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a b s t r a c t

In this paper, we consider a 3-dimensional convection model and identify its weak
focus and center. This model is described by quadratic polynomial differential
equations, having three equilibria, two of them may be center-focus type. Center
manifold theory and normal form theory are applied to prove that at least three
limit cycles can bifurcate from a Hopf critical point around one of the two
equilibria.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Identifying whether a singular point in a planar differential system is a center or focus has received great
attention for more than one century and is still a hot topic. The order of the degeneracy of a singular
point, related to Lyapunov constants in the polynomial ring of coefficients over the real field, determines
the number of limit cycles bifurcating from the singular point. Poincaré [1] initiated the research of limit
cycles, and later, the well-known Hilbert’s 16th problem [2] promoted the development of this study. The
second part of Hilbert’s 16th problem is to study the upper bound on the number of limit cycles in planar
polynomial systems of degree n, and the upper bound is called Hilbert number, denoted by H(n). For
general quadratic polynomial systems, the best result is four limit cycles with (3, 1) distribution, which was
obtained 40 years ago [3], showing that H(2) ≥ 4. For cubic polynomial systems, many results have been
obtained on the lower bound of the Hilbert number [4,5]. So far, the best result obtained for cubic systems
is H(3) ≥ 13 [6,7]. Recently, many researchers paid attention to the center-focus problem for 3-dimensional
(3-d) dynamical systems, for example, see [8,9]. In general, to study bifurcation in higher-dimensional
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systems, the system is first reduced to a simpler one on its center manifold (e.g., see [8,10]), and then to study
the limit cycle bifurcation restricted to the center manifold. It is difficult to investigate Hopf bifurcation in
general n-dimensional systems, while many results have been obtained for 3-d dynamical systems [11–13].
Very recently, Guo et al. found 12 limit cycles in a class of 3-d quadratic systems with Z3 symmetry [14].

The convection model we will consider in this paper is described by the following ordinary differential
equations [15]:

Ṗ = r1q1 − χP − η1N − η2N2 + η3PN − φ1F − φ2F 2 + φ3PF,
Ṅ = N(γP − β1 − β2N − α1F ),
Ḟ = F (α2N − µ),

(1)

where P is the average potential energy related to the pressure profile, N is the average fluctuation energy
and F is the zonal flow energy; r1q1 and χ represent the source and diffusion, respectively. Simulation has
shown that the fluctuation energy N can cause decrease in P , expressed by −(η1N +η2N2) taking linear and
quadratic effects. However, as N initially begins to increase, P also increases, yielding a small jump, which
is measured by η3PN . When the pressure gradient becomes sufficiently large, the equilibrium solution of
the system (in S-shape) becomes unstable and a fluctuating flow is generated, which is described by γPN .
The two terms −(β1N + β2N2) describe the effect of the dissipation that causes the fluctuation energy N

to be self-damped. α1 and α2 measure the rates of mutual effects of N and F , causing N to decrease and F

to increase, respectively. The value of α1 is usually estimated by a linear fit from plotting γPH − β1 − β2NH

as a function in FH , and the value of α2 is chosen to approximately reproduce the frequency of oscillations.
µ is a debugging parameter, and the coefficients φ1, φ2 and φ3 are chosen to obtain the best approximation
of FH . Note that in system (1) the state variables P , N and F are nonnegative, and all the parameters take
positive real values.

In [15], the authors carried out a bifurcation analysis on system (1) and studied the stability of equilibrium
solutions and numerically demonstrated the existence of limit cycles. However, the number of bifurcating
limit cycles and the center-focus conditions were not considered in [15]. It has been noted that identifying
weak foci and centers in 3-d systems can cause great complexity in computation (e.g. see [16]). Moreover,
the criteria for determining whether a singular point in planar dynamical systems is a center or focus, such
as time-reversibility and integrability [17], are no longer applicable for 3-d systems, because application of
center manifold theory to higher-dimensional dynamical systems merely yields approximation on invariant
manifolds. To determine the number and stability of limit cycles bifurcating from a singular point, it needs
to compute Lyapunov constants, which are usually obtained by applying one of the three methods: the
method of normal forms [8,18,19], Poincaré return map [20], and Lyapunov function method [21,22]. For 3-d
dynamical systems associated with Hopf bifurcation, we can combine center manifold theory and normal
form theory to compute Lyapunov constants Lk with the aid of a computer algebra system such as Maple
or Mathematica (e.g., see [8,19,23]).

