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In this paper, we study dynamics in delayed van der Pol–Duffing equation, with particular
attention focused on nonresonant double Hopf bifurcation. Both multiple time scales and center
manifold reduction methods are applied to obtain the normal forms near a double Hopf critical
point. A comparison between these two methods is given to show their equivalence. Bifurcations
are classified in a two-dimensional parameter space near the critical point. Numerical simulations
are presented to demonstrate the applicability of the theoretical results.
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1. Introduction

Recently, much attention has been focused on the
study of high-codimensional bifurcations, since they
may exhibit complex dynamical behaviors such as
quasi-periodic solutions and chaos. Center manifold
theory and normal form theory are usually applied
to analyze stability and bifurcation of dynamical
systems (e.g. see [Guckenheimer & Holmes, 1990;
Kuznetsov, 2004; Wiggins, 1990]). Especially, in
delayed differential equations (DDEs), due to time
delay, higher-codimension singularities may occur
more frequently than that in ordinary differen-
tial equations (ODEs). Even for a scalar DDE,
it is possible to have bifurcation of limit cycles
and even higher-codimension bifurcation phenom-
ena, (e.g. see [Choi & LeBlanc, 2006; Hale, 1997]
and references therein).

Several methods have been developed for com-
puting the normal forms of differential equations,
for example, multiple time scales (MTS) [Nayfeh,

1973, 1981] and center manifold reduction (CMR)
[Guckenheimer & Holmes, 1990; Hale, 1997; Has-
sard et al., 1981; Wiggins, 1990]. For a dynamical
system described by ODEs, multiple time scales
method is systematic and can be directly applied
to the original nonlinear system, without the appli-
cation of center manifold theory [Yu, 1998, 2002;
Zheng & Wang, 2010]. In fact, this approach com-
bines the two steps involved in using center mani-
fold theory and normal form theory into one unified
step to obtain the normal form and nonlinear trans-
formation simultaneously. Based on multiple time
scales, Yu [1998, 2001, 2002] developed Maple pro-
grams for computing the normal forms of Hopf
bifurcation and other singularities. These programs
can be “automatically” executed by using a com-
puter algebra system for a given ODE system. The
basic idea of the center manifold theory is employ-
ing successive coordinate transformations to sys-
tematically construct a simpler system which has
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1350014-1

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

3.
23

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
03

/0
5/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218127413500144


February 6, 2013 15:6 WSPC/S0218-1274 1350014

Y. Ding et al.

less dimension compared to the original system,
and thus greatly simplifying the dynamical anal-
ysis of the system [Guckenheimer & Holmes, 1990;
Kuznetsov, 2004; Wiggins, 1990]. The multiple time
scales can also be directly applied to DDEs without
the application of center manifold theory [Das &
Chatterjee, 2002; Hu & Wang, 2009; Nayfeh, 2008].
In contrast, by the center manifold theory, one
needs to first change the retarded equations to oper-
ator differential equations, and then decompose the
solution space of their linearized form into stable
and center manifolds. Next, with the adjoint of the
operator equations, one computes the center man-
ifold by projecting the whole space to the center
manifold, finally calculating the normal form on the
center manifold [Faria & Magalhaes, 1995; Jiang &
Wang, 2010; Ma et al., 2008; Revel et al., 2010; Wei,
2007; Xu & Yu, 2004; Yu et al., 2002; Yuan & Wei,
2006].

In the research of nonlinear dynamical systems,
the van der Pol–Duffing equation is one of the most
intensively studied equations. This celebrated equa-
tion originally was a model for an electrical circuit
with a triode valve, and was extensively studied as
a host of a rich class of dynamical behaviors, includ-
ing relaxation oscillations, quasi-periodicity, ele-
mentary bifurcations and chaos [Kuznetsov, 2004].
It is well known that the limit cycle oscillations with
strong stability property are important in applica-
tions, hence, being able to modify their behaviors
through feedback is a question of interest. On the
other hand, most practical implementations have
inherent or feedback delays, the presence of which
leads to the appearance of complex phenomena
in the autonomous van der Pol–Duffing equation,
such as Hopf–pitchfork bifurcation, double Hopf
bifurcation and Bogdanov–Takens singularity, etc.
[Jiang & Yuan, 2007; Jiang & Wei, 2008; Wang &
Jiang, 2010; Xu & Chung, 2003; Xu et al., 2007].

In this paper, we consider the nonresonant dou-
ble Hopf bifurcation in the following van der Pol
equation with delayed feedback:

ẍ(t) + ω2
0x(t) − [b− γx2(t)]ẋ(t) + βx3(t)

= A[x(t− τ) − x(t)], (1)

where ω0, b, γ, β are positive real constants, A
is feedback strength, and τ is time delay. Xu

et al. [2007] employed the perturbation-incremental
scheme (PIS) to investigate the weakly resonant
double Hopf bifurcation and dynamics of sys-
tem (1). In this paper, we will study nonresonant
double Hopf bifurcation of (1) by using two methods
to compute the normal form of the system, namely,
the multiple time scales and a combination of the
method of normal forms and the center manifold
theorem. A comparison between the normal forms
shows that the two methods are equivalent. Fur-
thermore, we carry out the bifurcation analysis and
numerical simulations. We will show that there exist
a stable fixed point, stable periodic solutions and
stable quasi-periodic solutions in the neighborhood
of the double Hopf critical point.

