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1. Introduction

Recently, much attention has been focused on the study of delayed differential equations, since they may exhibit complex
dynamical behaviors [1-3]. Some delayed differential equations were proposed via delayed feedback scheme, such as [4-7].
In many practical problems, the changing rates of some state variables not only depend on the state values at present and
earlier instances, but also are influenced by the changing rates of the state variables in the past. Thus, neutral delayed dif-
ferential equations (NDDE) have been proposed in the study of population dynamics, neural network, engineering problems,
etc. [8-10]. Since then, NDDE models have attracted attentions of researchers, and some results have been obtained with
focus on local stability and global asymptotic behaviors of trivial solutions [11-15]. Several interesting articles on the
bifurcation theory of NDDE, such as normal form of Hopf bifurcation, global existence of periodic solutions, equivariant Hopf
bifurcation theory, have been published [16-23]. A few papers considered the existence of positive periodic solutions in
neutral delayed ecological models by using a continuation theorem based on coincidence degree theory or other analytical
techniques [24-26].

As we all know, it is important to compute normal forms of differential equations in the study of nonlinear dynamical
systems [27,28]. Multiple time scales (MTS) [29,30] and center manifold reduction (CMR) [27,28] are two useful tools for
computing the normal forms of differential equations. Multiple time scales method is systematic and can be directly applied
to the original nonlinear dynamical system, not only to ordinary differential equations (ODE) but also to delayed differential
equations (DDE), without application of center manifold theory. In fact, this approach combines the two steps involved in
using center manifold theory and normal form theory into one unified procedure to obtain the normal form and nonlinear
transformation simultaneously [31,32]. Moreover, MTS method only contains algebraic manipulation, which greatly facili-
tate computer implement in symbolic computations. By comparison, the CMR method is more complex, especially in
DDE, which requires integration in computation. For a given ODE, the basic idea of the center manifold theory is to apply
successive coordinate transformations to systematically construct a simpler system which has less dimension compared
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to the original system, and thus greatly simplifies the dynamical analysis of the system. For DDE, however, one needs to first
change the DDE to a operator differential equation, and then decompose the solution space of their linearized form into sta-
ble and center manifolds. Next, with adjoint operator equations, one computes the center manifold by projecting the whole
space to the center manifold, and finally calculates the normal form restricted to the center manifold (e.g. see [33-36]). Nay-
feh [32] used these two approaches to derive equivalent normal forms of Hopf bifurcation in delayed nonlinear dynamical
systems. Ding et al. [37] applied the two methods to obtain the normal forms near a double Hopf critical point in a DDE, and
showed the equivalence of the two normal forms.

Some results have been obtained for the normal forms of NDDE. Nayfeh and Baumann [4] developed a nonlinear NDDE
model, which describes controlled container crane system, by modeling the crane-hoist-payload assembly as a double pen-
dulum, and derived the normal form of Hopf bifurcation by using the MTS method. Wang and Wei [19] extended the com-
putation of Hopf bifurcation properties (such as the direction of bifurcation and the stability of bifurcating periodic
solutions) introduced by Kazarinoff et al. [38] to NDDE by using the normal form theory and center manifold theorem. Wee-
dermann [16] computed the normal forms of NDDE by using the CMR method introduced by Faria and Magalhaes [33] for
DDE. Then, Weedermann [17], Wang and Wei [18] extended the idea in [34] to the NDDE with parameters. To our best
knowledge, MTS and CMR methods have not been used to consider the normal forms associated with high co-dimensional
bifurcations in NDDE. In this paper, we will derive the normal form of double Hopf bifurcation in a container crane model
with delayed position feedback [4] by using the two methods, and further show that the MTS is simpler than the CMR,
though the results from the two methods are equivalent.