2. Simplification of model (1)

To simplify the analysis for model (1), we first introduce the following scalings,

P → x1, N → x2, F → x3, r1 → r2µ, q1 → q2, χ → a2
1µ, η1 → n2

1µ,

η2 → n2
2µ, η3 → n2

3µ, φ1 → c2
1µ, φ2 → c2

2µ, φ3 → c2
3µ, β1 → b2

1µ,

β2 → b2
2µ, γ → a2

2µ, α1 → a2
3µ, α2 → a2

4µ, t → 1
µ t,

(2)

under which system (1) becomes

ẋ1 = q2r2 − a2
1 x1 − n2

1 x2 − c2
1 x3 − n2

2 x2
2 − c2

2 x2
3 + c2

3 x1x3 + n2
3 x1x2,

ẋ2 = x2 (a2
2 x1 − b2

1 − b2
2 x2 − a2

3 x3),
ẋ3 = x3 (a2

4 x2 − 1),
(3)
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where the state variables xi, i = 1, 2, 3 are nonnegative, and all the parameters q, r, n1, n2, ai (i =
1, 2, 3, 4), b1, b2 and ci (i = 1, 2, 3) take nonzero real values. Note that we have transformed the original
positive parameters to nonzero parameters for convenience in computation.

It is easy to show that system (3) has three equilibrium solutions:

Es =
(

r2q2

a2
1

, 0, 0
)

, E1 =
(

b2
2I1 + b2

1
a2

2
, I1, 0

)
, E2 =

(
a2

3I2 + b2
1a2

4 + b2
2

a2
2a2

4
,

1
a2

4
,

I2

a2
4

)
,

where I1 and I2 are determined from the following quadratic polynomial equations:

(a2
2n2

2 − b2
2n2

3)I1
2 + (a2

1b2
2 + a2

2n2
1 − b2

1n2
3)I1 − r2q2a2

2 + a2
1b2

1 = 0,

(a2
2c2

2 − a2
3c2

3)I2
2 + [(a2

1a2
3 + a2

2c2
1 − b2

1c2
3)a2

4 − a2
3n2

3 − b2
2c2

3]I2

(a2
1b2

1 − a2
2q2r2)a4

4 + (a2
1b2

2 + a2
2n2

1 − b2
1n2

3)a2
4 − b2

2n2
3 + n2

2a2
2 = 0.

(4)

The solutions of I1 and I2 obtained from the above two polynomial equations can be classified into two
categories under the conditions: (A) a2

2n2
2 −b2

2n2
3 = a2

2c2
2 −a2

3c2
3 = 0; and (B) a2

2n2
2 ̸= b2

2n2
3 or a2

2c2
2 ̸= a2

3c2
3. For

Case (A) the model can have three equilibria; while for Case (B), there may exist at most five equilibria. In
this paper, we focus on Case (A) for which the three equilibria may be stable for certain parameter values.
Therefore, solving the equation a2

2n2
2 − b2

2n2
3 = 0 for a2 and a2

2c2
2 − a2

3c2
3 = 0 for c2 we obtain

a2
2 = b2

2n2
3

n2
2

, c2
2 = a2

3c2
3n2

2
b2

2n2
3

,

which are substituted into system (3) to yield the following 3-d quadratic system,

ẋ1 = q2r2 − a2
1 x1 − n2

1 x2 − c2
1 x3 − n2

2 x2
2 − a2

3c2
3n2

2
b2

2n2
3

x2
3 + n2

3 x1x2 + c2
3 x1x3,

ẋ2 = x2

(b2
2n2

3
n2

2
x1 − b2

1 − b2
2 x2 − a2

3 x3

)
,

ẋ3 = x3 (a2
4 x2 − 1).

(5)

Then, the equilibrium solutions of system (5) can be rewritten (with new names EL and EH) as

Es =
(

r2q2

a2
1

, 0, 0
)

, EL =
(

S1 n2
2

S3 b2
2

,
S2

S3
, 0

)
, EH =

(
n2

2F1

F2a2
4b2

2n2
3

,
1
a2

4
,

a2
4S2 − S3

F2

)
,

where

S1 = b4
2q2r2 + b2

1(b2
2n2

1 − b2
1n2

2),
S2 = b2

2n2
3q2r2 − a2

1b2
1n2

2,

S3 = a2
1b2

2n2
2 + n2

3(b2
2n2

1 − b2
1n2

2),
F1 = (a2

4c2
1n2

3 − c2
3n2

2)b4
2 + [(a2

3q2r2 + b2
1c2

1)n2
3a4

4 − (a2
3n2

1n2
3 + 2b2

1c2
3n2

2)a2
4 − a2

3n2
2n2

3]b2
2 − a4

4b4
1c2

3n2
2,

F2 = [(a2
1a2

3 − b2
1c2

3)a2
4 − a2

3n2
3 − b2

2c2
3]n2

2 + a2
4b2

2c2
1n2

3.