The rest of the paper is organized as follows.
In Sec. 2, we consider the existence of double
Hopf bifurcation in the delayed van der Pol sys-
tem (1), and use two methods to derive the nor-
mal form associated with double Hopf bifurcation.
Then, bifurcation analysis and numerical simula-
tions are presented in Sec. 3. Finally, the conclusion
is drawn in Sec. 4.

2. Analytical Study

In this section, we consider the van der Pol–Duffing
equation with delayed feedback, described by (1),
and use the MTS and CMR methods to derive the
normal form of the system.

2.1. System formulation

The characteristic equation of the linearized equa-
tion of (1), evaluated at the trivial equilibrium
x = ẋ = 0, is given by:

λ2 − bλ+ ω2
0 +A−Ae−λτ = 0. (2)

To find possible periodic solutions, which may
bifurcate from a Hopf or double Hopf critical point,
let λ = iω (i2 = −1, ω > 0) be a root of (2). Substi-
tuting the root into (2) and separating the real and
imaginary parts yields{

ω2
0 +A− ω2 = A cos(ωτ),

bω = A sin(ωτ),
(3)

from which we obtain

ω1,2 =

√
2A+ 2ω2

0 − b2 ±
√

(b2 − 2ω2
0 − 2A)2 − 4(ω4

0 + 2Aω2
0)

2
,
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under the assumption:{
2A+ ω2

0 > 0,

(2A− b2)2 − 4ω2
0b

2 > 0.
(4)

Further, it follows from (3) that

τ
(j)
1,2 =




1
ω1,2

[
arccos

(
1 +

ω2
0 − ω2

1,2

A

)
+ 2jπ

]
,

for A > 0,

1
ω1,2

[
2π − arccos

(
1 +

ω2
0 − ω2

1,2

A

)
+ 2jπ

]
,

for A < 0,

where j = 0, 1, 2, . . . . Thus, a possible double Hopf
bifurcation occurs when two such families of sur-
faces intersect, with τc = τ

(j)
1 = τ

(l)
2 , where j, l = 0,

1, 2, . . . . The equality τc = τ
(j)
1 = τ

(l)
2 implies

that the linearized system on the trivial equilibrium
has two pairs of purely imaginary eigenvalues ±iω1

and ±iω2. Assume ω1 :ω2 = k1 : k2, then a possi-
ble double Hopf bifurcation with the ratio k1 : k2

appears. When k1, k2 ∈ Z+, it is called a k1 : k2

resonant double Hopf bifurcation; otherwise, it is
called a nonresonant double Hopf bifurcation. In
this paper, we only consider the nonresonant double
Hopf bifurcation, for which

ω1 =
√
k1

k2
ω0

√
2A+ ω2

0,

ω2 =

√
k2

k1
ω0

√
2A+ ω2

0.

(5)

2.2. Multiple time scales

We treat the feedback strength A and the delay τ as
two bifurcation parameters. From τc = τ

(j)
1 = τ

(l)
2 ,

l, j = 0, 1, 2, . . . , we get the critical value Ac.
Suppose system (1) undergoes a double Hopf bifur-
cation from the trivial equilibrium at the critical
point: A = Ac, τ = τc. Further, by the MTS, the
solution of (1) is assumed to take the form:

x(t) = εx1(T0, T1, T2, . . .) + ε2x2(T0, T1, T2, . . .)

+ ε3x3(T0, T1, T2, . . .) + · · · , (6)

where Tk = εkt, k = 0, 1, 2, . . . . The derivative with
respect to t is now transformed into

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ · · ·

= D0 + εD1 + ε2D2 + · · · ,
where the differential operator Di = ∂

∂Ti
, i = 0,

1, 2, . . . .
We take perturbations as A = Ac + ε2Aε and

τ = τc + ετε in (1), where Aε is called a detun-
ing parameter [Nayfeh, 2008]. To deal with the
delayed terms, we expand xj(T0 − τc − ετε, T1 −
ε(τc +ετε), T2−ε2(τc +ετε), . . .) at xj(T0−τc, T1, T2)
for j = 1, 2, 3, . . . . Then, substituting the solutions
with the multiple scales into (1) and balancing the
coefficients of εn (n = 1, 2, 3, . . .) yields a set of
ordered linear differential equations.

First, for the ε1-order terms, we have

D2
0x1 + (Ac + ω2

0)x1 − bD0x1 −Acx1τc = 0, (7)

where x1 = x1(T0, T1, T2) and x1τc = x1(T0 −
τc, T1, T2). Since ±iω1 and ±iω2 are the eigenval-
ues of the linear part of (1), the solution of (7) can
be expressed in the form of

x1(T0, T1, T2)

= G1(T1, T2) sin(ω1T0) +G2(T1, T2) cos(ω1T0)

+G3(T1, T2) sin(ω2T0)

+G4(T1, T2) cos(ω2T0). (8)

Next, for the ε2-order terms, we obtain

D2
0x2 + (Ac + ω2

0)x2 − bD0x2 −Acx2τc

= −2D1D0x1 + bD1x1

−Ac(τεD0x1τc + τcD1x1τc). (9)

