
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 266 (2019) 1221–1244

www.elsevier.com/locate/jde

Bifurcation analysis on a class of Z2-equivariant cubic 

switching systems showing eighteen limit cycles ✩

Laigang Guo a,b, Pei Yu b,∗, Yufu Chen a

a School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
b Department of Applied Mathematics, Western University, London, Ontario, N6A 5B7, Canada

Received 23 May 2018; revised 18 July 2018
Available online 20 August 2018

Abstract

In this paper, the method developed for computing the Lyapunov constants of planar switching systems 
associated with an elementary singular point is applied to study bifurcation of limit cycles in a cubic switch-
ing system. A complete classification on the center conditions and 16 limit cycles of this system are obtained 
around the two foci (1, 0) and (−1, 0). Further, with the method, an example of cubic switching systems 
is constructed to show the existence of 18 small-amplitude limit cycles bifurcating from centers. This is a 
new lower bound on the maximal number of small-amplitude limit cycles obtained in such cubic switching 
systems. Finally, a method is present to show the realization of the 18 limit cycles.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that Hopf bifurcation plays an important role in the study of nonlinear dy-
namical systems. There have been plenty of studies on Hopf bifurcation for smooth systems. 
Developing limit cycle theory is not only theoretically important, but also practically significant. 
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The best result for quadratic systems, obtained 40 years ago, is four limit cycles, see [1,2]. For 
cubic systems, many results have been obtained on the low bound of the Hilbert number. In 1991, 
James and Lloyd [3] constructed a special class of cubic systems to obtain 8 limit cycles around 
an elemental focus. In 2009, Yu and Corless [4] used symbolic and numerical computations to 
obtain 9 limit cycles in a cubic system, which was reconsidered using purely symbolic computa-
tion to find all real solutions [5]. Later, Lloyd and Pearson [6] constructed another cubic system 
and also used purely symbolic computation to find 9 limit cycles. So far, the best result for cubic 
systems is 13 limit cycles. In 2009, Li et al. [7] proved that 13 limit cycles can bifurcate in a 
cubic Hamiltonian system under small perturbation. Around the same time, Liu and Li [8] inves-
tigated the cyclicity problem for a Z2-equivariant cubic system, and showed the existence of 13
limit cycles. Note that the 13 limit cycles obtained in [7,8] are distributed around several singular 
points. Very recently, Yu and Tian [9] have shown the existence of 12 limit cycles around an 
elementary center in a planar cubic-degree polynomial system. This is the best result obtained so 
far for cubic polynomial systems with all limit cycles bifurcating from a single singular point.

However, since many problems arising from mechanics, electrical engineering and automatic 
control are described by non-smooth dynamical systems (see, e.g., [10,11]), increasing interest 
has been attracted to the qualitative analysis of those systems, which can display rich complex 
dynamical phenomena. Non-smooth systems can exhibit not only the classical bifurcations, but 
also more complicated bifurcations that only non-smooth systems can have, such as border-
collision bifurcation [12,13]. During the past few decades, many contributions have been made 
to generalize the classical bifurcation methods for smooth systems to study non-smooth systems. 
For example, Kukučka [14] investigated the occurrence of homoclinic solutions in non-smooth 
systems and showed the existence of a homoclinic solution in a perturbed system. Li and Huang 
[15] studied the concurrent homoclinic bifurcation and Hopf bifurcation for a class of planar 
perturbed non-smooth Filippov systems.

A class of non-smooth systems is called switching system, if such a system has different 
definitions for the continuous vector fields in two or more different regions divided by a line or a 
curve. In this paper, we focus on switching planar systems, described by

(ẋ, ẏ) =
{

(δx − y + f +(x, y), x + δy + g+(x, y)), if y > 0,

(δx − y + f −(x, y), x + δy + g−(x, y)), if y < 0,
(1)

where f ±(x, y) and g±(x, y) are analytic functions in x and y, starting from at least second-
order terms. Thus, the origin of system (1) is an equilibrium. Actually, (1) includes two systems: 
one is called upper system, defined for y > 0, and the other is called lower system, defined for 
y < 0.

