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1. Introduction

Recurrent neural networks (RNNs), containing cycles or feedback connections, have been used to learn dynamically vary-
ing input/output data and been successfully tackled in many practical applications (e.g., see [10,15,17,22,23]). Such applica-
tions heavily depend on the analysis of dynamical behaviors such as stability, periodic oscillation, bifurcation, or chaos
[14,18,25]. As we all know, the signal transmission from one neuron to another is not instantaneous, and time delay may
occur in the process of information storage in neural networks. Thus, time delay should be incorporated into the neural net-
work models in order for the analysis to be more realistic. Therefore, much attention has been recently focused on the study
of dynamics of neural network models with discrete or distributed delays (e.g., see [1,11,12,21,24,26,28,29,32]).

Ruiz et al. [23] proposed a fresh configuration of recurrent neural network model which finds its motivation in learning
process and control systems. It is shown that a multi-node network is able to learn and replicate autonomously a particular
class of time varying periodic signals. Furthermore, this network model was applied to control the repetitive motion of a
two-link robot manipulator. Later on, Townley et al. [25] used monotone dynamical systems theory to discuss the existence
of limit cycles in a three-node recurrent neural network, and to show that recurrent networks can learn and then replicate a
permanent oscillation. As an important form of RNNs, Ruiz’s neural network model has attracted much attention of research-
ers. For example, Gao and Zhang [9] displayed an effective technique to determine the number and the distribution of the
equilibria of a three-node system, and further studied qualitative properties of the equilibria. Recently, Maleki et al. [18]
investigated the dynamical behaviors of the Ruiz’s model with three neurons in the vicinity of the Bogdanov-Takens bifur-
cation point. They observed complicated behaviors by varying the weights in the network when homoclinic and heteroclinic
bifurcations emanate from the Bogdanov-Takens point. However, the effect of time delays on the Ruiz’s network model was
not considered in the literatures mentioned above. Further, Hajihosseini et al. [12] introduced the distributed time delays
into the Ruiz’s model, and studied the stability and Hopf bifurcation of this model with a strong kernel in the frequency
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domain. Feng et al. [6] discussed the existence of oscillations in a three-node recurrent neural network with two weight
parameters and one time delay. Furthermore, Ensari and Arik [4,5] analyzed global stability of a neural network made up
of more than three nodes with multiple delays. Feng et al. [7,8] investigated the existence of oscillations for a type of n-node
recurrent neural network with time delays.

It is well known that delay differential equations (DDE) may exhibit higher codimension singularities more frequently
than that in ordinary differential equations (ODE) [2,13]. To our best knowledge, many papers deal with high codimension
bifurcations in DDE by using center manifold reduction (CMR) method (e.g., see [11,16,27]). With this method, one needs to
first change the retarded equations to operator differential equations, and then decompose the solution space of their line-
arized form into stable and center manifolds. Then, with adjoint operator equations, one computes the center manifold by
projecting the whole space to the center manifold, and finally calculates the normal form restricted to the center manifold. In
particular, if we choose two discrete delays as two bifurcation parameters, we need to redefine inner product by using a new
double integration for the CMR method. By comparison in computing normal forms of DDE, it has been found that the multi-
ple time scales (MTS) method [19,30,31] is simpler than the CMR method. The multiple time scales method is systematic and
can be directly applied to the original delayed nonlinear dynamical system, without application of center manifold theory
[3,20]. Moreover, the MTS method, unlike the CMR method which involves integration, only involves algebraic manipula-
tions, making it easier to implement in symbolic computation.

The purpose of this paper is to investigate the dynamical behaviors of Ruiz’s recurrent neural network model, as shown in
Fig. 1, which consists of three neurons connected by different nonlinear couplings with discrete time delays. We will use the
MTS method to derive the normal forms for several types of high co-dimensional bifurcations in this model. In this network
(see Fig. 1), u(t) = y(t), where u(t) is the input and y(t) is the output. This neural network operates as follows: first, it receives
a teaching signal u(t) from the external environment. During that period, the network weights are self-adapted and y(t)
tracks u(t). When the adaptation is completed, the system switches autonomously from the learning stage into a unity feed-
back configuration stage so that y(t) replaces u(t) and the periodic pattern is sustained.

The rest of the paper is organized as follows. First, we consider the existence of several types of bifurcation in Section 2.
Then, in Sections 3 and 4, we use the MTS method to derive the normal forms associated with the Hopf-zero, non-resonant
and resonant double Hopf critical points. Further, bifurcation analysis and numerical simulations are presented in Section 5,
and finally, conclusion is drawn in Section 6.

2. Stability of the trivial equilibrium

The neural network with multiple time delays, shown in Fig. 1, can be described by a set of nonlinear differential equa-
tions as follows [6]:

t) = —x(t)
—Xa(1)
() = —x3(t)
y(t) = f(xs(t

+f(x2(t — 12)),

+u(t),

+af (%1 (¢t — T1)) + bf (x2(t — 3)),
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where x;(t) (i =1,2,3) is the state of the ith neuron, a and b are the connection weights, s (j = 1,2, 3,4) are non-negative
time delays. Here, u(t) = y(t), u(t) is the input, and y(t) the output. The triggering nonlinear function of the neurons takes
the hyperbolic tangent function, i.e. f(-) = tanh().
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Fig. 1. Architecture of a network model consisting of three neurons with multiple time delays.
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For simplicity, let uq(t) = x1(t), ux(t) = x2(t — 72) and u3(t) = X3(t — T2 — 74), then system (1) can be transformed into the
following equations with two delays:

U (t) = —ug (t) +f(ua(t)),
Ua(t) = —ua(t) + f(us(t)), 2)
Us(t) = —us(t) + af (1 (¢ — 7)) + bf (ua(t — 0)),

where T =17y + 72 + T4 and 0 = T35 + Ta.
The characteristic equation of (2), evaluated at the trivial equilibrium (uq,uy,us3) = (0,0,0), is given by

P 4+3243i+1-(i+1)be " —ae’ =0. (3)
There are several types of bifurcation.

Case 1 (Fixed point bifurcation). Whena+b =1, i =0isaroot ofEq.(3).Ifa+b=1and b < 3,thenEq.(3)witht=0=0
has a zero root and two roots with negative real part, and system (2) undergoes a fixed point bifurcation.

Case 2 (Hopf bifurcation). When ¢ =0, Eq. (3) becomes

P +3243)+1-(A+1)b—ae " =0. 4)
Ifa+b < 1and8+a— 2b > 0, according to the Routh-Hurwitz criterion, all the roots of Eq. (4) have negative real part for
7=0.

To find possible periodic solutions, which may bifurcate from a Hopf critical point, let 1 = iv(i* = —1, v > 0) be a root of
Eq. (4). Substituting / = iv into (4) and separating the real and imaginary parts yields

—3v2+1—-b=acos(vt),

()

—v3 +3v —vb = —asin(vr).

Let y = v2. Then it follows from (5) that

F@y) ::y3+(3+2b)y2+(3+b2)y+(b—1)2—aZ:O. (6)
F(y) has three roots, denoted by y,, k = 1,2,3.1fy, > 0, then vy = \/y,. Further, the time delay 7 can be determined from (5) as
1 .
0 _ 5 [arccos(Py) + 2jm], Q; >0, @
k L2(j+ 1)m —arccos(P1)], Q; <0,
where P; := cos(v;tV) = w Q = sin(vtV) = Wb 193,7-0,1,2,...

Let A(t) = a(t) +iv(T) be the root of (4) satisfying rx(r,@) =0, v(r,(f)) =W, k=1,2,3; j=0,1,2,.... Then, we have the
transversality conditions:

-1

d/. F(v3)

“(ag) - Y
K

where k=1,2,3; j=0,1,2,....