Substituting solution (8) into (9) and simplifying,
we obtain the following equation:

D2
0x2 + (Ac + ω2

0)x2 − bD0x2 −Acx2τc

+P1 cos(ω1T0) + P2 sin(ω1T0)

+P3 cos(ω2T0) + P4 sin(ω2T0) = 0, (10)

where Pi (i = 1, 2, 3, 4) are given as follows:

P1 = 2ω1
∂G1

∂T1
− b

∂G2

∂T1

+Acτεω1[G1 cos(ω1τc) +G2 sin(ω1τc)]

+Acτc

[
∂G2

∂T1
cos(ω1τc) − ∂G1

∂T1
sin(ω1τc)

]
,
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P2 = Acτεω1[G1 sin(ω1τc) −G2 cos(ω1τc)]

− 2ω1
∂G2

∂T1
− b

∂G1

∂T1

+Acτc

[
∂G1

∂T1
cos(ω1τc) +

∂G2

∂T1
sin(ω1τc)

]
,

P3 = 2ω2
∂G3

∂T1
− b

∂G4

∂T1

+Acτεω2[G3 cos(ω2τc) +G4 sin(ω2τc)]

+Acτc

[
∂G4

∂T1
cos(ω2τc) − ∂G3

∂T1
sin(ω2τc)

]
,

P4 = Acτεω2[G3 sin(ω2τc) −G4 cos(ω2τc)]

− 2ω2
∂G4

∂T1
− b

∂G3

∂T1

+Acτc

[
∂G3

∂T1
cos(ω2τc) +

∂G4

∂T1
sin(ω2τc)

]
.

To avoid occurrence of secular terms in the
solution of (10), the coefficients of cos(ωiT0),
sin(ωiT0) (i = 1, 2) in (10) must be set to zero,
i.e. Pi = 0 (i = 1, 2, 3, 4). Therefore, ∂G1

∂T1
, ∂G2

∂T1
, ∂G3

∂T1

and ∂G4
∂T1

are solved from the four linear equations
in terms of G1, G2, G3 and G4. Then, Eq. (10) is
reduced to

D2
0x2 + (Ac + ω2

0)x2 − bD0x2 −Acx2τc = 0, (11)

where x2 = x2(T0, T1, T2) and x2τc = x2(T0 − τc,
T1, T2), and thus, the particular solution of (11) is

x2(T0, T1, T2) = 0. (12)

Further, for the ε3-order terms, we similarly
obtain

D2
0x3 + (Ac + ω2

0)x3 − bD0x3 −Acx3τc

= −2D2D0x1 − 2D1D0x2 − D2
1x1 −Aεx1

− γx2
1D0x1 − βx3

1 +Aεx1τc −Ac(τεD0x2τc

+ τcD1x2τc + τcD2x1τc + τεD1x1τc)

+ b(D2x1 + D1x2) +
Ac

2
(τ2

εD
2
0x1τc

+ τ2
cD

2
1x1τc + 2τετcD0D1x1τc), (13)

where x3 = x3(T0, T1, T2) and x3τc = x3(T0 −
τc, T1, T2). Substituting the solutions (8) and (12)
into (13) and letting the coefficients of the terms
which may generate secular terms in the solution
equal to zero, yields the derivatives ∂G1

∂T2
, ∂G2

∂T2
, ∂G3

∂T2

and ∂G4
∂T2

expressed in terms of G1, G2, G3 and G4.
The above procedure can in principle continue

indefinitely (to any high order). Finally, the equa-
tions for Ġ1, Ġ2, Ġ3 and Ġ4 are given by{

Ġ1 = εD1G1 + ε2D2G1 + · · · ,
Ġ2 = εD1G2 + ε2D2G2 + · · · ,

(14)

{
Ġ3 = εD1G3 + ε2D2G3 + · · · ,
Ġ4 = εD1G4 + ε2D2G4 + · · · .

(15)

Let G1 = R1 sin(Θ1(t)), G2 = R1 cos(Θ1(t)),
G3 = R2 sin(Θ2(t)) and G4 = R2 cos(Θ2(t)). Sub-
stituting these expressions into (14) and (15), and
truncating the equations at O(ε3) yields the follow-
ing normal form in polar coordinates:



∂R1

∂T1
= −Acω1[a1 cos(ω1τc) + b1 sin(ω1τc)]

(a2
1 + b21)τc

R1τε +
[b1 cos(ω1τc) − b1 − a1 sin(ω1τc)]

a2
1 + b21

R1Aε

+Q1τ
2
εR1 − 3βb1 + ω1γa1

2(a2
1 + b21)

R1R
2
2 −

3βb1 + ω1γa1

4(a2
1 + b21)

R3
1,

∂R2

∂T1
= −Acω2[a2 cos(ω2τc) + b2 sin(ω2τc)]

(a2
2 + b22)τc

R2τε +
[b2 cos(ω2τc) − b2 − a2 sin(ω2τc)]

a2
2 + b22

R2Aε

+Q2τ
2
εR2 − 3βb2 + ω2γa2

2(a2
2 + b22)

R2
1R2 − 3βb2 + ω2γa2

4(a2
2 + b22)

R3
2,

∂Θ1

∂T1
= δ1 +H1τ

2
ε +

3a1β − b1ω1γ

4(a2
1 + b21)