The rest of the paper is organized as follows. In Section 2, we consider the existence of non-resonant double Hopf bifur-
cation in a container crane model with delayed position feedback, and use two methods to derive the normal form associated
with double Hopf bifurcation. Then, bifurcation analysis and numerical simulations are presented in Section 3. Finally, con-
clusion is drawn in Section 4.

2. Analytical study

In this section, we consider a container crane model with delayed position feedback [4], and use the MTS and CMR meth-
ods to derive the normal form of double Hopf bifurcation. The equation of the model is described by

D(t) + o1 p(t) + 2up(t) + kp(t — T) = —€a3’ (1) — €tap(t)P?(£) — €xtadp® () p(t) — ekep(t — T)?(t — T)

~ ekns(Ob(t -~ T) 3 kgt~ D)(E ) (1)

where ¢ is the oscillating angle, 7 the time delay, ¢ the inherent damping coefficient, k = — ﬁ, where k is the feedback gain
(we also call k the feedback gain in this paper), € is a small dimensionless parameter and a;s(i = 1,3,4,5) are scaled param-
eters in terms of known constants, given by

g&] 4g6(3 &% + 96(b — aR)&s 36(5
5, W=, U=—"""->""—""""—5—, 0O05= )
4b(b — aR) (b—aR) 16b*(b — aR) b—aR

a :%7 b=/ —%azc{ by = 4b* + 4a’bR + a>(1 + a)c?,

5 16b* +16a%(8 + 12a + 3a2)b’R + 4a2(2 + 14a + 15a2 + 3a®)b*c? + 3a*(1 + a)*c*
3= 3
96b

o =

with

)

_ 4b* +4a(2 + 3a)bR + 3a%(1 + a)c?
Ols = S
8b ’
where g is gravitational acceleration, d is the length of trolley, c is the length of spreader bar, L is the connection length be-
tween trolley and spreader bar, and R is the distance between the center of gravity of trolley and spreader bar. Further, the
physical measurements (see [4]) implies a > 0, b > 0, b — aR > 0. Thus, all the parameters take positive values. The details of
the modeling process and derivation of the full nonlinear Eq. (1) can be found in [4], and thus we omit the derivation of the
model and the lengthy expressions of the parameters here for brevity.

2.1. System formulation

Let ¢(t) = x;(t) and ¢(t) = x,(t). Then, rescale the time by t—(t/7) to normalize the delay so that system (1) can be rewrit-
ten as

d .
aDXt = LoX; + F(xc) + G(X¢, X¢), (2)
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e (5 (0 2)(24°2)
el 5 L))

0
Flxe) = T(—eoch%(t) — €0uaxy ()X3(t) — ekxy (t — 1)X3(t — 1))

and

0
G(X¢, %) = . . . .
(e, X0) (emx%(t)xz(t) — ekasx3 ()ky (t — 1) — Lekx (£ — 1)y (t — 1))
The characteristic equation of the linearized equation of (2), evaluated at the trivial equilibrium x; = x, = 0, is given by:

(1+ke )2 +2uti+oy72 =0. 3)

To find possible periodic solutions, which may bifurcate from a Hopf or double Hopf critical point, let 2 = iwt(i* = -1, > 0)
be a root of (3). Substituting 4 = iwt into (3) and separating the real and imaginary parts yields

—w? — w?kcos(wt) + oy =0, @
kaw? sin(wt) + 2uw = 0,

from which we obtain the solution for w? as

L —2p k(o — 202 — (1 - )
w =
1-K
It is easy to see from the above equation that the existence of two positive solutions for w? requires the following conditions

1-k*>0 and oy — 24 > o \/ 1 — K, (5)

to be satisfied, under which we have

)

)

oy — 242 + \/4u4 + o2k* — Aoy g2

W12 = 5

1-k
giving rise to double-Hopf bifurcation. It should be noted that the first inequality in (5) implies that the feedback gain should
be chosen small, k < 1, while the second inequality means that the damping coefficient ¢ should not be taken too large, as

expected.
Further, it follows from (4) that

1 -0}, .