The investigation of switching systems started a half century ago [16–18]. Filippov [17]
established some basic qualitative theory on switching equations and defined three types of 
pseudo-focus singular points: focus-focus (FF), parabolic-focus (PF) and parabolic-parabolic 
(PP). Coll and Gasull [19] derived the formulas for computing the first three Lyapunov quan-
tities associated with the three types of singularities. In particular, they proved that at least 4
limit cycles can bifurcate from the weak focus in the FF-type case. Gasull and Torregrosa [20]
obtained 5 limit cycles in a quadratic switching system, two more than that of smooth quadratic 
systems. Han and Zhang [21] proved that 2 limit cycles can bifurcate from a focus of either 
FF, FP or PP type in piecewise linear systems. Center conditions have also been obtained for 
switching Kukles system [20] and switching Liénard system [22]. Chen and Du [23] constructed 
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a switching Bautin system and proved the existence of 9 limit cycles around a center of the sys-
tem. Recently, Chen and Romanovski [24] constructed a class of discontinuous quadratic Bautain 
system, which has at least 5 and 8 limit cycles bifurcating from weak foci and centers, respec-
tively. Tian and Yu [25] provided a complete classification on the conditions of a singular point 
being a center in the switching Bautin system, and constructed an example to show the existence 
of 10 limit cycles bifurcating from the center. However, very fewer results have been obtained 
for cubic switching systems. Llibre et al. [26] obtained 12 limit cycles that bifurcate from the 
periodic orbits in a family of isochronous cubic polynomial systems. Li el at. [27] constructed a 
switching cubic system which exhibits 15 limit cycles.

To study bifurcation of limit cycles associated with a singular point in a switching system, 
we need Lyapunov constants to determine the number and stability of bifurcating limit cycles. 
We will introduce a recursive procedure based on the method of Poincaré return map [28,29] to 
compute the Lyapunov constants near the origin of the general system (1). Then we apply this 
method to study the center conditions and bifurcation of limit cycles in a class of Z2-equivariant 
cubic switching system. Without loss of generality, Z2-equivariant cubic switching systems can 
be written as

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

a00 − 1
2δ(x − x3) + a10x + a01y + a20x

2 + a11xy + a02y
2

+a30x
3 + a21x

2y + a12xy2 + a03y
3

b00 + b10x + (δ + b01)y + b20x
2 + b11xy + b02y

2 + b30x
3

+b21x
2y + b12xy2 + b03y

3

⎞
⎟⎟⎟⎠ , if y > 0,

⎛
⎜⎜⎜⎝

−a00 − 1
2δ(x − x3) + a10x + a01y − a20x

2 − a11xy − a02y
2

+a30x
3 + a21x

2y + a12xy2 + a03y
3

−b00 + b10x + (δ + b01)y − b20x
2 − b11xy − b02y

2 + b30x
3

+b21x
2y + b12xy2 + b03y

3

⎞
⎟⎟⎟⎠ , if y < 0,

(2)

where δ, aij ’s and bij ’s are real parameters, satisfying |δ| � 1. Without loss of generality, sup-
pose b10 �= 0 and a02 �= 0. Then, we apply scaling on the state variables and parameters in (2) so 
that b10 = a02 = 1. Moreover, to make (±1, 0) be Hopf-type singular points, we let

a20 + a00 = b20 + b00 = a30 + a10 = b30 + b10 = b11 − 2a00 = b21 − 2a10 + b01 = 0.

Further, we set a00 = b00 = a10 = a11 = 0 and a21 = 1
2 (1 − 2a01) so that higher Lyapunov con-

stants can be obtained from the resulting Z2-equivariant cubic switching system,

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
a01y − 1

2δ(x − x3) + y2 + ( 1
2 − a01)x

2y + a12xy2 + a03y
3

x + (δ + b01)y + b02y
2 − x3 − b01x

2y + b12xy2 + b03y
3

)
, if y > 0,

(
a01y − 1

2δ(x − x3) − y2 + ( 1
2 − a01)x

2y + a12xy2 + a03y
3

x + (b01 + δ)y − b02y
2 − x3 − b01x

2y + b12xy2 + b03y
3

)
, if y < 0.