R2
1 +

3a1β − b1ω1γ

2(a2
1 + b21)

R2
2,

∂Θ2

∂T1
= δ2 +H2τ

2
ε +

3a2β − b2ω2γ

2(a2
2 + b22)

R2
1 +

3a2β − b2ω2γ

4(a2
2 + b22)

R2
2,

(16)
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where

ai = 2ωi −Acτc sin(ωiτc), bi = Acτc cos(ωiτc) − b,

Qi =
ωi(a2

iA
2
cbiτc + 2a2

iω
2
i b

2
i +A2

cb
3
i τc + ω2

i b
4
i + a4

iω
2
i − 2aiA

2
cωibiτc − aiA

2
cτ

2
cωib

2
i − a3

iA
2
cτ

2
cω

2
i ) sin(ωiτc)

τc(a2
i + b2i )2(Acτc − cos(ωiτc)b− 2ωi sin(ωiτc))

+
2A2

cτc(aib
2
i − ωib

2
i − a2

iωi + a3
i + τcωib

3
i + a2

i τcωibi) cos(ωiτc) −Acωiτc(a2
i + b2i )

2

2τc(a2
i + b2i )2(Acτc − cos(ωiτc)b− 2ωi sin(ωiτc))

× 2Acω
2
i (a

2
iωi − a3

i − ωib
2
i − aib

2
i − a2

i τcωibi − τcωib
3
i ) sin(2ωiτc)

τc(a2
i + b2i )2(Acτc − cos(ωiτc)b− 2ωi sin(ωiτc))

+
2ω2

iAc(b3i − 2aibiωi + a2
i bi − a3

i τcωi − aib
2
iωiτc) cos(2ωiτc)

τc(a2
i + b2i )2(Acτc − cos(ωiτc)b− 2ωi sin(ωiτc))

,

δi =
[ai(ω2

i + ω2
0 +Ac −Ac cos(ωiτc)) − biAc sin(ωiτc)]τε

(a2
i + b2i )τc

− [ai(cos(ωiτc) − 1) + bi sin(ωiτc)]Aε

a2
i + b2i

,

Hi =
[ω3

i (a
2
i + b2i )

2 −A2
cτcωi(a3

i τcωi − b3i − a2
i bi + 2aiωibi + aiτcωib

2
i )] cos(ωiτc)

τc(a2
i + b2i )2(Acτc − cos(ωiτc)b− 2ωi sin(ωiτc))

+
Acτcω

2
i (a

2
i + b2i )

2 − ωiA
2
cτc(ωib

2
i − τcωib

3
i − a2

iωi + a3
i + aib

2
i + a2

i τcωibi) sin(ωiτc)
τc(a2

i + b2i )2(Acτc − cos(ωiτc)b− 2ωi sin(ωiτc))

− 2Acωi(a3
iωi − a2

iω
2
i + ω2

i b
2
i + τcω

2
i b

3
i + aiωib

2
i + a2

i τcω
2
i bi) cos(2ωiτc)

τc(a2
i + b2i )2(Acτc − cos(ωiτc)b− 2ωi sin(ωiτc))

− 2Acωi(ωib
3
i − 2aiω

2
i bi + a2

iωibi − a3
i τcω

2
i − aiτcω

2
i b

2
i ) sin(2ωiτc)

τc(a2
i + b2i )2(Acτc − cos(ωiτc)b− 2ωi sin(ωiτc))

, i = 1, 2.

2.3. Center manifold reduction

In this section, we compute the normal form near
the double Hopf bifurcation critical point (Ac, τc)
using the CMR method. First, let ẋ = y. Then,
system (1) can be rewritten as


dx
dt

= y(t),

dy
dt

= −ω2
0x(t) + [b− γx2(t)]y(t) − βx3(t)

+A[x(t− τ) − x(t)].

(17)

Rescale the time by t̃ �→ (t/τ) to normalize the
delay so that system (17) becomes


dx
dt̃

= τy(t̃),

dy
dt̃

= bτy(t̃) − ω2
0τx(t̃) +Aτ [x(t̃− 1) − x(t̃)]

− γτx2(t̃)y(t̃) − βτx3(t̃).

(18)

The trivial equilibrium of (18) is x = y = 0. At the
critical point (A, τ) = (Ac, τc), we choose

η(θ) =



τcN1, θ = 0,

0, θ ∈ (−1, 0),

−τcN2, θ = −1,

with

N1 =

(
0 1

−ω2
0 −Ac b

)
,

N2 =

(
0 0

Ac 0

)
.

Then, the linearized equation of (18) at the trivial
equilibrium is

dX(t̃)
dt̃

= L0Xt̃,

where L0φ =
∫ 0
−1 dη(θ)φ(θ), φ ∈ C = C([−1, 0],R2),

and the bilinear form on C∗ × C (∗ stands for
adjoint) is
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〈ψ(s), φ(θ)〉 = ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ,

in which φ ∈ C, ψ ∈ C∗. Then, the phase space C is decomposed by Λ = {±iω1,±iω2} as C = P ⊕Q, where
Q = {ϕ ∈ C : (ψ,ϕ) = 0, for all ψ ∈ P ∗}, and the bases for P and its adjoint P ∗ are given respectively by

Φ(θ) =

(
eiω1τcθ e−iω1τcθ eiω2τcθ e−iω2τcθ

iω1e
iω1τcθ −iω1e

−iω1τcθ iω2e
iω2τcθ −iω2e

iω2τcθ

)
,

and

Ψ(s) =



h1(b− iω1)e−iω1τcs −h1e

−iω1τcs

h1(b+ iω1)eiω1τcs −h1e
iω1τcs

h2(b− iω2)e−iω2τcs −h2e
−iω2τcs

h2(b+ iω2)eiω2τcs −h2e
iω2τcs


,

where hj = (b− 2iωj −Acτce
−iωjτc)−1, j = 1, 2.