Lemma 2.1. Suppose a+b < 1 and 8 + a — 2b > 0. Then,

(1) if maxy_123{y,} < 0, where y, is a root of (6), then all roots of Eq. (4) have negative real part for all T > 0O;
(2) if there exists some y, > O, then there exists 7o = min{r;j)}, k=1,2,3; j=0,1,2,..., such that all roots of Eq. (4) have
negative real part for all T € [0, 7o), where ‘c,ﬁ” (k=1,2,3; j=0,1,2,...) is given by (7).

Further analysis is given for ¢ > 0. In this case, ¢ is regarded as a parameter for a fixed t taken from the interval in which
all roots of (4) have negative real part. Let 2 = iw(w > 0) be a root of (3). Substituting 4 = iw into (3) and separating the real
and imaginary parts yields

3w? — 1+ bcos(wa) + bw sin(wa) + acos(wt) = 0,
®* = 3w + bw cos(wa) — bsin(wo) — asin(wt) =0
from which we obtain
—w* +asin(wt)w + 1 — acos(wt)
b(1 + w?) ’
20 + 20 + asin(w1) + wa cos(wt)
b(1 + w?)

P, :=cos(wa) =

2 = sin(wo) =




354 Y. Ding et al./ Commun Nonlinear Sci Numer Simulat 18 (2013) 351-372

and
E(w, 1) := @ + 3w* — 2asin(wt)w® + [3 — b* + 6acos(w1)|w? + 6asin(wt)w — b* — 2acos(wt) +1+a* =0, (10)

where wy(k=1,2,... ko, ko € N") is a root of E(w, 7). If there exists some )y > 0, then, we use (9) to obtain the time delay

o, given by

0 {L[arccos( h) + 2j7), Q, =0,
Wy

o, = 11
[2(j + 1) — arccos(P;)], Q, <0,

where k=1,2,...,ko, j=0,1,2,....
Let A(0) = a(0) +iw(o) be the root of (3) satisfying oc(ak )=0, a)(ak )=wr(k=1,2,...,ky, j=0,1,2,...). Then the
transversality conditions can be expressed as

-1
d/. 1 2
Re| — = [3w’ + (6 — at cos(wT 3atsin(wt) + 3asin(wt))w? + (3 - b
(da’(‘,)) o +C02)[ ( (@)’ —( (w1) (7)) (

+ 3at cos(w7) 4+ 6acos(wt))w + at sin(wt) + 3asin(w7)], (12)

where k=1,2,...,ko, j=0,1,2,....
Theorem 2.2. For some 7, if all roots of Eq. (4) have negative real part, then we have the following assertions.

(1) If Eq. (10) has no roots with positive real part, the trivial equilibrium of system (2) is asymptotically stable for all ¢ >

(2) If Eq. (10) has at least one root wy > 0 (k=1,2,...,ko) and Re(-%;) # O, then there exists 6o = mm{ak hok=1,2,.
ko, j=0,1,2,... such that the trivial equlllbrlum of system (2) 1§ asymptotically stable for ge |0, 00) and system (2)
undergoes a Hopfblfurcatlonfrom trivial equilibrium at o = ak ,k=1,2,... ko, j=0,1,2,..., where Gk is given by (11).

Case 3 (Hopf-zero bifurcation). Combining Cases 1 and 2, we have the following theorem.

Theorem 2.3. Assume a+ b =1 and b < 3. For some 7, if all roots of Eq. (4) have negative real part, and Eq. (10) has at least one
rootw, >0 (k=1,2,...,ko) and Re( diy 0 (k=1,2,....ko, j=0,1,2,...), then system (2) undergoes a Hopf-zero bifurcation
from  the trivial equlllbnum “at g = Jg), where a,g) is given by (11). In  particular, when
o= min{a,‘(f)} (k=1,2,...,ko, j=0,1,2,...), (3) has a zero root and a pair of purely imaginary roots, and all the other roots
have negative real part.

Case 4 (Double Hopf bifurcation). For some 1 and o, if Eq. (3) has two pairs of purely imaginary roots +iw; and +iw,, and all
the other roots have non-zero real part, then system (2) undergoes a double Hopf bifurcation. Assume w, : w, =I; : L. Then a
double Hopf bifurcation with the ratio [; : I, appears. When I;, I, € Z,, it is called an I; : I, resonant double Hopf bifurcation;
otherwise, it is called a non-resonant double Hopf bifurcation.

3. Normal form of Hopf-zero bifurcation

In this section, by using the multiple time scales (MTS) method, we derive the normal form of system (2) associated with
Hopf-zero bifurcation. We treat the connection weight a and the time delay ¢ as two bifurcation parameters. Suppose system
(2) undergoes a Hopf-zero bifurcation from the trivial equilibrium at the critical point: a = a., ¢ = .. The Taylor expansion
of Eq. (2) truncated at the cubic order terms is as follows:

u(t) = Mqu(t) + aMyu(t — 1) + bMsu(t — a) + f(u(t),u(t — ), u(t — 9)), (13)
where
Uy (t -1 1 0 00O 00O
u(t): Uz(t) y M, 0 -1 1 s M, = 0 0O M3 0 0O
us(t 0 0 -1 100 010
and
—315(t)
fu(t)u(t—1),u(t - 0)) = —313(t)
—4u3(t—1)-Lui(t-0)

Define linear equation
u(t) = Myu(t) + acM,u(t — ) + bMsu(t — o)
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as
u(t) = Le(u(t),u(t — 1), u(t — a.)).

Suppose the characteristic equation of i(t) = L.(u(t), u(t — t),u(t — ¢.)) has a pair of purely imaginary roots +i® and a zero
root, and no other roots with zero real part. Let h; = (hy1, h12, h13)T and hy = (hay, haz, ha3)" be the two eigenvectors of the
linear operator L. corresponding to the eigenvalues iw and O, respectively. Further, let hi = (h,,h},, hi5)" and
h; = (W, h5,, h55)" be the two normalized eigenvectors of the adjoint operator L; of the linear operator L. corresponding
to the eigenvalues —iw and 0, respectively, satisfying the inner product

(ki h)=hTh; =1, i=1,2.

By a simple calculation, we have
hy = (hi bz his)' = (1,1 + i, (1 +iw)*)',
hy = (ha1, ho, hos)' = (1,1,1)7,

imt Y i T
hy = (i) = (0t (ol o 1ole ) (14)
2(1 —iw)” +ae*t 2(1 —iw)” +aer 2(1 —iw)” + aelet

* * * * \T a 1 1 T
h27(h2]7h22’h23) - (H—va/a+2> .

Because the nonlinearity is cubic, we seek a uniform second-order approximate solution of system (13) in powers of €'/2.
Thus, the solution of (13) is assumed to take the form:

u(t) = €2uV(Ty, Ty, - --) + 2P (To, Ty, - ) + - - -, (15)
where u¥) = (u%i),ug),ug))T,j =1,2,...; Ty =€t, k=0,1,.... The derivative with respect to t is now transformed into
d 7] 0

aia—%+€a—n+"':Do+6Dl+"‘v

where the differential operator D; = f’%’ i=0,1,...

We take perturbations as a=ac.+e€a. and ¢ = 0.+ €0, in (13). To deal with the delayed terms, we expand
u}j) (To — 0. — €0, T1 — €(0. + €0¢),---) and uI@(TO —-1,T; —€t,--+) at u,@(TO —0.,Tq1) and u,@(TO —1,Tq), respectively, where
i=1,2,3; j=1,2,.... Then, substituting the solution (15) with the multiple scales into (13) and balancing the coefficients
of €/? (n=1,3,5,...) yields a set of ordered linear differential equations.