‘ o {arccos ( W, > + 2]71} for ku < 0,

20 — ;
1.2

W12

- {20’ + 1)7 — arccos <1};ﬁ2>} , for ku >0,
12

where j = 0,1,2,.... The transversality conditions are obtained as

dt

Re( ==
€ (di)

Thus, a possible double Hopf bifurcation occurs when two such families of surfaces intersect, with 7. = ¥ = ¥, where
j,1=0,1,2,.... The equality 7. = r%” = r(z” implies that the linearized system on the trivial equilibrium has two pairs of
purely imaginary eigenvalues +iw;7 and +iw,t. Assume w; : w, = n; : n,. Then a possible double Hopf bifurcation with

the ratio n; : n, appears. When ny,n, € Z,, it is called an n; : n, resonant double Hopf bifurcation; otherwise, it is called a
non-resonant double Hopf bifurcation. In this paper, we only consider the non-resonant double Hopf bifurcation.

i\/4,u4 + 02k — Aoy 2

y 2 9
=) k*w3,

7j2071727"" (6)
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2.2. Multiple time scales

We consider the influence of feedback gain k and time delay 7 on the controlled system (2), and thus treat k and 7 as two

bifurcation parameters. From 7. = 'c%” = 1(2”, [,j=0,1,2,..., we get the critical value k.. We take perturbations as k = k. + €k,
and T = 1. + €7, in (2). Suppose system (2) undergoes a double Hopf bifurcation from the trivial equilibrium at the critical
point: k = k., T = 7. Further, by the MTS, the solution of (2) is assumed to take the form:

X1 (t) :XI,O(T07T17~~~) + €X11 (T07T17 .. ) R

7
X2(t) = X20(To, T1,...) + €x21(To, Ty, ...) + -+, @
where T; = €it, j=0,1,2,.... The derivative with respect to t is now transformed into
d 7] 0
—=—4€—4---=D eD
at~aT,  Cor, T o+t
where the differential operator D; = ﬁ, i=0,1,2,...
Suppose the characteristic equation of the linear differential system, % = LoX;, has two pairs of purely imaginary roots

+iw1T and +iw, T, and no other roots with zero real part. Let hy = (hq1, hu)T and h; = (h21,h22)T be the eigenvectors of the
characteristic matrix, corresponding to the eigenvalues iw;T and iw,t, respectively. Further, let h} = (h},,h},)" and

h; = (h;,, h;,)" be the normalized eigenvectors of the adjoint matrix of the characteristic matrix, corresponding to the eigen-
values —iw,7T and —iw, 1, respectively, satisfying the inner product,

(o) =I5 =1, j=1,2.
By a simple calculation, we have

hy = (b hp)" = (1,i0y)",

N - 01 10 .
h=m, ) = —1 _ J =1,2.
J ( 1 12) (al 60]2 7(%1 wjz) y ’

To deal with the delayed terms, we expand x;;(To — 1,T1 —€(t — 1),...) at x;;(To — 1,T;) for i=1,2;j=0,1,2,.... Then,
substituting the solutions with the multiple scales into (2) and balancing the coefficients of €'(n = 0,1, ---) yields a set of
ordered linear differential equations.

First, for the €®—order terms, we have

Dox10 — TcX20 = 0,
DoX;0 + kcDoXs 0 + 01 TeX10 + 2UTcX20 = 0,

9)

where Xjo = Xj0(To,T1,T2) and Xjor = Xjo(To — 1,T1,T2), j=1,2. Since +iw,T and +iw,t are the eigenvalues of the linear
operator Ly, the solution of (9) can be expressed in the form of
<X1,o(707 Ty)