We also use the same bifurcation parameters given by A = Ac +Aε and τ = τc + τε in (18), where Aε

and τε are perturbation parameters, and denote ε = (Aε, τε). Then (18) can be written as

dX(t̃)
dt̃

= L(ε)Xt̃ + F (Xt̃, ε), (19)

where

L(ε)Xt̃ =

(
(τc + τε)yt̃(0)

b(τc + τε)yt̃(0) − ω2
0(τc + τε)xt̃(0) + (Ac +Aε)(τc + τε)[xt̃(−1) − xt̃(0)]

)
,

and

F (Xt̃, ε) =

(
0

−γ(τc + τε)x2
t̃
(0)yt̃(0) − β(τc + τε)x3

t̃
(0)

)
.

We now consider the enlarged phase space BC
of functions from [−1, 0] to R2, which are contin-
uous on [−1, 0) with a possible jump discontinuity
at zero. This space can be identified as C × R2.
Thus, its elements can be written in the form ϕ̃ =
ϕ + X0c, where ϕ ∈ C, c ∈ R2 and X0 is a 2 × 2
matrix-valued function, defined by X0(θ) = 0 for
θ ∈ [−1, 0) and X0(0) = I. In the BC, (19) becomes
an abstract ODE,

du
dt̃

= Au+X0F̃ (u, ε), (20)

where u ∈ C, and A is defined by

A : C1 → BC, Au =
du
dt̃

+X0

[
L0u− du(0)

dt̃

]
,

and

F̃ (u, ε) = [L(ε) − L0]u+ F (u, ε).

By the continuous projection π : BC �→ P ,
π(φ+X0c) = Φ[(Ψ, φ) + Ψ(0)c], we can decompose
the enlarged phase space by Λ = {±iω1τc,±iω2τc}

as BC = P ⊕ Kerπ, where Kerπ = {φ + X0c :
π(φ + X0c) = 0}, denoting the Kernel under the
projection π. Let η = (η1, η1, η2, η2)T, vt̃ ∈ Q1 :=
Q ∩ C1 ⊂ Kerπ, and AQ1 the restriction of A as
an operator from Q1 to the Banach space Kerπ.
Further, denote ut̃ = Φη + vt̃. Then, Eq. (20) is
decomposed as


dη
dt̃

= Bη + Ψ(0)F̃ (Φη + vt̃, ε),

dvt̃

dt̃
= AQ1vt̃ + (I − π)X0F̃ (Φη + vt̃, ε),

(21)

where B = diag{iω1,−iω1, iω2,−iω2}.
Next, let M1

2 denote the operator defined in
V 6

2(C
4 × Kerπ), with

M1
2 : V 6

2(C
4) �→ V 6

2(C
4),

(M1
2p)(η, ε) = Dηp(η, ε)Bη −Bp(η, ε),

where V 6
2(C

4) represents the linear space of
the second-order homogeneous polynomials in six
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variables (η1, η1, η2, η2, ε) with coefficients in C4.
Then, it is easy to verify that one may choose
the decomposition V 6

2(C
4) = Im(M1

2) ⊕ Im(M1
2)

c

with complementary space Im(M 1
2)

c spanned by the
elements Aεη1e1, τεη1e1, Aεη1e2, τεη1e2, Aεη2e3,
τεη2e3, Aεη2e4, τεη2e4, where ei (i = 1, 2, 3, 4) are
unit vectors.

Consequently, the normal form of (19) on the
center manifold associated with the equilibrium
(0, 0) near Aε = 0, τε = 0 has the form

dη
dt̃

= Bη +
1
2
g1
2(η, 0, ε) + h.o.t.,

where g1
2 is the function giving the quadratic

terms in (η, ε) for vt̃ = 0, and is determined
by g1

2(η, 0, ε) = Proj(Im(M1
2))

c × f1
2(η, 0, ε), where

f1
2(η, 0, ε) is the function giving the quadratic terms

in (η, ε) for vt̃ = 0 defined by the first equation
of (21). Thus, the normal form, truncated at the
quadratic order terms, is given by


dη1

dt̃
= iω1τcη1 − h1Aετc(e−iω1τc − 1)η1

+h1[ω2
1 + ω2

0 −Ac(e−iω1τc − 1)]τεη1,

dη2

dt̃
= iω2τcη2 − h2Aετc(e−iω2τc − 1)η2

+h2[ω2
2 + ω2

0 −Ac(e−iω2τc − 1)]τεη2,

(22)

where hj = (b− 2iωj −Acτce
−iωjτc)−1(j = 1, 2).