First, for the €!/?2-order terms, we have

Dou'” — Myu'” — a:Mpul" — bMsu(}) = 0, (16)

where

T
u(]) = (u(]l)(To — T,T]),U(zl)(Tg -7, T]),U(;)(TO -7, T])) s

T

T
ul) = (u"(To = 0c, Tr),ub" (To = 0, T), ! (To = 0, T1) )
Since +iw and O are the eigenvalues of the linear operator L., the solution of (16) can be expressed in the form of

u® (To, T]) =G (T1 )hleinO + 61 (T] )Fl]eiinO + Gz(T] )h27 (1 7)

where h; (j = 1,2) is given by (14).
Next, for the €3/2-order terms of (13), we obtain

Dou(z) — M]ll(z) — aclelg_z) — bM3u§r25) =-Dy u“) — GCTM2D1U5_]> + a(Mzug) — bO'(Mg,DouET]C) — bO'CMgDﬂ,l(O}E) -‘rf], (18)
where
T
u® = (ug”(To —1,Ty), uP(To — 7, Ty), ul) (To — T, T1)> ,

T
u@) = (u(To = 0, 1), uf (To = 0, T1), u§ (To = 0, T1) )

Tc

= 7% ((ug‘>(ro,n))3, (ug”(To,Tl))a,ac(uﬁ”(To 1, T1))3 +b(ug) (To - ac,Tl))3>T.

Substituting solution (17) into (18) and simplifying, we can obtain a linear nonhomogeneous equation for u®:

Dou® — Mju® — acMau®® — bMsu) = myel”To 4 mye o 4 my, (19)
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where m; = (m{"’, m® m®)" (j =1,2) with

L A
a) G .2 . 27 . 2
my = (1+iw)* (1 —iw)G;Gr — (1 +1w)G1G5,
1
@) . 861 . \4 s N\2/2F s N2 2
m;” =—(1 +1w)ﬁ— 1+iw)* (1 —iw)°G;Gy — (1 +iw)"G1G3,
1
m'® — 78—61(1 +iw)? - acra—cle*“‘” +a.Gie7 " — ba (1 +iw)iwG e % — bg (1 + iw)e % 96 a.e ' "G:G,
8T1 8T1 8T1

—a.e GG — b(1 +iw)*(1 — iw)e GG, — b(1 + iw)e <G, G2,

e . A 1
md) — _8_T12 —2(1 +iw)(1 - iw)G,G, G, — §G§,

e . . = 1
m? = ‘a_Tj —2(1+iw)*(1 — iw)*G1G,G, — §G§7

e e G, a = . R b
m — ——E)Tj - acra—Tf+ a.Gy — baca—T]z - éGi —20.G1G1G, — 2b(1 +im)(1 - i)G1G1 G, —§G§-

Nonhomogeneous equation (19) has a solution if and only if the so-called solvability condition is satisfied [19]. That is, the
right-hand side of nonhomogeneous equation (19) is orthogonal to every solution of the adjoint homogeneous problem. Let
(hy,my) = 0 and (h;,my) = 0, where h; (j = 1,2) is given by (14). Then 5 and 522 are solved to yield

g% =01G1 + 52(;%61 + 5361(;%7
BG] (20)
22 — 0,Gy + 1563 +J4G1Gi G,
0T,
where
5 (1 +iw)e"*7a, —i(1 + iw)*bo we-i@o
"7 2(1 +iw)? + ace it + acte-9t(1 + i) + boce 0o (1 1 i)
P —
T a +2+at+ba’
5 (4 i0)’(1 —iw) + (1 +i0)°(1 — iw)* + a.e "7 (1 + iw)
27 201 +iw)® + ace ot + a.te9(1 + im) + boce-i@oe(1 + iw)?’
A 2ac(1 +iw)e 7 + (1 +iw)* + b(1 + iw)*e 1% 21)
>7 7201 +iw)® + a9t + a.te- 97 (1 + i) + boce w0 (1 + iw)’
= 2a.+1+b
37 3(a+2+at+ba)’
; 2|a.(1+ @?) + (14 @?)* +a. +b(1 + w?)
=

a.+2 +a.7T + bo.

Eq. (20) is the normal form truncated at the cubic order terms, associated with the Hopf-zero bifurcation at the critical
point: a = a. and ¢ = a.. Let G; = re'’ and G, = z. Substituting them into (20) yields the following normal form in cylindrical
coordinates:

dr

- ot +J 1% + Jor2?,

d

dii = 002+ J32° + 421, (22)
do

a o5 +J52° +Jo,

where o4 = Re(6y), a3 =Im(d1), J; = Re(d2), J, = Re(d3), Js =Im(d2) and Jg = Im(d3), and §; (i=1,2,3), o and J; (i = 3,4)
are given in (21).
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4. Normal form of double Hopf bifurcation

In this section, we also use the MTS method to derive the normal form of double Hopf bifurcation in system (2). We treat
the time delays ¢ and 7 as two bifurcation parameters. Suppose system (2) undergoes a double Hopf bifurcation from the
trivial equilibrium at the critical point: ¢ = g., T = 7.. We will consider non-resonant and resonant cases, separately.

4.1. Non-resonant case

In this subsection, we consider non-resonant double Hopf bifurcation. Define linear equation
u(t) = Mqu(t) + aMyu(t — ) + bMsu(t — o.),

das

u(t) = zc(u(t)v u(t — 7c),u(t — o).
Suppose the characteristic equation of u(t) = Zc(u(t), u(t — t.),u(t — o)) has two pairs of purely imaginary roots +iw; and
+iw,, where w; : w, =1 : I, with /I, irrational, and no other roots with zero real part. Let g, = (g,;,81,,&:3)" and
g, = (221, 82,8,3)" be the two eigenvectors of the linear operator L. corresponding to the eigenvalues iw; and iw,, respec-
tively. Further, let g} = (g,,8%,,8%5)" and g5 = (g5,,85,,85,)" be the two normalized eigenvectors of the adjoint operator L; of
linear operator L. corresponding to the eigenvalues —iw; and —iw,, respectively, satisfying the inner product

(g?~g1>:§rg1:1> l:12
With a simple calculation, we have

g = (81,8p:8p) = (1,1 +i0y, (1 +iay)*)"
. T

aeit (1 —iw;)* 1 - iw; j (23)

1_ ia)j)3 + geioyte ’2(1 _ iw,)3 4+ geiojte "2(1 _ i(Dj)B + gei®jte ’

)

. e e o T
8 =(81:81.83) = (2(

We choose perturbations as 7= 1.+ €t and o = g, + €0, in (13). To deal with the delayed terms, we expand
u(To — tc — €1, Ty — €(Tc + €T¢),---) and u?(To — 0 — €0, Ty — €(0c + €0¢),---) at u(To — 1., T1) and uY (T — o, Th),
respectively, wherei=1,2,3; j=1,2,.... Then, substituting the solution (15) with the multiple scales into (13) and balanc-
ing the coefficients of €2 (n=1,3,5,...) yields a set of ordered linear differential equations.

First, for the €!/2—order terms, we have

Dou'V — Myu'" — aM,ul!) — bMsul) = 0, (24)

where

Tc

T
ulh) = (U (To = 76, To),ul" (To = 76, T), ul" (To = 76, )

T

ulh) = (ug”(TO — 0, T1) ) (To — 00, Ty), ul (To — o, Tl)) :

Since =i and iw, are the eigenvalues of the linear operator L., the solution of (24) can be expressed in the form of
uM(To, Ty) = Hy(T1)g,€" ™ + Hy (T1)g1e 7110 + Hy(T)g,e"2"0 + Hy(Ty)gze 20, (25)

where g; (j =1,2) is given by (23).
Next, for the €3/2-order terms of (13), we obtain

Dou(z) — M]ll(z) — aMzug) — nguEfg = —Dlu“) — aT;MzDou,(rlc) — aTCMleu(TP — b6€M3D0uE;]C) — bO'CMgD]ugC) -‘rfz,
(26)

where
T
u = (U (To = 7o, Tr),ul? (To = e, 1), uf (To — 7, Th))
Oc

T
u) = (P (To = 0, Ty),uf (To = 0, Ty), u§ (To — 0, T1) )

T

fre —% ((ug)(To7T1)>3, (ug”(To,Tl)>3,a(u(]”(To _ rc,m)a + (g (To - ac,Tl))3> .

