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Abstract In this paper, we study Hopf-zero bifur-
cation in a generalized Gopalsamy neural network
model. By using multiple time scales and center man-
ifold reduction methods, we obtain the normal forms
near a Hopf-zero critical point. A comparison between
these two methods shows that the two normal forms
are equivalent. Moreover, bifurcations are classified
in two-dimensional parameter space near the criti-
cal point, and numerical simulations are presented to
demonstrate the applicability of the theoretical results.

Keywords Neural network model · Hopf-zero
bifurcation · Normal form · Multiple time scales ·
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1 Introduction

Over the past two decades, there has been an increas-
ing interest in the study of neuron systems, for exam-
ple, in mathematical modeling of neural networks and
artificial representations. Neural networks have many
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applications, such as pattern recognition, associative
memory, and combinatorial optimization [1, 2]. Such
applications heavily depend on the dynamical behav-
iors of neural network models. Thus, analysis of the
dynamical behavior is necessary for a practical neural
network model. However, since the signal transmis-
sion from one neuron to another is not instantaneous,
time delay should be incorporated into the neural net-
work models in order for the analysis to be more real-
istic. Therefore, recent attention has been focused on
the study of dynamics of neural network models with
delay.

There have been many kinds of neural network
models, such as Hopfield neural network model [3, 4],
cellular neural network model [5, 6], bi-directional as-
sociative memory neural network model [7–9], Baldi
and Atiya neural network model [10, 11], Cohen–
Grossberg neural network model [12, 13], and Gopal-
samy neural network model [14, 15]. For these neural
network models, the main focus is on the local stabil-
ity of fixed points, the existence and stability of peri-
odic solutions (e.g. see [16–20]). On one hand, these
fixed points are locally stable, and we hope to find
conditions under which a fixed point can be globally
stable. Several papers are devoted to study the global
asymptotic stability of equilibrium solutions (e.g. see
[21–25]). On the other hand, periodic solutions only
exist in small neighborhoods of the critical points. We
wonder whether these periodic solutions can continue
to exist for a large range of parameter values. It is
also an important mathematical subject to investigate
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if these non-trivial periodic solutions exist globally.
A number of works are focused on global existence
of periodic solutions (e.g. see [26–30]). In particular,
Campbell et al. [31] and Yuan [32] analyzed the bi-
furcation and stability of non-trivial asynchronous os-
cillations from the trivial solution in neural network
models using equivariant bifurcation theory and cen-
ter manifold construction. Some neural network mod-
els with high co-dimensional bifurcations have also
been considered. For example, Yan [33] studied Hopf-
pitchfork bifurcation in a simplified tri-neuron BAM
network model with multiple delays. Campbell and
Yuan [34] obtained the conditions under which a gen-
eral class of delay differential equations has a critical
point of Bogdanov–Takens or a triple zero bifurcation.
Guo et al. [35] discussed Hopf-fold and double Hopf
bifurcations in a network of two neurons with two de-
lays.

In this paper, we consider the following generalized
Gopalsamy neural network model [36]:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = −x1(t) + a1 tanh
[
x3(t) − bx3(t − τ)

]
,

ẋ2(t) = −x2(t) + a2 tanh
[
x1(t) − bx1(t − τ)

]
,

ẋ3(t) = −x3(t) + a3 tanh
[
x2(t) − bx2(t − τ)

]
,

(1)

where ai (i = 1,2,3) corresponds to the range of the
continuous variable xi , b > 0 is the measure of the in-
hibitory influence of the past history, and τ > 0 is time
delay. In biological fields, such a feedback is known as
reverberation, while in the field of artificial neural net-
work, it is known as an excitation or inhibition from
other neurons. Gopalsamy and Leung [14] proposed a
one-dimensional neuron model (called the Gopalsamy
neural network model) for which Lyapunov functions
are constructed to show that the trivial equilibrium is
globally asymptotically stable for all the values of time
delay. Liao et al. [37] studied the stability switches and
bifurcation of a two-neuron Gopalsamy neural net-
work system with a distributed time delay. Liao et al.
[36] also derived sufficient delay-dependent criteria to
ensure global asymptotical stability of the trivial equi-
librium of (1), and obtained the stability and direction
of bifurcating periodic solutions by using normal form
theory and center manifold theorem.

Multiple time scales (MTS) [38, 39] and center
manifold reduction (CMR) [40, 41] are two methods
for computing normal forms of differential equations.
The multiple time scales method is systematic and can
be directly applied to the original nonlinear dynamical

system, which is described by not only ordinary differ-
ential equations (ODEs) but also delayed differential
equations (DDEs), without application of the center
manifold theory. In fact, this approach combines the
two steps involved in using the center manifold the-
ory and normal form theory into one unified step to
obtain the normal form and nonlinear transformation
simultaneously [42, 43]. Based on MTS, Yu [44–46]
developed Maple programs for computing the normal
forms of Hopf bifurcation and other singularities for
a given general n-dimensional ODE. Moreover, the
MTS method only contains algebraic manipulations,
which greatly facilitates computer implement in sym-
bolic computations. For a given ODE, the basic idea
of the center manifold theory is applying successive
coordinate transformations to systematically construct
a simpler system which has less dimension compared
to the original system, and thus greatly simplifies the
dynamical analysis of the system. For DDE systems,
however, one needs to first change the retarded equa-
tions to operator differential equations, and then de-
compose the solution space of their linearized form
into stable and center manifolds. Next, with adjoint
operator equations, one computes the center manifold
by projecting the whole space to the center manifold,
and finally calculates the normal form restricted to the
center manifold (e.g. see [47–49]). Nayfeh [43] used
these two approaches to derive the identical normal
forms of Hopf bifurcations in DDEs. Ding et al. [50]
applied the two methods to obtain the normal forms
near a double Hopf critical point in a delayed equa-
tion, and also showed the equivalence of the two nor-
mal forms.

