r1 ¼ r1ðd1 þ r1 � jr2Þ;
_r2 ¼ r2ðd2 þ vr1 � r2Þ;

ð23Þ
where j ¼ Q2
Q3
;v ¼ Q4

Q1
.

Now, we consider the equilibria and bifurcatio ns in the ðd1; d2Þ parameter space. First, note that M0 ¼ ð0;0Þ is always an
equilibrium of (23). The two semi-trivial equilibria given in terms of perturbation parameters are M1 ¼ ð�d1;0Þ and
M2 ¼ ð0; d2Þ, which bifurcate from the origin on the bifurcatio n lines L1 : d1 ¼ 0 and L2 : d2 ¼ 0, respectively. There may also 
exist a nontrivial equilibrium M3 ¼ ðd1�jd2

jv�1 ;
d2�vd1
1�jv Þ. For this equilibrium to exist, it needs jv–1. The nontrivial equilibrium M3

collides with a semi-trivi al one on the bifurcation line L3 : d1 ¼ jd2 or L4 : d2 ¼ vd1. If ð1� vÞd1 þ ð1� jÞd2 < 0, then M3 rep-
resents a sink, otherwis e M3 is a source. Therefore, we further need consider the bifurcation line 
L5 : ð1� vÞd1 þ ð1� jÞd2 ¼ 0.

In order to give a more clear bifurcation picture, we choose the parameter values used in [31]: g ¼ 9:8m=s2,
L ¼ 30m; d ¼ 2m; c ¼ 1m, R ¼ 2:5m and l ¼ 0:001. Thus, a1 ¼ 0:4214467448 , a3 ¼ 0:7585650638;a4 ¼ 1:403351954,
a5 ¼ 2:321033878. Let kc ¼ 0:38646254 and sc ¼ 11:37917097. Then, the characteri stic Eq. (3) has two pairs of purely imag- 
inary eigenvalues K ¼ f�ix1sc;�ix2scg, and no other eigenvalues with zero real part. Assume that system (15) undergoes a
double Hopf bifurcatio n from the equilibrium ð0;0Þ. By a simple calculation, we obtain 
x1 ¼ 0:8287969484; sð0Þ1 ¼ 3:798079696; sð1Þ1 ¼ 11:37917097;Re
dk1

dsð0Þ1

 !
> 0;

x2 ¼ 0:5513405668; sð0Þ2 ¼ 11:37917097;Re
dk2

dsð0Þ2

 !
< 0:

ð24Þ
Thus, d1 ¼ 0:2493799487se þ 2:319040951ke, d2 ¼ �0:271026524se þ 1:122528609ke, Q1 ¼ 7:85128853;
Q 2 ¼ 7:346313018;Q 3 ¼ �1:980998341, Q 4 ¼ �13:02378723;j ¼ �3:7083892 83 and v ¼ �1:6588088 92.

Therefore, the critical bifurcatio n lines become: L1 : se ¼ �9:299227797ke, L2 : se ¼ 4:4141766615ke,
L3 : se ¼ 8:577323571ke, L4 : se ¼ �34:8362831ke, L5 : se ¼ 18:67920452ke, as shown in the bifurcation diagram (see
Fig. 1). Note that for convenience the bifurcation diagram is shown in the ðke; seÞ parameter space, rather than the ðd1; d2Þ
parameter space.