Substituting solution (25) into (26) and simplifying, we obtain a linear nonhomogeneous equation for u:
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Dou? — Mju® — aMpu?) — bMsu$) = niel1™o + e i1’o 4+ pyei@2lo 4 pye-iealo, (27)

1 2 3\T /: -
where n; = (n", n¥ n)" (j = 1,2) with

OH; . , - , . , -
n = fan — (1 +iwy)*(1 — iwj)HH; — 2(1 + i) (1 + i3 )(1 — iws_;)H;H3_jHs
. OH; . . . - . , -
n? = —(1 +iwy) a_Tf = 2(1 +i0)’ (1 +iws )’ (1 - iwsj)*HiH3Hs 5 — (1 +iw)*(1 - iw)*H Hj,
n® = —a—Hj(l +im))* — iwjatHje % — a‘cca—Hje*i‘”ﬂf —bo (1 + iwy))ic;Hje 4%
j aT, aT,

, oo OH; , — . _
—boc(1 +iw;)e % g—Tj — 2ae*i*H;H;_jH; ; — ae i H;H;
—2b(1 + i) (1 + i3 ) (1 — iws_j)e s HH3 jHs ; — b(1 + iwy)* (1 — iew;)e s H H;.

The nonhomogeneous equation (27) has a solution if and only if the solvability conditions, (g;,n;) = 0 and (g3,n,) = 0, are
satisfied, where g; (j = 1,2) is given by (23). Then % and % are solved to yield

OH — _
aT] =1H + ’73H%H1 +11sH1HyHy,
1
OH (28)
= n,H> + 774H§H2 +ngH1H1H>,
T,
where
M= — iw;(1 + iwy)e % at, +i(1 + iw;)*baemje i i—12
T 201+ iwy)’ + ae e 4 atee (1 + i) + bace @i% (1 + iwy)? o
Ny = — (1+iw)*(1 + 0?)(2 + ©?) + a(1 + io;)e 1%
3 21+ iw1)3 + ge-ionte 4 are-io%(1 4 iw;) + boe-io10: (1 + iw1)2 )
Ne = — (14 i)' (1 + w3)(2 + w3) + a(l + iw)e = 2
4 2(1 + iw2)3 + ae-ioatc + arce—iwzrz(l + le) ) bo_ceiiwzﬂc(‘l + i(})z)z )
Ns = — 2(1 + i) (1 + @3)(2 + @3) + 2a(1 + iw;)e 1%
5 2(1 + iCl)1 )3 + ge-io1Tc 4 a‘CCE’i”’W(l + ia)l) + bO'Ce*i“’lf"c(l + iw])z ’
Me = 2(1 +iwy)*(1 0?2+ 0?) +2a(1 + iwy)eion
6 =—

2(1 +iw,)* + ae-io27 4 aree-i02% (1 + iw,) + boe-i920¢(1 + iw,)?*

Eq. (28) is the normal form truncated at the cubic order terms associated with the double Hopf bifurcation at the critical
point: T = 7. and ¢ = g.. Substituting H; = r;e (j = 1,2) into (28), yields the following normal form in polar coordinates:

dr

d_t] = By + AT 4 Ay,

dr

(TtZZﬁzrz + A3 + Agrar?, 30
e o (30)
qar Bs +Asry + Asry,

do

d_tl = Pa +Asr5 + Agt?,

where fi; = Re(1,), f, = Re(n,) f3 =Im(1,), 4 =Im(n,), Ay = Re(113), A; = Re(115), As = Re(1,), As = Re(16), As = Im(17,),
As =1m(ns), A; =Im(n,), As =Im(#g), and njs (i=1,2,3,...,6) are given in (29).

4.2. Resonant case

In this subsection, we consider resonant double Hopf bifurcation. Suppose +i®; and +iw, are the eigenvalues of the lin-
ear operator L., where m : W, = Iy : l,wo with [ /I, rational.
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Theorem 4.1. The normal forms of system (13) for resonant cases are different from that of the non-resonant case, with only two
possibilities of the ratio |y : I, either 1:3 or 3 : 1.

Proof. The normal form of (13) is obtained by eliminating the secular terms in the linear part of the ordered perturbation
3 3 3
equations. Hence, we need only consider the nonlinear terms f% (u;”(To, T1)) s f% (u(;)(TO, T1)> ,—3 (u(ll)(TO — T, Tl)) and
3
-5 (ué”(To — O, T1)) . Combining all products and powers of trigonometric terms into a sum of trigonometric terms shows

that only the following terms may produce the secular terms,
ei(l(/)—w)To and ei3</)T0,
where @, = L;weTo, i =1,2. It is easy to see that a secular term may occur only ifl; : l, =1:3 orl; : , = 3 : 1. The proofis

complete. O

Similar to the non-resonant case, suppose i, and £3icy are the eigenvalues of the linear operator L. Then the solution
of (24) can be expressed in the form of

uM(To, T1,T2) = K1(T1, T2)qy€ "0 + Ky (T1, T2)@re 70" + Ky (Ty, T2)q,e3 %070 + Ky (T4, To)goe 30", (31)
where
4 = (1,90, 95)" = (1,1 +i;, (1 +iw)*), j=1,2, (32)

with w7 = wp and w, = 3wy.
Substituting solution (31) into (26) and simplifying, we can obtain a linear nonhomogeneous equation for u®:

Dou®® — Mju® — aMpu?) — bMsu$) = p,e’’o + pe~i*ofo 4 p,e3inTo 4 pye-3ivTo, (33)

T
where p; = (p;”,p;z),pf)) with

pll = J;’%L (1 +1iwo)*(1 — iwe)K* Ky — 2(1 + iwo) (1 + 3iwo) (1 — 3iwe)K 1K, Ky — (1 — iwg)* (1 4 i) K2K>,
0 K24 3i00)2 (1 = 3iw0)K2Rs — 2(1 + iw0)(1 — i) (1 + 3iw0)KoKiKr — (1 + i) K
p2 zfalef( + 3i0)” (1 = 3iwo) KK — 2(1 + i) (1 — io)(1 + 3iwo) KKKy = 5 (1 + io) K,

P = —(1 +iwo) g—? —2(1 +imwp)* (1 + 3iwe)* (1 — 3iwo)* K1 K2Ka — (1 + iwe)* (1 — i)’ KK,
1

— (1 —imo)*(1 + 3iwp)*K?K,,

¥ = —(1 4 3imy) % —2(1 +1iw)* (1 — iwo)*(1 + 3iwo)* K1 K1 Ky — (1 4 3iwe)* (1 — 3iwg)*K2K, — % (1 +1iwo)°K3,
1
oK . . ) oKy .
3 _ _ 1 2 —iweTe _ 1 —iwgte
Di T, (1 +1imo) imgat K e ate T, e

— b (1 + iwp)iweK,e7%0% — ba (1 + iwg)e @0 ZI—;]] — 2ae 1% K, KKy — ae 0 KIK,

— ae’“"“’fﬁf[(z — Zb(l + lwo)(l + 310)0)(1 — 3iwo)e’i”’°"CK1K2K2
— b(1 +iw0)2(1 — iwe)e % KKy — b(1 — iwo)2(1 + 3iwo)e 07 R2K,,

p(23) 81(2

oK,
oT4

— 2a673iw0hK1R]Kz — ae’3iw°TfK§K2

1+ 3iwg)? — 3iweatKye 3% — ar, —~2e 3% _ 3hg (1 + 3wy )iwK,e 3?0
. : oK

- —3imgoc 2
ba (1 + 3img)e aT,

=,

- ge’3i”0“Kf —2b(1 +imo)(1 — iwp)(1 + 3img)e 3K KK,
—b(1 + 3iwg)* (1 — 3iwe)e >0 K2K, — 2(1 +iwg)’e 303,