In this paper, we will derive the normal form of
Hopf-zero bifurcation of (1) by using the MTS and
CMR methods. The multiple time scales method is
the first time to be used to consider the Hopf-zero bi-
furcation in delay differential equations, and further
shows that the multiple time scales is simpler than
the center manifold reduction, though the results from
the two methods are equivalent. Furthermore, we will
carry out bifurcation analysis and numerical simula-
tions, showing that there exist a stable fixed point, a
pair of stable fixed points, a stable periodic solution,
and co-existence of a pair of stable fixed points and
a stable periodic solution in the neighborhood of the
Hopf-zero critical point.

The rest of the paper is organized as follows. In
Sect. 2, we consider existence of Hopf-zero bifurca-
tion in a generalized Gopalsamy neural network model
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with delay, and use two methods to derive the nor-
mal forms associated with the Hopf-zero critical point.
Then bifurcation analysis and numerical simulations
are presented in Sect. 3, and finally, the conclusion is
drawn in Sect. 4.

2 Bifurcation analysis and normal form method

In this section, we consider the generalized Gopal-
samy neural network model with delay, described by
(1), and use the MTS and CMR methods to derive the
normal form of the system associated with Hopf-zero
bifurcation. With the transformation
⎧
⎪⎪⎨

⎪⎪⎩

y1(t) = x1(t) − bx1(t − τ),

y2(t) = x2(t) − bx2(t − τ),

y3(t) = x3(t) − bx3(t − τ),

(2)

system (1) can be transformed to the following equa-
tions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1(t) = −y1(t) + a1 tanh
[
y3(t)

]

− a1b tanh
[
y3(t − τ)

]
,

ẏ2(t) = −y2(t) + a2 tanh
[
y1(t)

]

− a2b tanh
[
y1(t − τ)

]
,

ẏ3(t) = −y3(t) + a3 tanh
[
y2(t)

]

− a3b tanh
[
y2(t − τ)

]
.

(3)

2.1 System formulation

The characteristic equation of (3), evaluated at the triv-
ial equilibrium (y1, y2, y3) = (0,0,0), is given by

(λ + 1)3 − a1a2a3
(
1 − be−λτ

)3

= Λ1(λ)Λ2(λ)Λ3(λ) = 0, (4)

where

Λ1(λ) = λ + 1 − a
(
1 − be−λτ

)
,

Λ2(λ) = λ + 1 + 1

2
a
(
1 − be−λτ

)

−
√

3a(1 − be−λτ )i

2
,

Λ3(λ) = λ + 1 + 1

2
a
(
1 − be−λτ

)

+
√

3a(1 − be−λτ )i

2
,

with a = 3
√

a1a2a3.
There are several types of bifurcations.

Case 1. Fixed-point bifurcation.
Substituting λ = 0 into (4), we obtain a(1−b) = 1,

under which the three roots of (4) with τ = 0 are
λ1 = 0 and λ2,3 = − 3

2 ±
√

3
2 i, and system (3) under-

goes a fixed- point bifurcation.

Case 2. Hopf bifurcation.
To find possible periodic solutions, which may

bifurcate from a Hopf critical point, let λ = iω1

(i2 = −1, ω1 > 0) be a root of Λ1(λ) = 0. Substitut-
ing the root into Λ1(λ) = 0, and separating the real
and imaginary parts yields

{
a − 1 = ab cos(ω1τ),

ω1 = ab sin(ω1τ),
(5)

from which we obtain

ω1 =
√

a2b2 − (a − 1)2, (6)

under the assumption:

a2b2 > (a − 1)2. (7)

Further, the time delay τ can be determined from (5)
as

τ
(j)

1 =
{

1
ω1

[arccos( a−1
ab

) + 2jπ], for ab > 0,

1
ω1

[2(j + 1)π − arccos( a−1
ab

)], for ab < 0,

(8)

where j = 0,1,2, . . . .
Let λ(τ) = α(τ) + iω(τ) be the root of Λ1(λ) =

0, satisfying α(τ
(j)

1 ) = 0 and ω(τ
(j)

1 ) = ω1 (j =
0,1,2, . . .). Then we have the transversality condi-
tions are

α′(τ (j)

1

)−1 = 1

a2b2
> 0, (9)

where j = 0,1,2, . . . .
Next, let λ = iω2 (ω2 > 0) be a root of Λ2(λ) = 0.

Similarly, substituting it into Λ2(λ) = 0 and separat-
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ing the real and imaginary parts yields

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + a

2
= ab cos

(

ω2τ + π

3

)

,

ω2 −
√

3a

2
= −ab sin

(

ω2τ + π

3

)

,

(10)

from which we obtain
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos(ω2τ) = 1

b
+ 1 − √

3ω2

2ab
,

sin(ω2τ) = −ω2 + √
3

2ab
,

(11)

and

ω2
2 − √

3aω2 + a2 + a + 1 − a2b2 = 0.

When a2 +a+1−a2b2 < 0, the above quadratic poly-
nomial equation has a positive root,

ω
(1)
2 =

√
3a + √

4a2b2 − a2 − 4a − 4

2
. (12)

When a2 +a +1−a2b2 > 0, 4a2b2 −a2 −4a −4 > 0
and a > 0, it has two positive roots,

ω
(2,3)
2 =

√
3a ± √

4a2b2 − a2 − 4a − 4

2
. (13)

Further, it follows from (11) that

τ
(j)

2,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ω

(k)
2

[arccos( 1
b

+ 1−√
3ω

(k)
2

2ab
) + 2jπ],

for
ω

(k)
2 +√

3
2ab

≤ 0,

1
ω

(k)
2

[2(j + 1)π − arccos( 1
b

+ 1−√
3ω

(k)
2

2ab
)],

for
ω

(k)
2 +√

3
2ab

> 0,

(14)

where k = 1,2,3; j = 0,1,2, . . . .
Let λ(τ) = α(τ) + iω(τ) be the root of Λ2(λ) = 0,

satisfying α(τ
(j)

2,k ) = 0, and ω(τ
(j)

2,k ) = ω
(k)
2 (j =

0,1,2, . . . ; k = 1,2,3). Then we have

α′(τ (j)

2,k

)−1 = 2ω
(k)
2 − √

3a

2a2b2ω
(k)
2

,

where k = 1,2,3; j = 0,1,2, . . . . Thus, the transver-
sality conditions are

α′(τ (j)

2,1

)
> 0, α′(τ (j)

2,2

)
> 0, α′(τ (j)

2,3

)
< 0, (15)

where j = 0,1,2, . . . .
Finally, let λ = iω3 (ω3 > 0) be a root of Λ3(λ) = 0.