> _ Gl (Tl )h1 einTTo + Cl (T1 )Fl] e—itulng + Gz(T1 )hzeiwzrﬂ) + Cz(T1 )Iflze—iwzﬂg7 (10)
X20(To, T1)

where h;(j = 1,2) is given by (8).
Next, for the €' —order terms of (2), we obtain
DoX11 — TeX21 = —DiX10 + TeXap,
Doxz1 + chOXZ,l.‘c + 0 TeX11 + 2UTcXo1 = —Dixoo — k:D1X20c + k:DoD1X20.¢
3 2 2
— 04 TeX10 — 2UTeX20 — keDoX2 01 — Tct3X] g — TcllaX10X5 — kcfcxl,o.rxz,o‘f

1
2 2 2
— 04X] (DoX2 0 — Kc0tsX] sDoX20.0 — ikchoJDOxZAOJ:

(11)

where x;; = X;0(To,T1,T2) and x;1 = Xjo(To — 1,T1,T2),j = 1,2. Substituting solution (10) into (11) and simplifying, we can
obtain linear nonhomogeneous equations for x; ; and x,;, which have a solution if and only if the so-called solvability con-
dition is satisfied [30]. That is, the right-hand side of nonhomogeneous equation is orthogonal to every solution of the adjoint

homogeneous problem. Then % and % are solved to yield
oG — =
2= B1G1 + PiGiG1 + P2Gi GG,
oT, (12)
oG

O_TT = $,G, +P3G§EZ + P4G1G, G,
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where

g — 2(iwjon — )T —iw}Te ik, i-1.2
Do+ @f + wke % —iwPkcTe 1T ”

w1t (2e % @2k ot — 603 + 4?0ty + e T Wk + deT T 2k ots)
2(o + w? + wikeeionte — jwik T e i) '
P, — _ w17 [4k 053 cos(yTc) + e T ik, + 20043 — 6013 + 23014 + 2€” “”lffwzkcocs] (13)
o1 + 0% + wikee-ionte — i3k, Teionte

0T (2127 w2k 015 — 6013 + 430t + €712 2k, + deT 2% 2k ot5)

Py =—

P3; = — . i .
3 2(@1 + OJ% + w%kceﬂwsz _ lw%kcﬂcce—m)z‘cf) ’
_ la)zfc [4k.0is 3 coS(w1T¢) + €712 3k + 204w? — 603 + 230, + 2e” 1u)zr(w2kca5]
e 01 + w2 Cl)zk,;e foyTe Q)3I(E‘[Ce iy Tc
With the polar coordinates: G; = Ryel1, G, = Ryeifz, letting wjc = w;t. and ©; = wj.t + pyi=1.2), we finally obtain the

amplitude and phase equations of (12) on the center manifold as

% = Re(f;)R: + Re(P1)R + Re(P,)R:R3,

drR

d—tz = Re(f,)R, + Re(P3)R3 + Re(P4)R:R,,

de d (14
=t % = wre + Im(B,) + Im(P,)R? + Im(P,)RZ,

% = Wy + % = Wy +Im(B,) + Im(P3)R2 + Im(P4)R2.

2.3. Center manifold reduction

In this section, we compute the normal form near the double Hopf bifurcation critical point (k., t.) using the CMR method.
The trivial equilibrium of (2) is x; = x, = 0. At the critical point (k, 7) = (k., T.), we choose

. B No7 0:*], . 'ZTCN]7 0:0,
C(0)*{0, 0c(-1,0] "(0)*{0, 0¢[-1,0),

0 0 0 1
N":(o kc)’ Nl:(—al —Zu)'

Then, the linearized equation of (2) at the trivial equilibrium is

with

d
[Dx;] = Lox,

dt
where Do = ¢(0) — [ dé0)p(0), Lo = jf)] dn(0)p(0), ¢ € C = C(]-1,0],R?), and the bilinear form on C* x C (x stands for
adjoint) is
0
00 = w090 - [ L[ [wis-aazpwas| - [ [Nus- oanoeeas

in which ¢ € C,yy € C". Then, the phase space C is decomposed by A = {+iwiT,+iw,t.} as C=Pa®Q, where