(3)

The main goal of this paper is to consider the center conditions and bifurcation of limit cycles 
in the switching Z2-equivariant cubic system (3). We will apply a recursive procedure to obtain 
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a new lower bound on the number of limit cycles. We first compute the first nine Lyapunov con-
stants for the singular point (1, 0) of system (3) to obtain the center conditions and prove the 
existence of 16 limit cycles. Then, we choose one of the center conditions with proper perturba-
tions to construct a perturbed system, and then compute the Lyapunov constants associated with 
the singular point of the perturbed system to prove the existence of 9 limit cycles around (1, 0), 
yielding a total of 18 limit cycles around the two symmetric singular points. In the next section, 
we present some basic formulas and preliminary results which are needed in proving our main 
results in Sections 3 and 4. Realization of 18 limit cycles is presented in section 5. Conclusion is 
drawn in section 6.

2. Methodology

In this section, we present some basic methods and preliminary results which will be used 
in the following sections. First, we introduce the classical method for solving center problems 
of discontinuous systems based on the computation of Lyapunov constants. The details of the 
method can be found in [31]. Consider the general switching differential system,

(
ẋ

ẏ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

δx − y +
n∑

k=2
X+

k (x, y)

x + δy +
n∑

k=2
Y+

k (x, y)

⎞
⎟⎟⎠ , if y > 0,

⎛
⎜⎜⎝

δx − y +
n∑

k=2
X−

k (x, y)

x + δy +
n∑

k=2
Y−

k (x, y)

⎞
⎟⎟⎠ , if y < 0,

(4)

where X±
k (x, y) and Y±

k (x, y) are homogeneous polynomials in x and y. Under the polar coor-
dinates transformation, x = rcosθ and y = rsinθ , (4) can be rewritten as

dr

dθ
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δr + ∑n
k=2 ϒ+

k (θ)rk

1 + ∑n
k=2 �+

k (θ)rk−1
, for θ ∈ (0,π),

δr + ∑n
k=2 ϒ−

k (θ)rk

1 + ∑n
k=2 �−

k (θ)rk−1
, for θ ∈ (−π,0),

(5)

where ϒ±
k (θ) and �±

k (θ) are polynomials in sinθ and cosθ of degrees k + 1. By the method of 
small parameters of Poincaré, the solutions of the upper and lower systems of (5) are given by

r+(h, θ) =
∑
k≥1

uk(θ)hk, r−(h, θ) =
∑
k≥1

vk(θ)hk, (6)

where u1(0) = v1(0) = 1, uk(0) = vk(0) = 0, ∀k ≥ 2. Substituting the above solutions into (5)
yields
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Fig. 1. Poincaré map for system (1).

u′
1(θ) = δu1(θ),

u′
2(θ) = δu2(θ) + P1(θ)u2

1(θ),

...

u′
m(θ) = δum(θ) + P1(θ)�2,m(θ) + · · · + Pm−1(θ)�m,m(θ),

and

v′
1(θ) = δv1(θ),

v′
2(θ) = δv2(θ) + R1(θ)v2

1(θ),

...

v′
m(θ) = δvm(θ) + R1(θ)�̄2,m(θ) + · · · + Rm−1(θ)�̄m,m(θ),

where Pi(θ), Ri(θ), �ij (θ) and �̄ij (θ) are polynomials functions of sin θ and cos θ . Thus, we 
may solve uk(θ) and vk(θ) one by one. Consequently, we can define the following successive 
functions,

	+(h) = r+(h,π) − h, 	−(h) = h − r−(h,−π),

for the upper and lower systems of (5), respectively. Then, the successive function for the switch-
ing system (4) can be defined as

	(h) = 	+(h) + 	−(h) = r+(h,π) − r−(h,−π), (7)

as illustrated in Fig. 1.
It has been shown in [31] that the displacement function 	(h) can be expanded as

	(h) =
n∑

(uk(π) − vk(−π))hk =
n−1∑

Vkh
k+1, (8)
k=1 k=0
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where Vk is called the kth-order Lyapunov constant of the switching system (4). Obviously, the 
origin is a center of system (4) if and only if 	(h) ≡ 0 for 0 < h � 1, which means that all 
the Lyapunov constants in (8) vanish. The isolated zeros of 	(h) = 0 near h = 0 correspond 
to the number of limit cycles around the origin. It is easy to get that V0 = 1

eπδ (e
2πδ − 1), since 

u1(θ) = v1(θ) = eδθ . Thus, V0 = 0 if and only if δ = 0. It is well known that k must be odd for 
the Vk of smooth systems [30]. However, for the switching system (4), in general, Vk �= 0 with k
being any positive integer.