Substituting it into Λ3(λ) = 0 and separating the real
and imaginary parts results in

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + a

2
= ab cos

(

ω3τ − π

3

)

,

ω3 −
√

3a

2
= −ab sin

(

ω3τ − π

3

)

,

(16)

from which we obtain
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos(ω3τ) = 1

b
+ 1 + √

3ω3

2ab
,

sin(ω3τ) = −
√

3 − ω3

2ab
,

(17)

and

ω2
3 + √

3aω3 + a2 + a + 1 − a2b2 = 0.

When a2 +a +1−a2b2 < 0, a positive solution of the
above equation is

ω
(1)
3 = −√

3a + √
4a2b2 − a2 − 4a − 4

2
. (18)

When a2 +a +1−a2b2 > 0, 4a2b2 −a2 −4a −4 > 0
and a < 0, the above equation has two positive roots,

ω
(2,3)
3 = −√

3a ± √
4a2b2 − a2 − 4a − 4

2
. (19)

Further, from (17), we obtain the time delay, given by

τ
(j)

3,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ω

(k)
3

[arccos( 1
b

+ 1+√
3ω

(k)
3

2ab
) + 2jπ],

for
√

3−ω
(k)
3

2ab
≥ 0,

1
ω

(k)
3

[2(j + 1)π − arccos( 1
b

+ 1+√
3ω

(k)
3

2ab
)],

for
√

3−ω
(k)
3

2ab
< 0,

(20)

where k = 1,2,3; j = 0,1,2, . . . .
Let λ(τ) = α(τ) + iω(τ) be the root of Λ3(λ) = 0,

satisfying α(τ
(j)

3,k ) = 0, and ω(τ
(j)

3,k ) = ω
(k)
3 (j =

0,1,2, . . . ; k = 1,2,3). Thus,

α′(τ (j)

3,k

)−1 = 2ω
(k)
3 + √

3a

2a2b2ω
(k)
3

,
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where k = 1,2,3; j = 0,1,2, . . . . The transversality
conditions are

α′(τ (j)

3,1

)
> 0, α′(τ (j)

3,2

)
> 0, α′(τ (j)

3,3

)
< 0, (21)

where j = 0,1,2, . . . .

Case 3. Hopf-zero bifurcation.
Combining cases 1 and 2, we have the following

theorem.

Theorem 1 Assume a−ab−1 = 0. Then a Hopf-zero
bifurcation occurs associated with eigenvalues, 0 and
±iω, under each of the following three conditions.

(1) When a2 + a + 1 − a2b2 < 0, ω = ω
(1)
2 or ω

(1)
3 ,

where ω
(1)
2 and ω

(1)
3 are given by (12) and (18),

respectively, and the critical time delays and
transversality conditions are given by (14), (15)
and (20), (21), respectively. Moreover, when τ ∈
[0, τ0), where τ0 = min{τ (0)

2,1 , τ
(0)
3,1}, the character-

istic equation (4) has a zero, and all the other
roots have negative real part. When τ > τ0, the
trivial equilibrium is unstable.

(2) When a2 + a + 1 − a2b2 > 0, 4a2b2 − a2 −
4a − 4 > 0 and a > 0, ω = ω

(2)
2 or ω

(3)
2 , where

ω
(2,3)
2 are given by (13), and the critical time de-

lays and transversality conditions are given by
(14) and (15), respectively. Moreover, there exists
m ∈ N, such that τ

(0)
2,2 < τ

(0)
2,3 · · · < τ

(m)
2,2 < τ

(m)
2,3 <

τ
(m+1)
2,2 < τ

(m+2)
2,2 < . . . , thus, when τ ∈ [0, τ

(0)
2,2) ∪

⋃m
k=0(τ

(k)
2,3 , τ

(k+1)
2,2 ), the characteristic equation

(4) has a zero, and all the other roots have
negative real part; when τ ∈ ⋃m

k=0(τ
(k)
2,2 , τ

(k)
2,3) ∪

(τ
(m+1)
2,2 ,+∞), the trivial equilibrium is unstable.

(3) When a2 + a + 1 − a2b2 > 0, 4a2b2 − a2 −
4a − 4 > 0 and a < 0, ω = ω

(2)
3 or ω

(3)
3 , where

ω
(2,3)
3 are given by (19), and the critical time de-

lays and transversality conditions are given by
(20) and (21), respectively. Moreover, there exists
m ∈ N , such that τ

(0)
3,2 < τ

(0)
3,3 · · · < τ

(m)
3,2 < τ

(m)
3,3 <

τ
(m+1)
3,2 < τ

(m+2)
3,2 < . . . , thus, when τ ∈ [0, τ

(0)
3,2) ∪

⋃m
k=0(τ

(k)
3,3 , τ

(k+1)
3,2 ), the characteristic equation

(4) has a zero, and all the other roots have
negative real part; when τ ∈ ⋃m

k=0(τ
(k)
3,2 , τ

(k)
3,3) ∪

(τ
(m+1)
3,2 ,+∞), the trivial equilibrium is unstable.