It is easy to see that the equilibrium Es exists for any positive parameter values; the equilibrium EL exists
if S1/S3 > 0 and S2/S3 > 0; and the equilibrium EH exists if F1/F2 > 0 and (a2

4S2 − S3)/F2 > 0. Further,
note that both EL and EH are possible to be of center-focus type, while Es can be only node or saddle.
We apply the method of normal forms to prove that system (5) can have three small-amplitude limit cycles
bifurcating from EH. Moreover, it can be shown that the equilibrium EL is a center, restricted to a global
center manifold,
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3. Weak focus at the equilibrium EH

In [15], the authors present some qualitative properties for the equilibria of system (1). The reduced
system (5) with less number of parameters helps us in simplifying the computation of normal forms and
focus values. In the following, we first consider the qualitative properties of Es. The Jacobian matrix of
system (5) evaluated at Es is given by

J(Es) =

⎡⎢⎢⎢⎢⎢⎣
−a2

1
n2

3q2r2 − a2
1n2

1
a2

1
c2

3q2r2 − a2
1c2

1a2
1

0 S2

a2
1n2

2
0

0 0 −1

⎤⎥⎥⎥⎥⎥⎦ , (6)

which has eigenvalues
λ1 = −1, λ2 = −a2

1, λ3 = S2

a2
1n2

2
.

All the three eigenvalues are real, and λ1 and λ2 are negative constants. Thus, Es is a stable node if S2 < 0
and a saddle if S2 > 0.

Next, consider the equilibrium EH. In [15], the stability of equilibria was discussed, and numerical
bifurcation software was used to plot bifurcation diagrams where Hopf bifurcation was identified, which
is based on a linear analysis. In this section, we will further investigate the Hopf bifurcation in system (5),
and prove the existence of three limit cycles. In order for system (5) to have a Hopf critical point on the
equilibrium solution EH and make the computation of focus values manageable, we further let

r = c1 = a3 = a1 = 1, q =
√

2
c3

, b1 = b2n3

c3n2
,

S4 = a2
4b2

2n2
3 − b2

2c2
3n2

2 + a2
4n2

2 − n2
2n2

3,

n1 =
√

S4[a2
4b2

2n4
3(a2

4 + b2
2 − n2

3) + (2n4
3 − b2

2n2
3 − c2

3n2
2)S4]

S4n3c3
.

(7)

Thus, under the above conditions, the linearized system of (5) evaluated at the EH contains a non-zero real
eigenvalue and two purely imaginary eigenvalues. Next, introducing the transformation,

x1 = a2
4n2

2n2
3(a2

4 + b2
2 − n2

3) + (a2
4n2

3 + c2
3n2

2)S4

S4a2
4c2

3n2
3

+ n2
2

n2
3

z1 + a2
4b2n2(a2

4n2
3 − c2

3n2
2 − n2

2)
S4n3c3

z2

+ n2
2F3

S4a4
4b4

2n4
3

z3,

x2 = 1
a2

4
+ z1 − n2

2c2
3(a2

4 − b2
2c2

3 − n2
3)

a4
4b2

2n2
3

z3,

x3 = b2
2n2

3(a2
4 + b2

2 − n2
3)

S4c2
3

− b2a2
4n2n3(a2

4 + b2
2 − n2

3)
S4c3

z2 + z3,

t → c3n2

b2n3
t,

(8)

where

F3 =
{

a4
4b2

2n2
3 − b2

2n2
2(a4 − n3)(a4 + n3)c4

3

+ [(−b2
2n2

3 + n2
2)a4

4 − n2
3(b4

2 − b2
2n2

3 + 2n2
2)a2

4 + n2
2n4

3]c2
3

}
S4 + a4

4b4
2c2

3n4
3(a2

4 + b2
2 − n2

3),
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into (5), we obtain

ż1 = z2 + A002z2
3 + A011z2z3 + A020z2

2 + A101z1z3 + A110z1z2,
ż2 = −z1 + B002z2

3 + B011z2z3 + B020z2
2 + B101z1z3 + B110z1z2,

ż3 = C001z3 + C002z2
3 + C011z2z3 + C020z2

2 + C101z1z3 + C110z1z2,
(9)

where the coefficients Aijk, Bijk and Cijk are given in the website: http://www.apmaths.uwo.ca/∼pyu.
Clearly, under the conditions given in (7), the singular point EH of system (5) corresponds to the origin

of (9), which is a Hopf-type critical point. We have the following result.