To find the normal form up to third order,
similarly, let M1

3 denote the operator defined in
V 4

3(C
4 × Kerπ), with

M1
3 : V 4

3(C
4) �→ V 4

3(C
4),

(M1
3p)(η, ε) = Dηp(η, ε)Bη −Bp(η, ε),

where V 4
3(C

4) denotes the linear space of the third-
order homogeneous polynomials in four variables
(η1, η1, η2, η2) with coefficients in C4. Then, one
may choose the decomposition V 4

3(C
4) = Im(M1

3)⊕
Im(M1

3)
c with complementary space Im(M1

3)
c

spanned by the elements η2
1η1e1, η1η2η2e1, η1η

2
1e2,

η1η2η2e2, η2
2η2e3, η1η1η2e3, η2η

2
2e4, η1η1η2e4, where

ei (i = 1, 2, 3, 4) are unit vectors.

Therefore, the normal form up to third-order
terms is given by

dη
dt̃

= Bη +
1
2!
g1

2(η, 0, ε) +
1
3!
g1

3(η, 0, ε) + h.o.t.,

(23)

where

1
3!
g1

3(η, 0, 0) =
1
3!

(I − P 1
I,3)f

1
3(η, 0, 0),

and f1
3(η, 0, 0) is the function giving the cubic terms

in (η, ε, vt̃) for ε = 0, and vt̃ = 0 is defined by the
first equation of (21). Finally, the normal form on
the center manifold arising from (21) becomes


dη1

dt̃
= iω1τcη1 − h1Aετc(e−iω1τc − 1)η1

+h1[ω2
1 + ω2

0 −Ac(e−iω1τc − 1)]τεη1

+h1τc(iω1γ + 3β)η2
1η1

+ 2h1τc(iω1γ + 3β)η1η2η2,

dη2

dt̃
= iω2τcη2 − h2Aετc(e−iω2τc − 1)η2

+h2[ω2
2 + ω2

0 −Ac(e−iω2τc − 1)]τεη2

+h2τc(iω2γ + 3β)η2
2η2

+ 2h2τc(iω2γ + 3β)η1η1η2,

(24)

where hj = (b− 2iωj −Acτce
−iωjτc)−1, j = 1, 2.

With the polar coordinates: η1 = R1
2 e

iΘ1 , η2 =
R2
2 e

iΘ2, combining with (3), we finally obtain the
amplitude and phase equations of (24) on the cen-
ter manifold as



dR1

dt
= µ1R1 + P11R

3
1 + P12R1R

2
2,

dR2

dt
= µ2R2 + P21R

2
1R2 + P22R

3
2,

dΘ1

dt
= ω1 + δ1 +Q11R

2
1 + 2Q11R

2
2,

dΘ2

dt
= ω2 + δ2 + 2Q12R

2
1 +Q12R

2
2,

(25)

where

µi = − [ai cos(ωiτc) + bi sin(ωiτc)]Acωiτε
(a2

i + b2i )τc
+

[bi cos(ωiτc) − bi − ai sin(ωiτc)]Aε

a2
i + b2i

,
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δi =
[ai(ω2

i + ω2
0 +Ac −Ac cos(ωiτc)) − biAc sin(ωiτc)]τε

(a2
i + b2i )τc

− [ai(cos(ωiτc) − 1) + bi sin(ωiτc)]Aε

a2
i + b2i

,

Pii = −3βbi + ωiγai

4(a2
i + b2i )

, P12 = 2P11, P21 = 2P22, Q1i =
3aiβ − biωiγ

4(a2
i + b2i )

,

with ai = 2ωi−Acτc sin(ωiτc), bi = Acτc cos(ωiτc)−
b, i = 1, 2.

Remark. In the MTS method, we assume that the
solution is in a real form, while in the CMR method,
we consider the solution to be in a complex form.
In fact, the solution to Eq. (7) can be expressed in
either a complex form or a real form, that is,

x1 = K1eiω1T0 +K1e−iω1T0

+K2eiω2T0 +K2e−iω2T0

= G1(T1, T2) sin(ω1T0)

+G2(T1, T2) cos(ω1T0)

+G3(T1, T2) sin(ω2T0)

+G4(T1, T2) cos(ω2T0).

These two different form solutions become identical
under the polar coordinate transformations: K1 =
R1
2 eiΘ1 , K2 = R2

2 eiΘ2 and G1 = R1 sin(Θ1), G2 =
R1 cos(Θ1), G3 = R2 sin(Θ2), G4 = R2 cos(Θ2).
Therefore, in the CMR method, we use the polar
coordinates: η1 = R1

2 e
iΘ1, η2 = R2

2 e
iΘ2 in order to

keep consistence.