2.2 Normal form of Hopf-zero bifurcation

In this subsection, we first derive the normal form
of Hopf-zero bifurcation by using the multiple time
scales method. We treat the measure of the inhibitory
influence of the past history, b, and the time delay, τ ,
as two bifurcation parameters. Thus, suppose system
(3) undergoes a Hopf-zero bifurcation from the trivial
equilibrium at the critical point: b = bc, τ = τc. The
Taylor expansion of Eq. (3) truncated at the cubic or-
der terms is as follows:

Ẏ (t) = M1Y(t) + bM2Y(t − τ)

+ f
(
Y(t), Y (t − τ)

)
, (22)

where

Y(t) =
⎛

⎝
y1(t)

y2(t)

y3(t)

⎞

⎠ , M1 =
⎛

⎝
−1 0 a1

a2 −1 0
0 a3 −1

⎞

⎠ ,

M2 =
⎛

⎝
0 0 −a1

−a2 0 0
0 −a3 0

⎞

⎠ ,

and

f
(
Y(t), Y (t − τ)

) =
⎛

⎜
⎝

a1b
3 y3

3(t − τ) − a1
3 y3

3(t)
a2b
3 y3

1(t − τ) − a2
3 y3

1(t)
a3b
3 y3

2(t − τ) − a3
3 y3

2(t)

⎞

⎟
⎠ .

Assume that linear equation

Ẏ (t) = M1Y(t) + bM2Y(t − τ)
	= Lτ

(
Y(t), Y (t − τ)

)

has a pair of purely imaginary roots ±iω and a zero
root at critical point: b = bc , τ = τc, and no other roots
with zero real part. Let p1 and p2 be the two eigen-
vectors of the linear operator Lτc corresponding to the
eigenvalues iω and 0, respectively, and let p∗

1 and p∗
2

be the two normalized eigenvectors of the adjoint op-
erator L∗

τc
of the linear operator Lτc corresponding to

the eigenvalues −iω and 0, respectively, satisfying the
inner product

〈
p∗

i , pi

〉 = (
p̄∗

i

)T
pi = 1, i = 1,2.
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By a simple calculation, we have

p1 = (p11,p12,p13)
T

=
(

1,
a2(1 − bce−iωτc )

1 + iω
,

1 + iω

a1(1 − bce−iωτc )

)T

,

p2 = (p21,p22,p23)
T

=
(

1, a2(1 − bc),
1

a1(1 − bc)

)T

,

p∗
1 = (

p∗
11,p

∗
12,p

∗
13

)T

=
(

1

3
,

1 − iω

3a2(1 − bceiωτc )
,
a1(1 − bceiωτc )

3(1 − iω)

)T

,

p∗
2 = (

p∗
21,p

∗
22,p

∗
23

)T

=
(

1

3
,

1

3a2(1 − bc)
,
a1(1 − bc)

3

)T

.

(23)

Because the nonlinearity is cubic, we seek a uni-
form second-order approximate solution of system
(22) in powers of ε1/2. Thus, by the MTS, the solu-
tion of (22) is assumed to take the form:

Y(t) = ε1/2Y1 + ε3/2Y2 + · · · , (24)

where Yj = (y1,j (T0, T1, T2, . . .), y2,j (T0, T1, T2, . . .),

y3,j (T0, T1, T2, . . .))
T, j = 1,2,3, . . . ; Tk = εkt , k =

0,1,2, . . . . The derivative with respect to t is now
transformed into

d

dt
= ∂

∂T0
+ ε

∂

∂T1
+ · · · = D0 + εD1 + · · · ,

where the differential operator Di = ∂
∂Ti

, i = 0,1,

2, . . . .
We take perturbations as b = bc + εbε and τ =

τc +ετε in (22). To deal with the delayed terms, we ex-
pand yi,j (T0 − τc − ετε, T1 − ε(τc + ετε), T2 − ε(τc +
ετε), . . .) at yi,j (T0 − τc, T1, T2, . . .) for i = 1,2,3;
j = 1,2,3, . . . . That is

yi

(
T0 − τc − ετε, T1 − ε(τc + ετε),

T2 − ε(τc + ετε), . . .
)

= ε1/2yi,1(T0 − τc, T1, T2, . . .)

− ε3/2τεD0yi,1(T0 − τc, T1, T2, . . .)

− ε3/2τcD1yi,1(T0 − τc, T1, T2, . . .)

+ ε3/2yi,2(T0 − τc, T1, T2, . . .)

+ · · · , i = 1,2,3.

Then, substituting the solutions with the multiple
scales into (22) and balancing the coefficients of εn/2

(n = 1,3,5, . . .) yields a set of ordered linear differ-
ential equations.

First, for the ε1/2-order terms, we have

D0Y1 − M1Y1 − bcM2Y1,τc = 0, (25)

where Y1,τc = (y1,1(T0 − τc, T1, T2, . . .), y2,1(T0 − τc,

T1, T2, . . .), y3,1(T0 − τc, T1, T2, . . .))
T. Since 0 and

±iω are the eigenvalues of the linear part of (22),
then the solution of (25) can be expressed in the form
of

Y1(T0, T1) = G1(T1)p1eiωT0 + Ḡ1(T1)p̄1e−iωT0

+ G2(T1)

2
p2, (26)

where pj (j = 1,2) is given by (23).
Next, from the ε3/2-order terms of (22), we obtain

D0Y2 − M1Y2 − bcM2Y2,τc

= −D1Y1 − bcτεM2D0Y1,τc − bcτcM2D1Y1,τc

+ bεM2Y1,τc + f (Y1, Y1,τc ), (27)

where Y2,τc = (y1,2(T0 − τc, T1, T2, . . .), y2,2(T0 −
τc, T1, T2, . . .), y3,2(T0 − τc, T1, T2, . . .))