The nonhomogeneous equation (33) has a solution if and only if the solvability conditions, (q;,p;) = 0 and (g3,p,) = 0 are
satisfied, where
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aei®ie (1 —iw;)? 1—iw; ) 1.2,

q = (qﬂ’qﬁ’ qj3) = (2(1 — iwj)3 + gei®jTe ’2(1 - iCUj)3 + geiojTe ’2(1 - iCOj)3 + gei®jTe

oK

These two equations are used to solve for T

and % to obtain

oK - - —
aTl = &Ky + EKPKy + &K1 KoKy + EKPK,
1
oKy e _ , (34)
8_T1 = &Ko + EK5K, + &K KK, + &K,
where
o iwg(1 + iwg)e @ eat, 4 i(1 + iwg)2ba . woe - @o%
"7 2(1 +img)? + ae-iovte 4+ atee-ionte(1 + i) + bace-iooe(1 + iwg)?
5= (1 +1iwo)* (1 4+ 03)(2 + 13) + a(1 + iwg)e-iwoT
2 2(1 +iwp)? + ae-iwote 4 at.e-i@ot(1 + i) + bae-i@0% (1 + iwg)?’
b= 2(1 +iwo)* (1 + 9w?2)(2 + 9w?) + 2a(1 + img)e w0t
* 7201 +iwo)? + aeiovt 4 atce-ioote(1 + o) + boceiwooe(1 + iwg)?
i} (1 —iwo)* (1 + 3imo) (1 + iwo)® + (1 + imo)* (1 — imo)* (1 + 3iwo)® + a(1 + iwg)e-iot
Cq4 = — . 3 . - R : . 2 3
2(1 +iwy)” + ae-i®% 4 atee-i®o% (1 +iwyg) + boe-i@9 (1 + iwg) (35)
o 3iwo(1 + 3iwe)e 3% at, + 3i(1 + 3iwg)*ba moe 3ivooe
® 7 2(1 4 3iwo)? + ae-3iwote + ate-3ionte(1 4 3iwg) + bace 3o (1 + i)
tem (1 4 3iwo)* (1 + 9w?2)(2 + 9w2) + a(1 + 3iwg)e 3in
® 7 2(1 + 3iwg)? + ae 3o 4 atee3ioote(1 + 3iwyg) + bace w00 (1 + 3im,)?
. 2(1 4 3imo)* (1 + w2)(2 + w3) + 2a(1 + 3img)e3ivot
77 2(1 4 3iwo)? + ae-3iont 4 ate-3ioote(1 + 3iwy) + boce3uoe (1 + 3iwg)®
: (1 +1iwo)* (1 + 3iwe)? + (1 + 3iwe)* (1 + iwp)® + a(1 + 3iw)e3iwow
A

3[2(1 + 3iwo)® + ae-3ionte 4+ atee-3iote (1 + 3iwg) + baee-3iooe (1 + 3iw,)?]

Eq. (34) is the normal form truncated at the cubic order terms associated with the resonant double Hopf bifurcation at the
critical point: 7= 1. and ¢ = o.. Substituting K; = Rie'® (j =1,2) into (34), yields the following normal form in polar
coordinates:

dR, _
dt —
dRz - . 3 . 2 3 : 3
a - Re(&5)R, + Re(&)R; + Re(&7)RaRT + Re(Eg)R; cos(P) — Im(&) sin(P)Ry,
de o
dTl =Im(&;) + Im(&)R% + Im(&5)RE + Im(&4)R1R, cos(®) — Re(&4) sin(D)RRy,

de .
Ry =37 = Im(&)Rz + Im(&)R; + Im(&7)RIR; + Im(s) cos(P)R; + Re(és) sin(P)R;,

Re(¢1)R; + Re(&,)R] + Re(&3)RiR; + Re(&4)R3R, cos(®) + Im(&4)RIR, sin(P),

(36)

where ¢ =360; — 0, and ¢&s (i=1,2,3,...,8) are given in (35).
5. Bifurcation analysis and numerical simulation

In this section, we first study Hopf-zero bifurcation and then double Hopf bifurcation.
5.1. Hopf-zero bifurcation

The bifurcation analysis is given based on the first two equations of the normal form (22), and then some numerical sim-
ulation results are presented. Consider the following equations,
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% = our+Jir’ + )17,
(37)

z
a = %7 +J328 + ] 4212,

which are the first two equations of (22).
The equilibrium solutions of (37) are obtained by simply setting & = % = 0. Note that E = (r,z) = (0,0) corresponds to
the original trivial equilibrium, and the other ones are

0 041
Ei = -—,0] for —<0,
1( h) I

+ Oafy —oufs Oa); — oy %), — oaf; 0aJy — 0ty
E3(%&ﬁmi%md¢>m”¢dm>alm#¢>a

The semi-trivial equilibria E; and Ej‘ bifurcate from the origin on the critical lines L; : «; = 0 and L, : o, = 0, respectively.
The pair of nontrivial equilibria E; collide with the semi-trivial equilibria E; and E; respectively on the critical lines
L3 : 0], —o1f; =0and Ly : opf; — 04), = 0.

When (a,0) = (ac, 6.), the solutions on the center manifold determine the local asymptotic behavior of solutions of the
original system (2). So, the equilibria of system (2) on the z-axis remain equilibria, while equilibria away from the z-axis
are actually periodic orbits (with period ~ 27/w).

To give a more clear bifurcation picture, we choose a = —1 and b = 2, which satisfy the assumption of Theorem 2.3.
When a = -1 and b = 2, Eq. (6) has no positive root. By Lemma 2.1, all roots of Eq. (4) have negative real part for all
7 = 0. We choose T = 2, for which (10) has only one positive root, & = 1.029013154, and we, by (11) and (12), obtain
0©® =4.217519765 and Re(/'(69)) > 0. Therefore, by Theorem 2.3, when a= -1, b=2, 1 =2 and ¢ = 4.217519765, the
characteristic Eq. (3) has a zero and a pair of purely imaginary eigenvalues +iw = +1.029013154i, and all the other eigen-
values have negative real part, implying that system (2) undergoes a Hopf-zero bifurcation. By a simple calculation, we
obtain o4 = 0.08707273570, — 0.02384068405a,, o, = 0.1344982762a,, |, = —1.302977187, ], = —0.4300572437, J; =
—0.04483275872 and J, = —1.425091496.

For the above chosen parameter values, the critical bifurcation lines become: L; : 6 = 0.2738019411a,, L, : a. =0,
L3 : 0. = 15.09097429a,, L, : 6. = 1.686107251a,, as shown in the bifurcation diagram (see Fig. 2).

Fig. 2 shows the critical bifurcation lines in the (a., o) parameter plane near the critical point (a., o.), and the correspond-
ing phase portraits in the (r, z) plane, whose origin is the Hopf-zero bifurcation critical point. The bifurcation behaviors of the
original system (2) in the neighborhood of (0,0, 0) can be observed from Fig. 2. Note that the bifurcation boundaries divide
the (a., 0¢) parameter plane into six regions. Also, it is seen from the phase portraits that the orbits are symmetric with re-
spect to the r-coordinate, therefore, we only draw the orbits in the first quadrant.