Since there does not exist unstable manifold containing the equilibrium, according to the center manifold theory, the 
solutions on the center manifold determine the asymptotic behavior of the solutions of the original system (2). Therefore,
if Eq. (23) has one or two asymptotically stable (unstable) semi-trivi al equilibria M1 and M2, then (2) has one or two asymp- 
totically stable (unstable) periodic solutions in the neighborho od of the trivial equilibrium. If Eq. (23) has an asymptotical ly
stable (unstable) equilibrium M3, then (2) has an asymptotically stable (unstable) quasi-periodi c solution in the neighbor- 
hood of ð0;0Þ. So, we shall call the periodic solution the source (respectively, saddle, sink) periodic solution of (2) if the 
semi-trivial equilibrium of (23) is a source (respectively, saddle, sink), and call the quasi-periodic solution the source 
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ig. 1. ðaÞ critical bifurcation lines in the ðke; seÞ parameter space near ðkc ; scÞ; and ðbÞ the corresponding phase portraits in the ðr1; r2Þ plane.
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Fig. 2. Simulated solution of system (15) for ðke; seÞ ¼ ð�0:01;0:06Þ, showing a stable fixed point.
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Fig. 3. Simulated solution of system (15) for ðke; seÞ ¼ ð�0:01;�0:06Þ: (a) the time history; and (b) the phase portrait, showing a stable periodic solution.
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(respectively, saddle, sink) quasi-periodi c solution of (2) when the nontrivial equilibrium of (23) is a source (respectively,
saddle, sink).

For the bifurcation behaviors of the original system (15) in the neighborho od of the trivial equilibrium, the above critical 
bifurcation boundaries divide the ðke; seÞ paramete r plane into seven regions (see Fig. 1). We explain the bifurcations in the 
countercloc kwise direction, starting from B1 and ending at B1. First, in region B1, there is only one trivial equilibrium which is
a saddle. When the parameters are varied across the line L1 from region B1 to B2, an unstable periodic solution O1 (saddle)
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appears from the trivial solution due to a Hopf bifurcatio n, and the trivial equilibrium becomes a sink. Similarly , when the 
parameters are changed from region B2 to B3, another periodic solution O2 (sink) occurs from the trivial solution due to a
Hopf bifurcatio n while the trivial equilibrium becomes a saddle. In region B4, a quasi-periodi c solution (stable focus) occurs 
from the periodic solution O2 due to a Neimark–Sacker bifurcation, and O2 is changed to a saddle from a sink. Further, the 
quasi-periodi c solution becomes an unstable focus when the paramete rs are varied across line L5 from region B4 to B5, and 
when the paramete rs are further changed from region B5 to B6 crossing the line L4, the quasi-per iodic solution collides with 
the periodic solution O1 and then disappea rs, and O1 becomes a source. When the parameters are further varied across line L1
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from region B6 to B7, the periodic solution O1 collides with the trivial solution and then disappears, and the trivial solution 
becomes a source from a saddle. Finally, when the parameters are varied across line L2 from region B7 to B1, the periodic 
solution O2 (saddle) collides with the trivial solution and then disappears, and the trivial solution becomes a saddle from 
a source.
3.2. Numerical simulation 

To demonstrate the analytic results obtained in Section (3.1) , here we present some numerical simulation results. We
choose three groups of perturbation parameter values: ðke; seÞ ¼ ð�0:01;0:06Þ; ð�0:01;�0:06Þ and ð�0:01;�0:15Þ, belonging 
to the regions B2;B3 and B4, correspondi ng to a stable fixed point shown in Fig. 2, a stable periodic solution as depicted in
Fig. 3, a stable quasi-periodi c solution, see Fig. 4, with a correspond ing 2-D torus displayed in the three dimensional x1-
x2-x20 space (see Fig. 5). It is clear that the numerica l simulations agree very well with the analytical predictions.

4. Conclusion 

In this paper, we have studied double Hopf bifurcation in a container crane model with delayed position feedback. We
derived the equivalent normal forms of double Hopf bifurcation by using multiple time scales and center manifold reduction 
methods. The MTS and CMR methods are the first time to be used to derive the normal forms of high co-dimensio nal bifur- 
cations in neutral delay differential equation s. It is further shown that the results from the two methods are equivalent, but 
the MTS method is simpler than the CMR method. Moreover, bifurcation analysis near the double Hopf critical point is given,
showing that the system may exhibit a stable fixed point, stable periodic solutions, and stable quasi-periodi c solutions in the 
neighborho od of the critical point. Numerical simulatio ns are presented to verify the analytical predictions.
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