Now we turn to discuss how to determine the maximal number of limit cycles which may 
bifurcate from a Hopf critical point. To find k small-amplitude limit cycles of system (4) around 
the origin, we first find the conditions based on the original system’s coefficients, aij and bij such 
that V0 = V1 = V2 = · · · = Vk−1 = 0, but Vk �= 0. For convenience, we call these coefficients 
as c1, c2, . . . , ck and use the corresponding critical values to define a critical point C. Then 
appropriate small perturbations from the critical values are performed to prove the existence of k
limit cycles. More generally, the following theorem gives sufficient conditions for the existence 
of small-amplitude limit cycles in the switching system (4). (The proof can be found in [25].)

Theorem 2.1. ([25]) Suppose that there exists a sequence of Lyapunov constants of system (4), 
Vi0 , Vi1, . . . , Vik , with 1 = i0 < i1 < · · · < ik , such that Vj = O(|Vi0 , . . . , Vil |) for any il < j <

il+1. Further, if at the critical point C, Vi0 = Vi1 = · · · = Vik−1 = 0, Vik �= 0, and

det

[
∂(Vi0 ,Vi1, · · · ,Vik−1)

∂(c1, c2, · · · , ck)

]
C

�= 0, (9)

then system (4) has exactly k limit cycles in a δ-ball with its center at the origin.

The center problem in switching systems is more complicated than that of smooth systems. 
The origin of system (4) can be a center even if it is not a center of either the upper system or the 
lower system. On the other hand, the origin of system (4) may not be a center, even if both the 
upper and lower systems have the centers at the origin. In order to prove the center conditions 
for system (4), we have the following lemmas.

Lemma 2.1. ([32]) If the upper and lower systems of (4) have the first integrals H+(x, y) and 
H−(x, y) near the origin, respectively, and either both H+(x, y) and H−(x, y) are even func-
tions in x or H+(x, 0) ≡ H−(x, 0), then the origin of system (4) is a center.

Lemma 2.2. ([27]) Assuming that δ = 0, if system (4) is symmetric with respect to the x-axis, i.e. 
the functions on the right-hand side of system (4) satisfy

X+
k (x, y) = −X−

k (x,−y), Y+
k (x, y) = Y−

k (x,−y),

or if system (4) is symmetric with respect to the y-axis, i.e. the functions on the right-hand side 
of system (4) satisfy

X+
k (x, y) = X+

k (−x, y), X−
k (x, y) = X−

k (−x, y),

Y+
k (x, y) = −Y+

k (−x, y), Y−
k (x, y) = −Y−

k (−x, y),

then the origin of system (4) is a center.



L. Guo et al. / J. Differential Equations 266 (2019) 1221–1244 1227
3. Bi-center conditions and Hopf bifurcation for system (3)

In this section, we consider the center conditions and bifurcation of limit cycles for the switch-
ing Z2-equivariant cubic system (3). Due to the symmetry of system (3), the Lyapunov constants 
associated with the singular points (1, 0) and (−1, 0) are same, hence we only need to consider 
the center conditions and Hopf bifurcation at the singular point (1, 0).

In order to study the center conditions and limit cycle bifurcation around the Hopf critical 
point (1, 0), we need to compute its Lyapunov constants associated with the Hopf critical point. 
To achieve this, we introduce the following transformation,

x = 1 − 1

2
x1, y = y1,

into system (3) to obtain

(
ẋ1
ẏ1

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

δx1 − y1 − 3
4δx2

1 + (1 − 2a01)x1y1 − (2 + 2a12)y
2
1 + 1

8δx3
1

+a12x1y
2
1 + ( 1

2a01 − 1
4 )x2

1y1 − 2a03y
3
1

x1 + δy1 − 3
4x2

1 + b01x1y1 + (b12 + b02)y
2
1 + 1

8x3
1 − 1

2b12x1y
2
1

− 1
4b01x

2
1y1 + b03y

3
1

⎞
⎟⎟⎟⎟⎟⎠ , if y1 > 0,

⎛
⎜⎜⎜⎜⎜⎝

δx1 − y1 − 3
4δx2

1 + (1 − 2a01)x1y1 + (2 − 2a12)y
2
1 + 1

8δx3
1

+a12x1y
2
1 + ( 1

2a01 − 1
4 )x2

1y1 − 2a03y
3
1

x1 + δy1 − 3
4x2

1 + b01x1y1 + (b12 − b02)y
2
1 + 1

8x3
1 − 1

2b12x1y
2
1

− 1
4b01x

2
1y1 + b03y

3
1

⎞
⎟⎟⎟⎟⎟⎠ , if y1 < 0.