Q={peC:(y,p)=0,for ally € P'}, and the bases for P and its adjoint P* are given respectively b
® ® i) g p y by
eiwlrcé) e—iaﬁ Tl eiwzrcﬁ e—iwztcﬂ
@0) = | . iy 70 : iyt i iy 70 ; iy 70
im el _jepe-iontd  joy,ei®atcd g, ei2te
and
—imTes  _io1dy a—iw;Tes
dle 17Tc - e lo1Te
a] el Tes iwydy elotes
¥(s) = . o
dze—lwzrgs _imydy e imyTes
%
A @iy Tcs iwydy qic,Tes
dze 2 Tc Te 2 Tc
where d; = S wed = 1,2.

oy +wj2 +w}.2k e

la)fkcr e i
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We also use the same bifurcation parameters given by k = k. + k, and T = 1. + 7. in (2), where k, and 7, are perturbation
parameters, and denote ¢ = (k,, T.). Rescale x; — ﬁx,—(i =1,2), then (2) can be written as

& 1Dx] = Lot + Flx.8) + Glxe 0. 0) (15)
where
_ (Te + Te)X2 (1)
Loxe = <7o<1 (Te 4 To)Xa () — 204(Te + To)Xo(8) )

0
Fx2) = (—(rc )3 (E) + et (DX2(0) + (e + ko) (€ — 1)3(E — 1) )

and

. 0
G, x(0). ) = (oc4x§(t))'cz(t) [k + (ke + ko)ask (0) + 3 (e + ko) (E— 1o (t— 1) )

Remark 1. For the MTS method, the solution of (2) with € (noticing that F and G contain €) is assumed to take form (7), and
the solution of (15) without € is assumed to take the form:

xi(t) = x10(To, T1,...) + €X11(To, T1,..) + -,

Xy (t) = €X20(To, Ty, ) + € X1 (To, Ty, ++) + -+
Under the two forms, we can get the same normal form by using MTS method. Therefore, it is fine if we use the CMR method
to consider Eq. (15).

We now consider the enlarged phase space BC of functions from [—1,0] to R?, which are continuous on [-1,0) with a
possible jump discontinuity at zero. This space can be identified as C x R%. Thus, its elements can be written in the form
@ = @+ Xoc, where ¢ € C, c € R? and X is a 2 x 2 matrix-valued function, defined by Xo(0) = 0 for 0 € [-1,0) and X(0) = L.
In the BC, (15) becomes an abstract ODE,

dx _

dt —
where x; € C, and A is defined by

A: C' — BC,Ax; = X,(0) + Xo[Lox; — DX]]

Ax; + XoF(x;, €), (16)

and

F(xe, ) = [L: — LoJXc + F(Xe, &) + G(X¢, X, €).
By the continuous projection 7 : BC—P, m(¢ + Xoc) = ®[(F, @) + ¥(0)c], we can decompose the enlarged phase space by
A = {+iw T, Hiw, 1.} as BC = P @ Ker”™, where Ker™ = {¢ + Xoc : (¢ + Xoc) = 0}, denoting the Kernel under the projection
. Let u = (uy, 1, Uz, )", v, € Q' :=QNC' cKer™, and A, the restriction of A as an operator from Q' to the Banach space
Ker”. Further, denote x, = ®u + ;. Then, Eq. (16) is decomposed as

% = Bu+ W(0)F(Du + v, &),
df] (17)
d—tt =Ag v+ (1 - MXoF (Du + v, 8),

where B = diag{iwt., —iw1 T, i Tc, =i Tc}.
Next, let M} denote the operator defined in V5(C* x Ker™), with

Mj : V5(C)=V5(CY), (M3p)(u, &) = Dup(u, £)Bu — Bp(u, ¢),

where Vg(C“) represents the linear space of the second order homogeneous polynomials in six variables (uy, U1, Uz, ta, ke, Tz)
with coefficients in C*. Then, it is easy to verify that one may choose the decomposition V5(C*) = Im(M3) & Im(M})‘with
complementary space Im(M;)C spanned by the elements k.uie;, T uje;, k:iiiey, T.l1€2, klizes, T Uze3, kellreq, T.llre4, Where
es(i=1,2,3,4) are unit vectors.