Theorem 3.1. Under the conditions given in (7), there exist parameter values for system (1) such that at
least three limit cycles can bifurcate from EH within some, hence every, two-dimensional invariant manifold
through EH.

Proof. In order to make the computation of focus values manageable and find the parameter values
satisfying the conditions, we further set a4 = 10 and n2 = n3 = 1 in system (9). Then, we apply center
manifold theory and the method of normal forms, as well as the Maple program in [23] to system (9) to
obtain the focus values. In particular, v1 and v2 are given by

v1 = −125000(b2
2c2

3 − 100b2
2 − 99)b2(b2

2 + 99)c3
3F4

(b2
2c2

3 − 99)F6F7
,

v2 = −312500000(b2
2c2

3 − 100b2
2 − 99)(b2

2 + 99)c3
3F5

9b2(b2
2c2

3 − 99)3F 3
6 F 3

7 F8
,

where the lengthy expressions of the polynomials Fi, i = 4, 5, . . . , 8 are given in terms of b2 and c3, and can
be found in the website: http://www.apmaths.uwo.ca/∼pyu.

In order to obtain maximal number of small-amplitude limit cycles bifurcating from the origin of system
(9), we use the coefficients b2 and c3 to solve the two polynomial equations, F4 = F5 = 0. If a solution of
F4 = F5 = 0 yields v3 ̸= 0, we may obtain two small-amplitude limit cycles by properly perturbing b2 and
c3. To achieve this, we first compute the resultant of F4 and F5, yielding

F45 = 4.45990583806 · · · × 10940c124
3 (c2

3 − 99)56(c4
3 − 200c2

3 + 299)4

× (275c10
3 − 109175c8

3 − 2128419c6
3 + 3004576243c4

3 − 137557848532c2
3 + 71109368756)4

× (33275c14
3 − 13105026c12

3 + 464987348c10
3 + 6341100342c8

3 − 7908729138339c6
3

+296555246006244c4
3 − 265954686172548c2

3 + 982858205776)4
F 2

45a,

where F45a is a polynomial in c2
3, given in the website: http://www.apmaths.uwo.ca/∼pyu.

Now, to find the solutions of F4 = F5 = 0, we must solve F45 = 0. It is seen from F45 that besides
the factor F45a, there are five polynomial factors which may also yield solutions c2

3 for F45 = 0. However,
a careful verification shows that the solutions solved from these five factors do not satisfy the equations
F4 = F5 = 0. Thus, possible solutions for F45 = 0 only come from the positive roots of F45a (since c2

3 > 0).
It can be shown that the polynomial F45a has 7 positive roots for c2

3, which in turn yield corresponding 14
solutions for b2, among them only eight sets of solutions c3 and b2 satisfy the equations, F4 = F5 = 0. Then,
under the conditions, C001 < 0 and N1 ≥ 0, we choose one of the solutions as follows:

b2 = −0.53868839285 · · · , c3 = −0.61448088908 · · · ,

under which
v1 = v2 = 0, v3 = −5.92361180765 · · · × 108 ̸= 0.
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Moreover, a direct calculation shows that the Jacobian evaluated at the critical values is

det
[

∂(v1, v2)
∂(b2, c3)

]
= −6.44212213245 · · · × 108 ̸= 0,

implying that system (9) can indeed have two small-amplitude limit cycles bifurcating from the center-type
singular point (the origin). Further, a linear perturbation on n1 generates a third small-amplitude limit cycle.
Thus, system (1) can have at least three limit cycles around the equilibrium EH.

The proof of Theorem 3.1 is complete. □

Finally, we point out that for the singular point EL, one can identify the Hopf bifurcation condition and
then apply normal form theory and global center manifold theory [24] to prove that when EL is a Hopf
singular point, it must be a center on a global center manifold. The proof is straightforward and is thus
omitted.

4. Conclusion

In this paper, we have studied a convection model and paid particular attention on bifurcation of limit
cycles. We have shown that the model has three distinct equilibria, and that there exist parameter values
for the model to have three small-amplitude limit cycles around one of the equilibria.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.aml.2019.
106019.
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