For system (2), we use Fig. 2 to describe the bifurcations in the clockwise direction, starting from C; and ending at C;.
First, in region Cy, there is only one trivial equilibrium which is a sink. When the parameters are varied across the line L,
from region C; to C,, the trivial equilibrium becomes a saddle, and a stable periodic solution (for convenience, we call it
S1) appears from the trivial solution due to a Hopf bifurcation. When the parameters are changed from region C, to Cs, a pair
of unstable fixed points (called S;) occur from the trivial solution due to a pitchfork bifurcation, while the trivial fixed point
becomes a source from a saddle. In region C4, a pair of periodic solutions (called S;), which are sources, occur from S; due to
a pitchfork bifurcation, and S; become sinks from saddles. When the parameters are further changed from region C4 to Cs
crossing the line Ly, the pair of periodic solutions S5 collide with the periodic solution Sy, and then disappear, and S; becomes
saddle. When the parameters are further varied across the line L; from region Cs to Cs, the periodic solution S; collides with
the trivial solution and then disappears, and the trivial solution becomes a saddle from a source. Finally, when the param-
eters are varied across the line L, (the g, axis) from region Cs to C;, the pair of stable fixed points S; collide with the trivial
solution and then disappear, and the trivial solution becomes a sink from a saddle.

For simulations, we choose four groups of perturbation parameter values: (a., o) = (-0.01,-0.1),(0.05,0.9), (0.1,0.8)
and (0.1,-0.1), which belong to the regions C;, C3, C4 and Cs, respectively, resulting in a stable fixed point shown in
Fig. 3, a stable periodic solution as depicted in Fig. 4, coexistence of a pair of stable fixed points and a stable periodic solution
shown in Fig. 5, and a pair of stable fixed points as depicted in Fig. 6. It is clear that the numerical simulations agree with the
analytical predictions.
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Fig. 2. Critical bifurcation lines in the (a., o.) parameter plane near the Hopf-zero critical point (a., o) and the corresponding phase portraits in the (r,z)
plane.
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Fig. 3. Simulated solution of system (2) associated with the Hopf-zero bifurcation, for (a.,o.)=(-1,4.217519765), b=2, t=2 and
(ac,0¢) = (-0.01,-0.1), showing a stable fixed point.

5.2. Non-resonant double Hopf bifurcation

In this subsection, we first give a bifurcation analysis based on the first two equations of the normal form (30), and then
present some numerical simulation results. Consider the following equations,
dr1
dar - Bir1 +Airi + Apryr3,

dr, 3 5 (38)
T Bar2 + Asry + Asrary,
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Fig. 4. Simulated solution of system (2) associated with the Hopf-zero bifurcation, for (ac, 6.) = (—1,4.217519765), b =2, =2 and (a., o) = (0.05,0.9):

(a) the time history; and (b) the phase portrait, showing a stable periodic solution.

which are actually first two equations of (30).
The equilibrium solutions of (38) are obtained by simply setting - an d'Z = 0. Note that Fy = (r1,12) = (0,0) corresponds to
the original trivial equilibrium, and the other ones are

(| B B
Fl( Al 0) for A1<0
F, = (0,,//32) for ﬁz

P ( W'ZAz ~ Pt \/ﬁth —mm) o P2 =B o BA = BiAs

A1As — A AL\ AsAs — ArAs A1As — AA, e AAs — A1As

The semi-trivial equilibria F; and F, bifurcate from the origin on the critical lines L; : ; =0 and L, : 8, = 0, respectively.
The nontrivial equilibrium F3 collides with the semi-trivial equilibria F, and F; respectively on the critical lines
Ls: ﬁzAz — ﬂ1A3 =0 and Lyg: ﬁZAl — /))1A4 =0.

We choose a = —1 and b = —1.485451766, for which all roots of (4) with 7 = 0 have negative real part and Eq. (6) has no

positive root. By Lemma 2.1, all roots of Eq. (4) have negative real part for all T>0.Let w;:w; = ll = ‘/_ Then, choose
T = 13.16190556, under which the positive roots @, of (10), the time delay 0'( ) (k=1,2,...,6)and the transversallty con-
ditions are given as follows:

@, = 0.009112379716, ¢'” = 40.49677901, Re(/(¢'\")) <0,

@, = 02961901579, o = 6.296902204, Re(¥(c)) >0,

= 0.4967403723, o)) =5.767516314, Re(¥(d})) <O,
@4 = 0.6797869345, 4 =2.028520562, Re(Z(dy’)) >0,
@s = 0.9613639020, o = 2.028520562, Re(/l’( o)) <o,

@ = 1.042353940, o =1.279687398, o =7.307568204, Re(¥(a"))> 0.

Therefore, when a = —1, b = —1.485451766, T = 13.16190556 and ¢ = 2.028520562, the characteristic Eq. (3) has two
pairs of purely imaginary eigenvalues =iw; = i, = +0.6797869345i and Ziw, = +iws = £0.9613639020i with
W1 : Wy = ‘/_ and all the other eigenvalues have negative real part, and so system (2) undergoes a non-resonant double Hopf
b1furcat10n

Under the above chosen parameter values, by a simple calculation, we obtain
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(a)
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o A -

Fig. 5. Simulated solution of system (2) associated with the Hopf-zero bifurcation, for (a.,o.) = (-1,4.217519765), b =2, t =2 and (a., 6¢) =
(a) the time history; and (b) the phase portrait, showing coexistence of a pair of stable fixed points with the initial values (x;(0),x2(0),x5(0)) 1,
(black lines) and (x1(0),x2(0),x3(0)) = (—1,—1,—1) (blue lines) and a stable periodic solution with the initial value (x;(0),x,(0),x3(0)) = (0.01,0.01,0.01)
(red lines), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Simulated solution of system (2) associated with the Hopf-zero bifurcation, for (a., 6.) = (-1,4.217519765), b =2, t =2 and (a., 6¢) = (0.1,-0.1),
showing coexistence of a pair of stable fixed points with the initial values (x;(0)
(red lines), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The critical bifurcation lines become:

Ly :0.=0.17433515227,,
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—0.2807240645, A, = -0.809569622, A; =-0.864057456, A, = —1.141808586.

%(0),x3(0)) = (-1,-1,-1)



Y. Ding et al./ Commun Nonlinear Sci Numer Simulat 18 (2013) 351-372 365

The bifurcation diagram is shown in Fig. 7. Fig. 7 shows the critical bifurcation lines in the (7., o) parameter plane near the
critical point (7., 0.) and the corresponding phase portraits in the (r1,r;) plane, whose origin is the non-resonant double
Hopf bifurcation critical point. The bifurcation behaviors of the original system (2) in the neighborhood of (0,0,0) can be
observed from Fig. 7. Note that the bifurcation boundaries divide the (7., b.) parameter plane into six regions (see Fig. 7).

For system (2), we use Fig. 7 to describe the bifurcations near the non-resonant double Hopf critical point in the clockwise
direction, starting from B; and ending at B;. First, in region By, there is only one trivial equilibrium which is a sink. When the
parameters are varied across the line L; from region B; to B,, the trivial equilibrium becomes a saddle, and a stable periodic
solution (called O,) appears from the trivial solution due to a Hopf bifurcation. When the parameters are changed from re-
gion B, to Bs, a unstable periodic solution (called O,) occurs from the trivial solution due to a Hopf bifurcation, while the
trivial fixed point becomes a source from a saddle. In region B,, an unstable quasi-periodic solution occurs from O, due to
a Neimark-Sacker bifurcation, and O, becomes a sink from a saddle. When the parameters are further changed from region
B, to Bs crossing the line L4, the unstable quasi-periodic solution collides with the periodic solution O;, and then disappears,
and O, becomes a saddle. When the parameters are further varied across the line L, from region Bs to Bs, O, collides with the
trivial solution and then disappears, and the trivial solution becomes a saddle from a source. Finally, when the parameters
are varied across the line L, from region Bg to By, the stable periodic solution O, collides with the trivial solution and then
disappears, and the trivial solution becomes a sink from a saddle.

We choose three groups of perturbation parameter values: (t¢, ) = (-0.1,-0.02), (-0.1,0.1), and (0.1,0.021), which
belong to the regions By, B, and B,, corresponding to a stable fixed point shown in Fig. 8, a stable periodic solution as de-
picted in Fig. 9, and coexistence of a pair of stable periodic solutions shown in Fig. 10, respectively. It is clear that the numer-
ical simulations agree with the analytical predictions.