T. Substitut-
ing solution (26) into (27), we obtain the following
equation:

D0Y2 − M1Y2 − bcM2Y2,τc

= ξ1eiωT0 + ξ̄1e−iωT0 + ξ2(T1, T2) + NST, (28)

where NST stands for the terms that do not produce
secular terms, and
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ξ1 = −∂G1

∂T1
p1 − bcτεM2G1p1iωe−iωτc

− bcτcM2
∂G1

∂T1
p1e−iωτc + bεM2G1p1e−iωτc

+ (
bce−iωτc − 1

)
ξ3G

2
1Ḡ1

+ bce−iωτc − 1

4
ξ4G1G

2
2,

ξ2 = −1

2

∂G2

∂T1
p2 − bcτcM2

∂G2

∂T1
p2 + bεM2G2p2

+ b − 1

24
ξ5G

3
2 + (b − 1)ξ6G1Ḡ1G2,

(29)

with

ξ3 = (
a1p

2
13p̄13, a2, a3p

2
12p̄12

)T
,

ξ4 = (
a1p13p

2
23, a2, a3p12p

2
22

)T
,

ξ5 = (
a1p

3
23, a2, a3p

3
22

)T
,

ξ6 = (a1p13p̄13p23, a2, a3p12p̄12p22)
T.

Equation (28) is a linear non-homogeneous equa-
tion for Y2, and the non-homogeneous equation has a
solution if and only if a solvability condition is satis-
fied. That is, the right-hand side of (28) be orthogonal
to every solution of the adjoint homogeneous problem,
namely, 〈p∗

j , ξj 〉 = 0, j = 1,2, then ∂G1
∂T1

and ∂G2
∂T1

are
solved to yield

∂G1

∂T1
= d1G1 + P1G

2
1Ḡ1 + P2G1G

2
2,

∂G2

∂T1
= d2G2 + P3G

3
2 + P4G1Ḡ1G2,

(30)

where

d1 = e−iωτc (1 + iω)(bε − bcτε)

(1 + iω)bcτce−iωτc − 1 + bce−iωτc
,

d2 = bε

bcτc − 1 + bc

,

P1 = −h

[
(1 − bce

−iωτc )(1 − bce
iωτc )a2

2

1 − iω
+ 1 + iω

+ (1 + iω)2(1 − iω)

a2
1(1 − bce−iωτc )(1 − bceiωτc )

]

,

P2 = −h

4

[

1 + iω + 1 + iω

a2
1(1 − bc)2

+ a2
2(1 − b)2(1 + iω)

]

, (31)

P3 = 1

36(τcabc − 1)

×
[

1 + 1

(1 − bc)2a2
1

+ a2
2(1 − bc)

2
]

,

P4 = − 2

3(1 − τcabc)

[
(1 + iω)(1 − iω)

a2
1(1 − bce−iωτc )(1 − bceiωτc )

+ 1 + a2
2(1 − bce

−iωτc )(1 − bce
iωτc )

(1 + iω)(1 − iω)

]

,

with h = (3 + 3bcτc(1+iω)e−iωτc

bce−iωτc−1
)−1.

The derivation of the normal form near the Hopf-
zero critical point (bc, τc) using the CMR method is
given in the Appendix. Equation (30) is the normal
form truncated the third order derived by using the
MTS method, and Eq. (40) is the normal form derived
by using the CMR method (see the Appendix). Com-
paring the two normal forms, these two normal forms
are identical.

Now, let G1 = reiΘ and G2 = z. Substituting these
expressions into (30), we obtain the following normal
form in cylindrical coordinates:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dr

dt
= α1r + Q1r

3 + Q2rz
2,

dz

dt
= α2z + Q3z

3 + Q4zr
2,

dΘ

dt
= α3 + Q5z

2 + Q6r
2,

(32)

where α1 = Re(d1), α2 = d2, α3 = Im(d1), Q1 =
Re(P1), Q2 = Re(P2), Q3 = P3, Q4 = P4, Q5 =
Im(P2) and Q6 = Im(P1).

3 Hopf-zero bifurcation analysis and numerical
simulation

In this section, we first give a bifurcation analysis
based on the first two equations of the normal form
(32), and then present some numerical simulation re-
sults.
⎧
⎪⎪⎨

⎪⎪⎩

dr

dt
= α1r + Q1r

3 + Q2rz
2,

dz

dt
= α2z + Q3z

3 + Q4zr
2,

(33)

Equilibrium solutions of (33) are obtained by sim-
ply setting dr

dt
= dz

dt
= 0. Note that F0 = (r, z) = (0,0)
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corresponds to the original trivial equilibrium, and the
other ones are

F1 =
(√

− α1

Q1
,0

)

for
α1

Q1
< 0,

F±
2 =

(

0,±
√

− α2

Q3

)

for
α2

Q3
< 0,

F±
3 =

(√
α2Q2 − α1Q3

Q1Q3 − Q2Q4
,±

√
α2Q1 − α1Q4

Q2Q4 − Q1Q3

)

for
α2Q2 − α1Q3

Q1Q3 − Q2Q4
> 0,

α2Q1 − α1Q4

Q2Q4 − Q1Q3
> 0.

The semi-trivial equilibria F1 and F±
2 are bifurcating

from the origin on the critical lines L1: α1 = 0 and
L2: α2 = 0, respectively. The pair of non-trivial equi-
libria F±

3 collide with the semi-trivial equilibria F1

and F±
2 , respectively on the critical lines L3: α2Q1 −

α1Q4 = 0 and L4: α2Q2 − α1Q3 = 0.
When b = bc and τ = τc, the solutions on the center

manifold determine the local asymptotic behavior of
solutions of the original system (1). So, for (33), equi-
libria on the z-axis remain equilibria, while equilibria
away from the z-axis become periodic orbits (with pe-
riod ≈ 2π/ω).