Consequently, the normal form of (15) on the center manifold associated with the equilibrium (0,0) near k; = 0,7, =0
has the form
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du 1,
P Bu + Egz(u, 0,¢) +h.o.t.,

where gl is the function giving the quadratic terms in (u,¢) for »=0, and is determined by
gl (u,0,8) = Proj(,m%))c x f1(u,0,¢€), where f}(u,0,¢) is the function giving the quadratic terms in (u,¢) for v, = 0 defined
by the first equation of (17). Thus, the normal form, truncated at the quadratic order terms, is given by

du; . . w? iw3d,t.e ' 1%k.u

= = 1w T:Uq + 2d1 (1(,01 — L)Tgﬂ] _ M7

dt 0 01

(18)

du, . . L3 iwidyte-ioek u,

2 = Wy Ty + 2dy (1, — 22T, — —2 22 TR

dt 2tcU2 2( 2 o ) ed2 o )

where d; = ok o) = 1,2

oy +wjz +w}.2 kee i —iu)l3 ketce

To find the normal form up to third order, similarly, let M} denote the operator defined in V3(C* x Ker™), with

M} V3(Ch) - VA(CY),  (M3p)(u.e) = Dup(u, &)Bu — Bp(u, &),

where V;‘(C“) denotes the linear space of the third-order homogeneous polynomials in four variables (u, i1, u,, ;) with coef-
ficients in C*. Then, one may choose the decomposition V3(C*) = Im(M}) ® Im(M3})“with complementary space Im(M3)*
spanned by the elements w2l e;, Ujlyllzeq, Uilide;, UiUsilae;, USlpes, UrlliUaes, Uslisey, Uil lleq, Where ers(i = 1,2,3,4) are
unit vectors.

Therefore, the normal form up to third-order terms is given by

du 1 1

a:Bu+jg;(u,0,8)Jr§g§(u,078)+h.o.t., (19)
where

llwom—lufﬂy%uom

3'g3 ] _3' 133 ] )

and f] (u,0,0) is the function giving the cubic terms in (u, 7, €) for ¢ = 0, and »; = 0 is defined by the first equation of (17).
Finally, the normal form on the center manifold arising from (17) becomes
il] = i(,{)]‘CCU1 +ﬁ1U1 -‘y—P]U%ﬂ] +P2U1U2ﬂ27 (20)
Uy = iwyToUp + oz + Pgu%ﬂz + Pauqtiqu;.
where $;(j =1,2) and P;(j = 1,2,3,4) are given by (13).
With the polar coordinates: u; = R;e'®1, u, = R,e1®2, we finally obtain the amplitude and phase equations of (20) on the
center manifold as

dr

-ﬁzm%m+mmﬁ+m®m@

dR

_fzw%m+k@M+kmwm

aJ (21)
7#=wn+mwnﬂmmmﬁummm;

de

gt = @2+ Im(By) +Im(P3)R; + (PR},

It is seen from (14) and (21) that the two normal forms obtained by using the MTS method and the CMR method are
identical.

3. Bifurcation analysis and numerical simulation

In this section, we consider the following equations:
Ri = 01R; + Q]R? + Q2R1R§~,
Ry = 0:Ry + Q3R; + QuRIR,,

where 9; = Re(f;)(j = 1,2) and Q; = Re(P;)(j = 1,2,3,4). Eq. (22) actually consists of the first two equations of (21). We first
give a bifurcation analysis for (22), and then present some numerical simulation results.