5.3. Resonant double Hopf bifurcation
In this subsection, we consider the normal form (36) associated with resonant double Hopf bifurcation. Note that

Fo = (R1,Ry) = (0,0) is always the equilibrium solution of (36), which corresponds to the original trivial equilibrium, and
the other semi-trivial equilibria of (36) are:

Fi=R.R) = ( _Re(f1)70>’ for R _ 0,

Re() Re(%)
o - Re(és) Re(és)
Fr = (Ri.R;) = <07 Re(fs))7 for Re(¢s) <0
o,
A n
r, L

Y
(o]
oy
™

Fig. 7. Critical bifurcation lines in the (t,,0,) parameter plane near the non-resonant double Hopf critical point (t.,0.) and the corresponding phase
portraits in the (ry,r;) plane.
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Fig. 8. Simulated solution of system (2) associated with the non-resonant double Hopf bifurcation, for (7.,0.) = (13.16190556,2.028520562),
a= -1, b=-1.485451766 and (t,0.) = (—0.1,-0.02), showing a stable fixed point.
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Fig. 9. Simulated solution of system (2) associated with the non-resonant double Hopf bifurcation, for (t.,0.) = (13.16190556,2.028520562),
a= -1, b=-1.485451766 and (t.,0,) = (—0.1,0.1): (a) the time history; and (b) the phase portrait, showing a stable periodic solution.

The semi-trivial equilibrium F; bifurcates from the origin on the critical line L; : Re(;) = 0, and its stability is determined by

L; and L3:Re(55)—%:0. Anther semi-trivial equilibrium F, bifurcates from the origin on the critical line

L, : Re(¢s) = 0, and its stability is determined by L, and L4 : Re(&;) — % = 0. With the general normal form of the res-
onant double Hopf bifurcation, it is difficult to obtain an explicit expression for the non-trivial equilibria, since it needs to
solve coupled equations involving trigonometrical functions. However, we may show analytical results for certain parameter
values. For this purpose, we choose a = —3 and b = —1.95251514. Then all roots of Eq. (4) with T = 0 have negative real part,
and Eq. (6) has only one positive root, y; = 0.04171216744, and thus, v; = ,/y; = 0.2042355685. It then follows from (7) that

79 = 13.71312954. As a result, by Lemma 2.1, all roots of Eq. (4) have negative real part for all 7€ [0,7\”). Let



Y. Ding et al./ Commun Nonlinear Sci Numer Simulat 18 (2013) 351-372 367

(a) (b)

0.1

0, 0.1
4900 4950 5000 :
t
0.2 o 0
=)
-0.2
4900 4950 5000  -0.2|
t 0.1
0.2
0.05
0.1
02 -0.05 .
4900 4950 5000 u,
t =01 g1 u

Fig. 10. Simulated solution of system (2) associated with the non-resonant double Hopf bifurcation, for (t.,0.) = (13.16190556,2.028520562),
a= -1, b=-1.485451766 and (t.,0.) = (0.1,0.021): (a) the time history; and (b) the phase portrait, showing coexistence of a pair of stable periodic
solutions with the initial values (x;(0),x,(0),x3(0)) = (1,1,1) (blue lines) and (x;(0),x,(0),x3(0)) = (—0.01,-0.01,0.001) (red lines), respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

@y :@; = =1 Then, choose t=28.09472152<1{", yielding the positive roots ¢y of (10), the time delay

a;f) (k=1,2,...,6), and the transversality conditions as follows:

@, = 0.2517478606, ¢\” = 20.77861020,Re (/' (¢\")) < 0,
@, = 0.3319447390, 4" = 0.4385619315,Re(#(d})) > 0,
@3 = 0.7959334010, 03 = 4.039347823,Re(/(d)) < 0,
@4 = 0.9958342170, ¢\ = 0.4385619315,Re(# (7)) > 0,
@s = 1.519160551, o\ = 1.011344435,Re('(c))) < 0,
@ = 1.586291511, o) = 0.6278779457,Re(/(cy")) > 0.

Therefore, whena = —3, b = —1.95251514, 7 = 8.09472152 and ¢ = 0.4385619315, the characteristic Eq. (3) has two pairs

of purely imaginary eigenvalues +iw, = +i®, = £0.3319447390i and +iw, = +id, = £0.9958342170i with w; : w; =14,
and all the other eigenvalues have negative real part. Thus, system (2) undergoes a 1 : 3 resonant double Hopf bifurcation.

With the above parameter values, by using Eq. (36), we obtain the following normal form in polar coordinates:

% = (0.000293946821 + 0.0064665666097)R; — 0.1902499902R? — 0.6405817788R; R’
— 0.2542333541R?R, cos(®) — 0.03567061761R2R, sin(®),

% = (0.080886509637, — 0.001169170487,)R, — 0.4267701161R] — 0.4608759664R>R,
—0.05051277383R: cos(®) + 0.04555313617R: sin(®),

% —0.023246337950, — 0.035184623621, — 0.04859791763R? — 0.2444771570R>
—0.03567061761R; R, cos(®) + 0.2542333541R; R, sin(®),

R, % = 0.048730463390 R, — 0.10280273841.R, — 0.4758085568R> — 0.3727224674RR,

— 0.04555313617R? cos(®) — 0.05051277383R’ sin(®), (39)

where & =36, — 0,. Note thgt in Fhis case, the non-trivial steady-state solutions are obtained by solving the three equa-
tions: Ry =R, =0 and @ = 30, — ®, = 0. The stability of the steady-state solutions is determined by the eigenvalues of
the following Jacobin matrix:
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Under the given parameter values, we obtain

Ly : 0. = —0.045456397157,, L, :0.=0.014454455827,,
L;: 0. =0.028844048187., Ls:0.=0.017824943567..

Next, we consider the existence and stability of non-trivial equilibria of (39). First, we solve the two equations, R =R, = 0,
to obtain cos(®) and sin(®) expressed in R;, Ry, 7. and o.. Substituting these expressions into the equation
@ =36, — O, =0, and using the identity cos?(®) + sin’(®) = 1, we get two equations expressed only in Ry, R, 7. and
o.. From these two equations, we obtain the first-order approximate solution of R; and R,, expressed in 7. and a.. Note that
the first-order approximate solution is sufficient for local dynamical analysis. Therefore, the existence of non-trivial
equilibrium solutions can be determined by R; >0 and R, >0, namely, (t,0¢) € {(T¢,0¢) : 6c > L1,0, > Ls}, where
Ls : 0. = —0.037964641871.. Next, substituting the expressions of cos(®), sin(®), R; and R, into the characteristic equation
det(Al —J) =0, results in a polynomial equation, B+ ay(Te, 0'6)/12 +a1(Te, 0c)A+ ao(Te, 0¢) = 0. Hence, the equilibrium
solution is stable if a; >0, ap >0 and a;a; — ap > 0, namely, (T¢,0¢) € {(Te,0c) : 0c < L3, 0. > Lg}, where Lg: 0. = —
0.034508975487..

Fig. 11 shows the critical bifurcation lines in the (z., 6.) parameter plane near the critical point (7., 0.) and the corre-
sponding phase portraits in the (R;,R;) plane, with the origin representing the resonant double Hopf bifurcation critical
point.