In order to give a more clear bifurcation picture,
we choose a1 = 1, a2 = 2, a3 = −4, b = 1.5, which
satisfy the assumption a − ab = 1 (a = 3

√
a1a2a3) of

Theorem 1. Under these parameter values, the char-
acteristic equation (4) with τ = 0 has a zero root and
a pair of complex conjugate roots with negative real
part. By Theorem 1, we obtain

ω
(1)
2 = 3 − √

3,

τ
(0)
2,1 = 1

ω
(1)
2

arccos

(
1

b
+ 1 − √

3ω
(1)
2

2ab

)

≈ 0.4129493351,

Re
(
λ

′(
τ

(0)
2,1

))
> 0,

ω
(1)
3 = 3 + √

3,

τ
(0)
3,1 = 1

ω
(1)
3

arccos

(
1

b
+ 1 + √

3ω
(1)
3

2ab

)

≈ 0.5532472039,

Re
(
λ

′(
τ

(0)
3,1

))
> 0.

Fig. 1 Critical bifurcation lines in the (τε, bε) parameter plane
near (τc, bc) and the corresponding phase portraits in the (r, z)

plane

We take τc = τ
(0)
2,1 = 0.4129493351. Thus, the char-

acteristic equation (4) has a zero root and a pair of
purely imaginary eigenvalues ±iω(1)

2 = ±(3 − √
3)i,

and all the other eigenvalues have negative real part.
Assume that system (1) undergoes a Hopf-zero bifur-
cation from the equilibrium (0,0,0). By a simple cal-
culation, we obtain

α1 = 1.500682911τε + 0.9774934427bε,

α2 = 0.8933165608bε,

Q1 = −2.028446218, Q2 = −0.5071115547,

Q3 = −0.07444304675, Q4 = −1.786633120.

For the above chosen parameter values, the critical
bifurcation lines become:

L1: bε = −1.535235783τε,

L2: bε = 0,

L3: bε = 40.85751446τε,

L4: bε = 0.2937996958τε,

as shown in the bifurcation diagram (see Fig. 1).
Figure 1 shows the critical bifurcation lines in the

(τε, bε) parameter plane near the critical point (τc, bc)

and the corresponding phase portraits in the (r, z)

plane, whose origin is the Hopf-zero critical point. The
bifurcation behaviors of the original system (1) in the
neighborhood of (0,0,0) can be observed from Fig. 1.
Note that the bifurcation boundaries divide the (τε, bε)

parameter plane into six regions. Also, it is seen from
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the phase portraits that the orbits are symmetric with
respect to the r coordinate, therefore, we only draw the
orbits in the first quadrant.

For system (1), we use Fig. 1 to describe the bi-
furcations in the clockwise direction, starting from B1

and ending at B1. First, in region B1, there is only one
trivial equilibrium which is a sink. When the param-
eters are varied across line L2 (the τε axis) from re-
gion B1 to B2, the trivial equilibrium becomes a sad-
dle, and a pair of stable fixed points (for convenience,
we call them E±

1 ) appear from the trivial solution due
to a pitchfork bifurcation. When the parameters are
changed from region B2 to B3, an unstable periodic
solution (called O1) occurs from the trivial solution
due to a Hopf bifurcation, and the trivial solution be-
comes a source from a saddle. In region B4, a pair of
periodic solutions (called O±

2 ), which are sources, oc-
cur from O1 due to a pitchfork bifurcation, and O1

becomes a sink from a saddle. When the parameters
are further changed from region B4 to B5 crossing line
L4, the pair of periodic solutions O±

2 collide with the
pair of semi-trivial fixed points E±

1 , respectively, and
then disappear, and E±

1 become saddles. When the pa-
rameters are further varied across line L2 from region
B5 to B6, the pair of semi-trivial fixed points E±

1 col-
lide with the trivial solution and then disappear, and
the trivial solution becomes a saddle from a source.
Finally, when the parameters are varied across line L1

from region B6 to B1, the stable periodic solution O1

collides with the trivial solution and then disappears,
and the trivial solution becomes a sink from a sad-
dle.

For simulations, we choose four groups of per-
turbation parameter values: (τε, bε) = (−0.1,−0.1),
(−0.1,0.1), (0.1,0.1), and (0.1,−0.1), which belong
to the regions B1, B2, B4, and B6, respectively, result-
ing in a stable fixed point shown in Fig. 2, a pair of
stable fixed points as depicted in Fig. 3, co-existence
of a pair of stable fixed points and a stable periodic
solution shown in Fig. 4, and a stable periodic so-
lution as depicted in Fig. 5. It is clear that the nu-
merical simulations agree with the analytical predic-
tions.

Remark It should be noted that if we take τc = τ
(0)
3,1 =

0.5532472039, then the characteristic equation (4) has
a zero root and a pair of purely imaginary eigenval-
ues ±iω(1)

3 = ±(3 + √
3)i, and in addition it has a pair

of complex conjugate eigenvalues with positive real

Fig. 2 Simulated solution of system (1) for τc =
0.4129493351, bc = 1.5 and (τε, bε) = (−0.1,−0.1):
(a) the time history; and (b) the phase portrait, showing a stable
fixed point

Fig. 3 Simulated solution of system (1) for τc =
0.4129493351, bc = 1.5 and (τε, bε) = (−0.1,0.1):
(a) the time history; and (b) the phase portrait, showing
coexistence of a pair of stable fixed points with the ini-
tial values (x1(0), x2(0), x3(0)) = (1,1,1) (red lines) and
(x1(0), x2(0), x3(0)) = (−1,−1,−1) (blue lines), respectively
(Color figure online)

part. Thus, the system contains a two-dimensional un-
stable manifold, which has very little interest in prac-
tical application and thus is not investigated in this pa-
per.