(22)
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3.1. Bifurcation analysis

For the normal form (22), according to the signs of Q,Q3, there exist two different cases, i.e. “simple case” (with no peri-
odic solutions) and “difficult case” (with periodic solutions) [28]. Here, we are interested in the “difficult case”, i.e., when
Q:Q; < 0. Without loss of generality, we assume Q; >0 and Q; < 0. Let r; = QlRf, ry = \QﬂRﬁ and f = 2t. Then, we have
the following planar system in terms of ry and r,:

":1 =11(01 + 11 — KI2), 23)
Iy =T12(02 + Y11 —T12),
where K:%,“ :%.

Now, we consider the equilibria and bifurcations in the (6;, d,) parameter space. First, note that My = (0, 0) is always an
equilibrium of (23). The two semi-trivial equilibria given in terms of perturbation parameters are M; = (—d1,0) and
M, = (0, 62), which bifurcate from the origin on the bifurcation lines L; : 6; = 0 and L, : 6, = 0, respectively. There may also
exist a nontrivial equilibrium Ms = (%%, %=%). For this equilibrium to exist, it needs 1. The nontrivial equilibrium Ms
collides with a semi-trivial one on the bifurcation line L3 : 6; = Kk, or Ly : 5 = x61. If (1 — x)o1 + (1 — k)5, < 0, then M3 rep-
resents a sink, otherwise Ms; is a source. Therefore, we further need consider the bifurcation line
Ls: (1= )61 4+ (1 — k)5, = 0.

In order to give a more clear bifurcation picture, we choose the parameter values used in [31]: g=9.8m/s?,
L=30m,d =2m,c=1m, R=25m and u=0.001. Thus, oy =0.4214467448, o5 =0.7585650638, 0.4 = 1.403351954,
os = 2.321033878. Let k. = 0.38646254 and 7. = 11.37917097. Then, the characteristic Eq. (3) has two pairs of purely imag-
inary eigenvalues A = {+iw; 7., £im, 7.}, and no other eigenvalues with zero real part. Assume that system (15) undergoes a
double Hopf bifurcation from the equilibrium (0, 0). By a simple calculation, we obtain

w; = 0.8287969484, 7" = 3.798079696, 7\" = 1137917097, Re (%) >0,
dr;
(24)
w, = 0.5513405668, 7y’ = 11.37917097, Re (;%) <0.
)
Thus, &1 = 0.24937994877, + 2.319040951k,, &, = —0.2710265247, + 1.122528609k, Q; = 7.85128853,

Q, =7.346313018,Q5 = —1.980998341, Q, = —13.02378723,k = —3.708389283 and y = —1.658808892.

Therefore, the critical bifurcation lines become: L;:t,=-9.299227797k., L,:71.=4.4141766615k,,
L3 : T, =8.577323571k,, Ls: 71, = —34.8362831k,, Ls: 7, = 18.67920452k,, as shown in the bifurcation diagram (see
Fig. 1). Note that for convenience the bifurcation diagram is shown in the (k., t,) parameter space, rather than the (41, d2)
parameter space.

Since there does not exist unstable manifold containing the equilibrium, according to the center manifold theory, the
solutions on the center manifold determine the asymptotic behavior of the solutions of the original system (2). Therefore,
if Eq. (23) has one or two asymptotically stable (unstable) semi-trivial equilibria M; and M, then (2) has one or two asymp-
totically stable (unstable) periodic solutions in the neighborhood of the trivial equilibrium. If Eq. (23) has an asymptotically
stable (unstable) equilibrium M3, then (2) has an asymptotically stable (unstable) quasi-periodic solution in the neighbor-
hood of (0,0). So, we shall call the periodic solution the source (respectively, saddle, sink) periodic solution of (2) if the
semi-trivial equilibrium of (23) is a source (respectively, saddle, sink), and call the quasi-periodic solution the source

B, B,
" L
B, B,
5 L EL @
B, <ty ¢ .k _4_4
B7 ¢ By B,
B3 A, <A 36
B, L I z 1 Z
5
L3 B7 15
L,
(a) (b)

Fig. 1. (a) critical bifurcation lines in the (k;, T.) parameter space near (k.,7.); and (b) the corresponding phase portraits in the (r,7,) plane.
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Fig. 2. Simulated solution of system (15) for (k;, ;) = (—0.01,0.06), showing a stable fixed point.
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Fig. 3. Simulated solution of system (15) for (k.,t.) = (—0.01,—-0.06): (a) the time history; and (b) the phase portrait, showing a stable periodic solution.