2.4. Comparison of the MTS and
CMR methods

Equation (16) is the normal form derived by using
the MTS method, and Eq. (25) is the normal form
derived by using the CMR method. Comparing the
two normal forms, we have found that Eq. (16)
has four more terms Qiτ

2
εRi, Hiτ

2
ε (i = 1, 2) than

Eq. (25) does, which come from the Taylor expan-
sions of xj(T0 − τc− ετε, T1− ε(τc + ετε), T2 − ε2(τc +
ετε)) at xj(T0−τc, T1, T2) for j = 1, 2, 3, . . . . In fact,
in the CMR method, we treat x(t − τ) as a linear
term of t, and thus no higher-order terms appear,
while in the MTS method, we expand x(t − τ) in
T1, T2, . . . as xj(T0 − τc − ετε, T1 − ε(τc + ετε), T2 −
ε2(τc + ετε)) at xj(T0 − τc, T1, T2) up to infinite
orders, which results in

(ετε)2

2!
− (ετε)4

4!
+

(ετε)6

6!
− (ετε)2

8!
+ · · ·

= cos(ετε) − 1 ≈ 0,

−ετε +
(ετε)3

3!
− (ετε)5

5!
+

(ετε)7

7!
+ · · ·

= −sin(ετε) ≈ 0,

but we only take terms up to ε2-order in the MTS
method. That is why Eq. (16) has additional Qiτ

2
εRi

and Hiτ
2
ε (i = 1, 2) terms. Or simply, in the MTS

method, if we do not expand x(t − τ) in T1, T2, . . .
(which would be the same as the CMR method),
then these two normal forms are identical. Never-
theless, the small difference has very little effect on
the dynamical analysis.

3. Bifurcation Analysis and
Numerical Simulation

In this section, we first give a bifurcation analysis
based on the normal form (25), and then present
some numerical simulation results.

3.1. Bifurcation analysis

For the normal form (25), according to the signs
of P11P22, there exist two different cases, i.e. “sim-
ple case” (with no periodic solutions) and “difficult
case” (with periodic solutions) [Guckenheimer &
Holmes, 1990]. Here, we are interested in the “dif-
ficult case”, i.e. when P11P22 < 0. Without loss of
generality, we assume P11 > 0 and P22 < 0. Let
rj =

√|Pjj|R2
j , (j = 1, 2). Then, we have the fol-

lowing planar system in terms of r1 and r2:{
ṙ1 = r1(µ1 + r1 − κr2),

ṙ2 = r2(µ2 + χr1 − r2),
(26)

where κ = P12
P22

, χ = P21
P11

.
Note that M0 = (0, 0) is always an equilibrium

of (26). The two semi-trivial equilibria are given in
terms of perturbation parameters as M1 = (−µ1, 0)
and M2 = (0, µ2), which bifurcate from the origin
on the bifurcation lines L1 : µ1 = 0 and L2 : µ2 = 0,
respectively. There may also exist a nontrivial equi-
librium M3 = (µ1−κµ2

κχ−1 , µ2−χµ1

1−κχ ). For this equilib-
rium to exist, it needs κχ − 1 �= 0. The nontrivial
equilibrium M3 collides with a semi-trivial one on
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the bifurcation line T1 : µ1 − κµ2 = 0 or T2 :
µ2 − χµ1 = 0. If (1 − χ)µ1 + (1 − κ)µ2 < 0, the
fixed point M3 is a sink, otherwise M3 is a source.
Therefore, we further need to consider the bifurca-
tion line T3 : (1 − χ)µ1 + (1 − κ)µ2 = 0.

In order to give a more clear bifurcation pic-
ture, choose Ac = 0.3519, τc = 6.7583, b = 0.2774,
β = 0.3, γ = 2 and ω1

ω2
=

√
5

2 . Then, the charac-
teristic equation (2) has two pairs of purely imag-
inary eigenvalues Λ = {±iω1,±iω2}, and all the
other eigenvalues have negative real part. Assume
that system (1) undergoes a double Hopf bifurcation
from the equilibrium (0, 0). By a simple calculation,
we obtain

ω1 = 1.2080, τ
(0)
1 = 1.5572,

τ
(1)
1 = 6.7583, Re′(λ1) > 0,

ω2 = 1.0805, τ
(0)
2 = 0.9433,

τ
(1)
2 = 6.7583, Re′(λ2) < 0,

(27)

and µ1 = 0.4137τε + 1.1324Aε, µ2 = −0.3560τε −
0.6023Aε, P11 = 0.5224, P12 = 1.0449, P21 =
−2.4338, P22 = −1.2169, κ = −0.8587 and χ =
−4.6585.

Therefore, the critical bifurcation lines become:
L1 :Aε =−0.3653τε, L2 :Aε =−0.5911τε, T1 :Aε =
−0.1756τε, T2 :Aε =−0.3362τε, T3 :Aε =−0.3176τε,
as shown in the bifurcation diagram (see Fig. 1).

Since there does not exist unstable manifold
containing the equilibrium, according to the cen-
ter manifold theory, the solutions on the center
manifold determine the asymptotic behavior of
the solutions of the original system (1). There-
fore, if Eq. (26) has one or two asymptotically
stable (unstable) semi-trivial equilibria M1 and
M2, then (1) has one or two asymptotically stable
(unstable) periodic solutions in the neighborhood of
the trivial equilibrium. If Eq. (26) has an asymptot-
ically stable (unstable) equilibriumM3, then (1) has
an asymptotically stable (unstable) quasi-periodic
solution in the neighborhood of (0, 0). So, we shall
call the periodic solution the source (respectively,
saddle, sink) periodic solution of (1) if the semi-
trivial equilibrium of (26) is a source (respectively,
saddle, sink), and call the quasi-periodic solution
the source (respectively, saddle, sink) quasi-periodic
solution of (1) when the nontrivial equilibrium
of (26) is a source (respectively, saddle, sink).