4 Conclusion

In this paper, we have studied Hopf-zero bifurcation in
a generalized Gopalsamy neural network model. We



1046 Y. Ding et al.

Fig. 4 Simulated solution of system (1) for τc =
0.4129493351, bc = 1.5 and (τε, bε) = (0.1,0.1): (a) the
time history; and (b) the phase portrait, showing co-
existence of a pair of stable fixed points with the
initial values (x1(0), x2(0), x3(0)) = (3,−3,3) (blue
lines) and (x1(0), x2(0), x3(0)) = (−3,3,−3) (red lines)
and a stable periodic solution with the initial value
(x1(0), x2(0), x3(0)) = (1,1,1) (black lines), respectively
(Color figure online)

Fig. 5 Simulated solution of system (1) for τc =
0.4129493351, bc = 1.5 and (τε, bε) = (0.1,−0.1): (a) the time
history; and (b) the phase portrait, showing a stable periodic
solution

derived the normal form of Hopf-zero bifurcation by
using multiple time scales and center manifold reduc-
tion methods. A comparison between the two meth-
ods shows that the two normal forms are identical.
The multiple time scales method is the first time to
be used to consider the Hopf-zero bifurcation in de-
lay differential equations, and further shown that the

multiple time scales is simpler than the center mani-
fold reduction, though the results from the two meth-
ods are equivalent. Moreover, bifurcation analysis near
the Hopf-zero critical point is given, showing that the
system may exhibit a stable fixed point, a pair of sta-
ble fixed points, a stable periodic solution, and co-
existence of a pair of stable fixed points and a stable
periodic solution in the neighborhood of the critical
point. Numerical simulations are presented to verify
the analytical predictions.
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Appendix

In this Appendix, we compute the normal form of (22)
on center manifold near the Hopf-zero bifurcation crit-
ical point (bc, τc) using the center manifold reduction
(CMR) method. To achieve this, first re-scale time by
t̃ �→ (t/τ ) to normalize the delay so that system (22)
becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1(t̃) = −τy1(t̃) + τa1y3(t̃) − τa1by3(t̃ − 1)

− τa1

3
y3

3(t̃) + τa1b

3
y3

3(t̃ − 1),

ẏ2(t̃) = −τy2(t̃) + τa2y1(t̃) − τa2by1(t̃ − 1)

− τa2

3
y3

1(t̃) + τa2b

3
y3

1(t̃ − 1),

ẏ3(t̃) = −τy3(t̃) + τa3y2(t̃) − τa3by2(t̃ − 1)

− τa3

3
y3

2(t̃) + τa3b

3
y3

2(t̃ − 1).

(34)

The trivial equilibrium of (34) is y1 = y2 = y3 = 0.
At the critical point (b, τ ) = (bc, τc), we choose

η(θ) =

⎧
⎪⎨

⎪⎩

τcN1, θ = 0,

0, θ ∈ (−1,0),

−τcN2, θ = −1,
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with

N1 =
⎛

⎝
−1 0 a1

a2 −1 0
0 a3 −1

⎞

⎠ ,

N2 =
⎛

⎝
0 0 −a1bc

−a2bc 0 0
0 −a3bc 0

⎞

⎠ .

Then the linearized equation of (34) at the trivial equi-
librium can be written as

dX(t̃)

dt̃
= L0Xt̃ ,

where L0φ = ∫ 0
−1 dη(θ)φ(θ), φ ∈ C = C([−1,0],R3),

and the bilinear form [51] on C∗ × C (∗ stands for ad-
joint) is

〈
ψ(s),φ(θ)

〉

= ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ,

in which φ ∈ C, ψ ∈ C∗. Then the phase space C is
decomposed by Λ = {±iωτc,0} as C = P ⊕Q, where
Q = {ϕ ∈ C : (ψ,ϕ) = 0, for all ψ ∈ P ∗}, and the
bases for P and its adjoint P ∗ are given respectively
by

Φ(θ) =

⎛

⎜
⎜
⎝

eiωτcθ e−iωτcθ 1
2

a2(1−bce
−iωτc )eiωτcθ

1+iω
a2(1−bce

iωτc )e−iωτcθ

1−iω
a2(1−bc)

2

(1+iω)eiωτcθ

a1(1−bce−iωτc )

(1−iω)e−iωτcθ

a1(1−bceiωτc )

1
2a1(1−bc)

⎞

⎟
⎟
⎠

and

Ψ (s) =

⎛

⎜
⎜
⎜
⎝

he−iωτcs h(1+iω)e−iωτcs

a2(1−bce−iωτc )

a1h(1−bce
−iωτc )e−iωτcs

1+iω

h̄eiωτcs h̄(1−iω)eiωτcs

a2(1−bceiωτc )

a1h̄(1−bce
iωτc )eiωτcs

1−iω

2
3(1−τcabc)

2a1a3(1−bc)
2

3(1−τcabc)
2a1(1−bc)
3(1−τcabc)

⎞

⎟
⎟
⎟
⎠

,

where h = (3 + 3bcτc(1+iω)e−iωτc

bce−iωτc−1
)−1.

We also use the same bifurcation parameters given
by b = bc +bε and τ = τc +τε in (34), where bε and τε

are perturbation parameters, and denote ε = (bε, τε).
Then (34) can be written as

dX(t̃)

dt̃
= L(ε)Xt̃ + F(Xt̃ , ε), (35)

where

L(ε)Xt̃ =
⎛

⎝
−(τc + τε)y1,t̃ (0) + a1(τc + τε)y3,t̃ (0)

−(τc + τε)y2,t̃ (0) + a2(τc + τε)y1,t̃ (0)

−(τc + τε)y3,t̃ (0) + a3(τc + τε)y2,t̃ (0)

⎞

⎠

−
⎛

⎝
a1(bc + bε)(τc + τε)y3,t̃ (−1)

a2(bc + bε)(τc + τε)y1,t̃ (−1)

a3(bc + bε)(τc + τε)y2,t̃ (−1)

⎞

⎠ ,

and

F(Xt̃ , ε)

=

⎛

⎜
⎜
⎝

a1(bc+bε)(τc+τε)
3 y3

3,t̃
(−1) − a1(τc+τε)

3 y3
3,t̃

(0)

a2(bc+bε)(τc+τε)
3 y3

1,t̃
(−1) − a2(τc+τε)

3 y3
1,t̃

(0)

a3(bc+bε)(τc+τε)
3 y3

2,t̃
(−1) − a3(τc+τε)

3 y3
2,t̃

(0)

⎞

⎟
⎟
⎠ .