(respectively, saddle, sink) quasi-periodic solution of (2) when the nontrivial equilibrium of (23) is a source (respectively,
saddle, sink).

For the bifurcation behaviors of the original system (15) in the neighborhood of the trivial equilibrium, the above critical
bifurcation boundaries divide the (k, T.) parameter plane into seven regions (see Fig. 1). We explain the bifurcations in the
counterclockwise direction, starting from B; and ending at B;. First, in region By, there is only one trivial equilibrium which is
a saddle. When the parameters are varied across the line L; from region B, to B,, an unstable periodic solution O; (saddle)
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Fig. 4. Simulated solution of system (15) for (k;,7,) = (—0.01,—0.15): (a) the time history; and (b) the phase portrait, showing a stable quasi-periodic

solution.

04 04

Fig. 5. A simulated 2-D torus corresponding to Fig. 4(b), shown in the three dimensional x;-x,-X, space.

appears from the trivial solution due to a Hopf bifurcation, and the trivial equilibrium becomes a sink. Similarly, when the
parameters are changed from region B, to Bs, another periodic solution O, (sink) occurs from the trivial solution due to a
Hopf bifurcation while the trivial equilibrium becomes a saddle. In region B, a quasi-periodic solution (stable focus) occurs
from the periodic solution O, due to a Neimark-Sacker bifurcation, and O, is changed to a saddle from a sink. Further, the
quasi-periodic solution becomes an unstable focus when the parameters are varied across line Ls from region B4 to Bs, and
when the parameters are further changed from region Bs to Bs crossing the line Ly, the quasi-periodic solution collides with
the periodic solution O, and then disappears, and O; becomes a source. When the parameters are further varied across line L;
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from region Bg to By, the periodic solution O; collides with the trivial solution and then disappears, and the trivial solution
becomes a source from a saddle. Finally, when the parameters are varied across line L, from region B; to By, the periodic
solution O, (saddle) collides with the trivial solution and then disappears, and the trivial solution becomes a saddle from
a source.

3.2. Numerical simulation

To demonstrate the analytic results obtained in Section (3.1) , here we present some numerical simulation results. We
choose three groups of perturbation parameter values: (k;,7,) = (—0.01,0.06), (-0.01, -0.06) and (-0.01, —0.15), belonging
to the regions B,, B; and By, corresponding to a stable fixed point shown in Fig. 2, a stable periodic solution as depicted in
Fig. 3, a stable quasi-periodic solution, see Fig. 4, with a corresponding 2-D torus displayed in the three dimensional x;-
X,-Xy/ space (see Fig. 5). It is clear that the numerical simulations agree very well with the analytical predictions.

4. Conclusion

In this paper, we have studied double Hopf bifurcation in a container crane model with delayed position feedback. We
derived the equivalent normal forms of double Hopf bifurcation by using multiple time scales and center manifold reduction
methods. The MTS and CMR methods are the first time to be used to derive the normal forms of high co-dimensional bifur-
cations in neutral delay differential equations. It is further shown that the results from the two methods are equivalent, but
the MTS method is simpler than the CMR method. Moreover, bifurcation analysis near the double Hopf critical point is given,
showing that the system may exhibit a stable fixed point, stable periodic solutions, and stable quasi-periodic solutions in the
neighborhood of the critical point. Numerical simulations are presented to verify the analytical predictions.
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