For the bifurcation behaviors of the origi-
nal system (1) in the neighborhood of the trivial
equilibrium, the above critical bifurcation bound-
aries divide the (Aε, τε) parameter plane into seven
regions (see Fig. 1). We explain the bifurcations in
the clockwise direction, starting fromB1 and ending
at B1. First, in region B1, there is only one trivial
equilibrium which is a saddle. When the parame-
ters are varied across the line L1 from region B1

(a) (b)

Fig. 1. (a) Critical bifurcation lines in the (τε, Aε) parameter space near (τc, Ac); (b) the corresponding phase portraits in
the (r1, r2) plane.
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Fig. 2. Simulated solution of system (1) for (Aε, τε) = (−0.025, 0.05), showing a stable fixed point.

to B2, the trivial equilibrium becomes a sink, and
an unstable periodic solution O1 (saddle) appears
from the trivial solution due to a Hopf bifurca-
tion. Similarly, when the parameters are changed
from region B2 to B3, another periodic solution O2

(sink) occurs from the trivial solution due to a Hopf
bifurcation while the trivial equilibrium becomes
a saddle. In region B4, a quasi-periodic solution
(sink) occurs from the periodic solution O2 due to
a Neimark–Sacker bifurcation, and O2 is changed
to a saddle from a sink. Further, the quasi-periodic
solution (sink) becomes a source when the param-
eters are varied across line T3 from region B4 to
B5, and when the parameters are further changed
from region B5 to B6 crossing the line T2, the quasi-
periodic solution collides with the periodic solution
O1 and then disappears, and O1 becomes a source.
When the parameters are further varied across line
L1 from region B6 to B7, the periodic solution O1

collides with the trivial solution and then disap-
pears, and the trivial solution becomes a source
from a saddle. Finally, when the parameters are var-
ied across line L2 from region B7 to B1, the periodic
solution O2 (saddle) collides with the trivial solu-
tion and then disappears, and the trivial solution
becomes a saddle from a source.

3.2. Numerical simulation

To demonstrate the analytic results obtained in
Sec. 3.1, here we present some numerical simulation

results. We choose three groups of perturba-
tion parameter values: (Aε, τε) = (−0.025, 0.05),
(−0.01, 0.01) and (0.015,−0.05), belonging to the
regions B2, B3 and B4, corresponding to a sta-
ble fixed point shown in Fig. 2, a stable periodic
solution as depicted in Fig. 3, and a stable quasi-
periodic solution, see Fig. 4 respectively. It is clear
that the numerical simulations agree with the ana-
lytical predictions.

4. Conclusion and Discussion

In this paper, we have discussed double Hopf bifur-
cation in delayed van der Pol–Duffing equation. We
derived the normal form of double Hopf bifurca-
tion by using multiple time scales and center mani-
fold reduction methods. A comparison between the
two methods shows that the two normal forms are
identical if the higher-order terms obtained in the
MTS method, due to the expansion in the delayed
variable with respect to time scales, are ignored.
Moreover, bifurcation analysis near the double Hopf
critical point is given, showing that the system may
exhibit a stable fixed point, periodic solutions, and
quasi-periodic solutions in the neighborhood of the
critical point. Numerical simulations are given to
verify the analytical predictions.

The normal form method and bifurcation anal-
ysis presented in this paper are for local dynam-
ical behaviors. But, surprisingly, we have found
that even for parameter values not chosen in the
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(a) (b)

Fig. 3. Simulated solution of system (1) for (Aε, τε) = (−0.01,−0.01): (a) the time history; (b) the phase portrait, showing
a stable periodic solution.
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Fig. 4. Simulated solution of system (1) for (Aε, τε) = (0.015,−0.05): (a) the time history; (b) the phase portrait, showing a
stable quasi-periodic solution.
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Fig. 5. Simulated solution of system (1) for (Aε, τε) = (−3, 60): (a) the time history; (b) the phase portrait, showing a stable
periodic solution.
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Fig. 6. Simulated solution of system (1) for (Aε, τε) = (−3,−6): (a) the time history; (b) the phase portrait, showing a stable
periodic solution.
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Fig. 7. Simulated solution of system (1) for (Aε, τε) = (3, 60): (a) the time history; (b) the phase portrait, showing a stable
quasi-periodic solution.
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Fig. 8. Simulated solution of system (1) with a nonlinear delayed feedback: (a) the time history; (b) the phase portrait,
showing a chaotic attractor.
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Fig. 9. The simulated Poincaré map of the chaotic attractor
shown in Fig. 8(b) with Poincaré section x(t − τ ) = 0.

neighborhood of the critical point, most simula-
tion results are periodic or quasi-periodic solutions
(see Figs. 5–7). This seemingly noncomplex dynam-
ics is perhaps due to system (1) only contain-
ing time delay in a (feedback) linear term. If we
introduce time delay in nonlinear terms, we may
obtain more complicated dynamical behavior, such
as chaos. Indeed, for example, when we change the
linear delay feedback A[x(t− τ)−x(t)] to a nonlin-
ear delay feedback Ax(t − τ)[x(t − τ) − x(t)], and
select A = 5, τ = 4, ω0 = 1, b = 0.2774, β = 0.3
and γ = 2, we obtain chaotic motion, as shown in
Figs. 8 and 9.
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