We now consider the enlarged phase space BC
of functions from [−1,0] to R3, which are continu-
ous on [−1,0) with a possible jump discontinuity at
zero. This space can be identified as C × R3. Thus,
its elements can be written in the form ϕ̃ = ϕ + X0c,
where ϕ ∈ C, c ∈ R3 and X0 is a 3 × 3 matrix-valued
function, defined by X0(θ) = 0 for θ ∈ [−1,0) and
X0(0) = I. In the BC, (35) becomes an abstract ODE,

du

dt̃
= Au + X0F̃ (u, ε), (36)
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where u ∈ C, and A is defined by

A : C1 → BC,Au = du

dt̃
+ X0

[

L0u − du(0)

dt̃

]

,

and

F̃ (u, ε) = [
L(ε) − L0

]
u + F(u, ε).

By using the continuous projection π : BC �→ P ,
π(φ + X0c) = Φ[(Ψ,φ) + Ψ (0)c], we can decom-
pose the enlarged phase space by Λ = {±iωτc,0} as
BC = P ⊕ Kerπ , where Kerπ = {φ + X0c : π(φ +
X0c) = 0}, denoting the Kernel under the projection
π . Let η = (η1, η̄1, η2)

T, vt̃ ∈ Q1 := Q ∩ C1 ⊂ Kerπ ,
and AQ1 the restriction of A as an operator from Q1 to
the Banach space Kerπ . Further, denote ut̃ = Φη + vt̃ .
Then Eq. (36) is decomposed to the form:
⎧
⎪⎪⎨

⎪⎪⎩

dη

dt̃
= Bη + Ψ (0)F̃ (Φη + vt̃ , ε),

dvt̃

dt̃
= AQ1vt̃ + (I − π)X0F̃ (Φη + vt̃ , ε),

(37)

where B = diag{iωτc,−iωτc,0}.
Next, let M1

2 denote the operator defined in V 5
2 (C3 ×

Kerπ ), with

M1
2 :V 5

2

(
C3) �→ V 5

2

(
C3),

(
M1

2p
)
(η, ε) = Dηp(η, ε)Bη − Bp(η, ε),

where V 5
2 (C3) represents the linear space of the

second-order homogeneous polynomials in five vari-
ables (η1, η̄1, η2, bε, τε) with coefficients in C3. Then
we may choose the decomposition V 5

2 (C3) =
Im(M1

2 ) ⊕ Im(M1
2 )c with complementary space

Im(M1
2 )c spanned by the elements bεη1e1, τεη1e1,

η1η2e1, bεη̄1e2, τεη̄1e2, η̄1η2e2, τεη2e3, bεη2e3, η2
2e3,

η1η̄1e3, where ei (i = 1,2,3) are unit vectors.
Consequently, the normal form of (35) on the center

manifold near the equilibrium (0,0,0) associated with
the critical point (bε, τε) = (0,0) has the form

dη

dt̃
= Bη + 1

2
g1

2(η,0, ε) + h.o.t.,

where g1
2 is the function giving the quadratic terms in

(η, ε) for vt̃ = 0, and is determined by g1
2(η,0, ε) =

Proj(Im(M1
2 ))c × f 1

2 (η,0, ε), where f 1
2 (η,0, ε) is the

function giving the quadratic terms in (η, ε) for vt̃ = 0
defined by the first equation of (37). Thus, the normal

form, truncated at the quadratic order terms, is given
by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dη1

dt̃
= iωτcη1 + 3iωhτεη1

− 3hτce
−iωτc (1 + iω)

1 − bce−iωτc
bεη1,

dη̄1

dt̃
= −iωτcη̄1 − 3iωh̄τεη̄1

− 3h̄τce
iωτc (1 − iω)

1 − bceiωτc
bεη̄1,

dη2

dt̃
= aτc

τcabc − 1
bεη2,

(38)

where h = (3 + 3bcτc(1+iω)e−iωτc

bce−iωτc−1
)−1.

To find the normal form up to third order, similarly,
let M1

3 denote the operator defined in V 3
3 (C3 × Kerπ ),

with

M1
3 :V 3

3

(
C3) �→ V 5

3

(
C3),

(
M1

3p
)
(η, ε) = Dηp(η, ε)Bη − Bp(η, ε),

where V 3
3 (C3) denotes the linear space of the third-

order homogeneous polynomials in three variables:
η1, η̄1, and η2 with coefficients in C3. Then one
may choose the decomposition V 3

3 (C3) = Im(M1
3 ) ⊕

Im(M1
3 )c with complementary space Im(M1

3 )c

spanned by the elements η1η
2
2e1, η2

1η̄1e2, η̄1η
2
2e2,

η1η̄
2
1e3, η3

2e1, η1η̄1η2e3, where ei (i = 1,2,3) are unit
vectors.

Therefore, the normal form up to third-order terms
is given by

dη

dt̃
= Bη + 1

2!g
1
2(η,0, ε) + 1

3!g
1
3(η,0, ε) + h.o.t.,

(39)

where

1

3!g
1
3(η,0,0) = 1

3!
(
I − P 1

I,3

)
f 1

3 (η,0,0),

and f 1
3 (η,0,0), is the function giving the cubic terms

in (η, ε, vt̃ ) for ε = 0, and vt̃ = 0, is defined by the
first equation of (37). Finally, the normal form on the
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center manifold arising from (37) becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dη1

dt
= iωη1 + d1η1 + P1η

2
1η̄1 + P2η1η

2
2,

dη̄1

dt
= −iωη̄1 + d̄1η̄1 + P̄1η1η̄

2
1 + P̄2η̄1η

2
2,

dη2

dt
= d2η2 + P3η

3
2 + P4η1η̄1η2,

(40)

where di (i = 1,2) and Pi (i = 1,2,3,4) are given
in (31).
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