For system (2), we use Fig. 11 to describe the bifurcations near the resonant double Hopf bifurcation critical point in
the clockwise direction, starting from B; and ending at B;. First, in region Bi, there is only one trivial equilibrium which is
a sink. When the parameters are varied across the line L, from region B; to B,, the trivial equilibrium becomes a saddle,
and a stable semi-trivial solution O, appears from the trivial solution. When the parameters are changed from region B, to
Bs, an unstable semi-trivial solution O; occurs from the trivial solution, while a periodic-three solution O3 appears, which
is a saddle and the trivial fixed point becomes a source from a saddle. In region B4, 01 becomes a sink from a saddle,
while 05 becomes a sink from a saddle. When the parameters are further changed from region B4 to Bs crossing the line
Ly, 03 becomes a stable focus from a sink. When the parameters are further varied across the line L, from region Bs to

>
>

Fig. 11. Critical bifurcation lines in the (t.,0.) parameter plane near the 1:3 resonant double Hopf critical point (7., d.) and the corresponding phase
portraits in the (Ry,R;) plane.
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Fig. 12. Simulated solution of system (2) associated with the 1:3 resonant double Hopf bifurcation for (7.,o0.) = (8.09472152,0.4385619315),
a= -3, b=-1.95251514 and (1., 0) = (—0.1,-0.02): (a) the time history; and (b) the phase portrait, showing a stable fixed point.
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Fig. 13. Simulating solution of system (2) associated with the 1:3 resonant double Hopf bifurcation for (t.,o.) = (8.09472152,0.4385619315),
a= -3, b=-1.95251514 and (1., 0.) = (—0.1,-0.02): (a) the time history; and (b) the phase portrait, showing a stable periodic solution.

Bg, Oz collides with the trivial solution and then dlsappears while the trivial solution becomes a saddle from a source,
and O; becomes a sink from a focus. In region B;, O; becomes a saddle from a sink. In region Bg, Os collides with the
semi-trivial solution O; and then disappears. Finally, when the parameters are varied across the line L; from region Bs
to By, the stable periodic solution O; collides with the trivial solution and then disappears, and the trivial solution be-
comes a sink from a saddle.

For numerical simulation, we choose three groups of perturbation parameter values: (z., 6¢) = (-0.01,-0.01), (-0.1,0.2),
and (0.1,0.0003), which belong to the regions B, B, and B, corresponding to a stable fixed point shown in Fig. 12, a stable
periodic solution as depicted in Fig. 13, and coexistence of a pair of stable periodic solutions shown in Fig. 14, respectively.
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Fig. 14. Simulating solution of (2) associated with the 1:3 resonant double Hopf bifurcation for (7.,0.) = (8.09472152,0.4385619315),
a= -3, b=-1.95251514 and (7., 0.) = (—0.1,-0.02): (a) the time history; and (b) the phase portrait, showing coexistence of a pair of stable periodic
solutions with the initial values (x;(0),x2(0),x3(0)) = (1,1,1) (blue lines) and (x;(0),x2(0),x3(0)) = (—0.01,—0.01,0.01) (red lines), respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

For (T,0.) = (-=0.1,0.2) € By, F> = (O,R,) = (0, Y- 2:23) = (0,0.1953978468), note that w, = 3w, = 0.995834217, and
so the period of the periodic solution O, is (ZTZ ~ 6.3, implying that there are about 1% ~ 15.85 periods in 100 time unit, which

agrees well with the numerical simulation result (see Fig. 13). N
Substituting K; = 0 and K, = R,e'® into (31) yields the first-order approximation of the periodic solution O,, given
below:

cos(3woTo + 6,)
uM = Ryq,edi@oTo+i% | Ry gye3i@oTo=i% — 2R, [ cos(3wgTo + 62) — 3w sin(3weTo + 6)
(1- 9w§) cos(3mTo + 02) — 6o sin(3wTy + 62)
0.3908 cos(3wo Ty + 02)
~ | 0.5515cos(3weTo + 62 — V1) |,
0.7783 cos(3woTo + 02 — v7)

where v; and v, are determined by tan(v;) = —3wy and tan(v;) = ;22 This indicates that both amplitude and frequency of

T 9wE-1°

the motion obtained from the analytical solutions agree well with the numerical results (see Fig. 13).
For (., 0¢) = (0.1,0.0003) € Bg, F1 = (Ry,0) = ( —Re(é”,o) = (0.01283364773,0). Due to w1 = wo = 0.3319442739, the

Re(&z)

period of the periodic solution O; is fu—’lf ~ 18.9, indicating that there are about {93 ~ 5.28 periods in 100 time unit, which
agrees well with the numerical simulation result (see the blue lines in Fig. 14). N
Substituting K; = R;e'®t and K, = 0 into (31) yields the first-order approximate solution of the periodic solution O; as

follows:
cos(moTo + 04)
uM = Ryq, e Tt 4 R g e ioTo-i0 — 2R, | cos(woTp + 01) — wp sin(woTo + 01)
(1 — @}) cos(woTo + 0) — 2 sin(woTo + 01)
0.0257 cos(woTy + 01)
~ | 0.0270cos(woTo + 601 — v3) |,
0.0285 cos(woTo + 01 — Va)

where v3; and v4 are determined by tan(vs) = —@p and tan(vy) = aff’fl. This again shows that the analytical prediction of both
amplitude and frequency of the motion agree well with the numérical results (see the blue lines in Fig. 14).
Non-trivial equilibrium solutions can be solved from the three equations, R; = R, = @ = 0 numerically, to obtain an

approximate solution. For (t.,0.) = (0.1,0.0003) ES, we obtain R; =0.1272239961, R, = 0.0004960617624 and
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@ = 1.471379268, and the eigenvalues of the Jacobian matrix J evaluated at this non-trivial equilibrium all have negative
real part, clearly indicating that this resonant steady-state periodic solution is asymptotically stable.
Substituting K; = R;e' and K, = R,e'® into (31), we obtain the first-order approximate solution of system (2) as follows:

u® — R1q1eimoro+m] + R]qle—imUTo—il)l + quze3iw0T0+i02 + quze—3i(/)0T0—i()2
cos(woTo + 01)
= 2Ry | cos(woTo + 01) — mg sin(weTo + 601)
(1 — w3) cos(woTo + 01) — 20 sin(woeTo + 61)
cos(3woTy + 67)
+ 2Ry | cos(3woTy + 02) — 3o sin(3weTo + 02)
(1 —9w3) cos(3woTo + 02) — 6o sin(3weTy + 6)
0.2544 cos(woTo + 01) +9.9212 x 10 cos(3woTy + 62)
~ | 0.2681cos(weTo + 01 — v3) + 1.4002 x 1073 cos(3woTo + 0, — v1) |
0.2825 cos(woTo + 01 — v4) + 1.9760 x 1073 cos(3woTo + 02 — v3)

6mwq

where vis (j = 1,2,3,4) are determined by tan(v,) = —3wo and tan(v;) = 527%;, tan(vs) = —wp and tan(vy) = (5;"}]. Comparing
these analytical predictions with the numerical simulation results (see the red lines in Fig. 14), it shows an excellent

agreement.

6. Conclusion

In this paper, we have studied the dynamical behaviors of a three-node recurrent neural network model with four dis-
crete time delays. We have analysed the stability of the trivial equilibrium and the existence of several types of bifurcation.
To study dynamical motion, we have used the multiple time scales method to derive the normal forms associated with Hopf-
zero bifurcation, non-resonant and resonant double Hopf bifurcations. Moreover, bifurcation analyses near the Hopf-zero,
non-resonant and resonant double Hopf critical points are given, showing that system (2) may, associated with Hopf-zero
bifurcation, exhibit a stable fixed point, a pair of stable fixed points, a stable periodic solution, and coexistence of a pair
of stable fixed points and a stable periodic solution; and, associated with non-resonant double Hopf bifurcation, a stable
fixed point, a stable periodic solution and coexistence of a pair of stable periodic solutions. Numerical simulations are pre-
sented to verify the analytical predictions. In particular, for the resonant double Hopf bifurcation, although closed-form solu-
tion of the non-trivial steady-state solutions is difficult to obtain, we obtain numerical expressions for certain parameter
values. The excellent agreement of the solutions of amplitude and frequency between the analytical predictions and numer-
ical simulations shows that the method presented in this paper may provide a very good tool in the study of real problems.
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