(10)

Clearly, the singular point (1, 0) of system (10) corresponds to the origin of (10), which is a 
Hopf-type critical point. In the following, we will use the method presented in the previous 
section to compute the Lyapunov constants for the origin of system (10), and use them to derive 
the center conditions and to consider limit cycle bifurcation.

3.1. Center conditions for system (10)

With the aid of a computer algebra system, we have obtained the Lyapunov constants associ-
ated with the origin of system (10) (i.e. associated with the two symmetric singular points (1, 0)

of system (3)), as given in the following theorem.

Theorem 3.1. The first four Lyapunov constants at the origin of system (10) are obtained as

V0 = 1

eπδ
(e2πδ − 1),

V1 =8

3
b02,

V2 =π
(8a01a12 − 8a12b12 − 2b01b12 − 2a12 + b01 + 6b03),
8
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V3 =32

45
(8a12 − b01) b12 − 128

45
(2a01 − 1) a12 + 8

45
(4a01 + 1) b01,

where Vk−1 = 0 has been used in computing Vk , k = 1, 2, 3. Higher Lyapunov constants are 
given as follows.

(I) If 8a12 − b01 = 0, then

V3 = 64

15
a12,

V4 = 1

60
a12

{
128

[
1 + 8(b12 − a01)

] + 5π
[
48a2

12(3 − 6b12 − 2a01)

+6a03(1 + 2a01 − 2b12) − 4a01b12(3 + 3b12 − a01) + 8a3
01 − 10a2

01 + 9a01 − 40
]}

,

V5 = 1

75600
a12 (· · · ),

V6 = 1

3628800
a12 (· · · ),

...

which gives a necessary condition for the origin of system (10) to be a center: 8a12 − b01 =
a12 = 0.

(II) If 8a12 − b01 �= 0, then

V4 = −π b01

288(8a12 − b01)2

{
36(8a12 − b01)(2a12 − b01)a03 − 36(8a12 − b01)(2a12 + b01)a

2
01

+ [
8b01(8a12 − b01)

2(10a12 + b01) − 9(2a12 − b01)(32a12 − b01)
]
a01

+2(8a12 − b01)(2a12 − b01)(10a12 + b01)(32a12 − b01) − 90(8a12 − b01)
2
}

Further,
(IIa) if 2a12 − b01 �= 0, then

V5 = 16b01F1

4725(8a12 − b01)(2a12 − b01)
,

V6 = b01F2

7257600(8a12 − b01)2(2a12 − b01)2 ,

V7 = −b01F3

5486745600(8a12 − b01)3(2a12 − b01)2 ,

V8 = b01F4

21946982400(8a12 − b01)4(2a12 − b01)3 ;

(IIb) or if 2a12 − b01 = 0, then

V4 =π a12
(4a2

01 − 32a01a
2
12 + 15),
24
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V5 = −a12

50400

[
(1474560a2

12 − 197120)a01 − 245760a2
12 − 165888a03 − 622080

]
,

V6 =−5π a12

1679616

[
18579456a01a

6
12 − (1124352a01 + 8409600)a4

12

+ (576288 − 1000576a01)a
2
12 − 4374a01 − 165975

]
,

V7 = a12

44442639360

{
92897280a01(99225π + 524288)a6

12 − [
(557819136000π

+ 3143110754304)a01 + 4172212800000π + 21708920586240
]
a4

12

+ [
285910884000π + 1753787400192 − (496410768000π + 2785429946368)a01

]
a2

12

− (2170050750π + 11466178560)a01 − 82344346875π − 414100045824
}
.

The polynomials F1 and F2 in the above expressions are given by

F1 = 972b01(8a12 − b01)a
2
01 − 9

[
24b01(8a12 − b01)(40a2

12 − b2
01)

− 5(172a12 − 7b01)(2a12 − b01)
]
a01 − 10(2a12 − b01)(6784a3

12 − 384a2
12b01

− 168a12b
2
01 + 7b3

01) + 1215(8a12 − b01)
2,

F2 =6350400πb2
01(8a12 − b01)

2a4
01 − 25200πb01(8a12 − b01)

[
56b01(8a12 − b01)(82a2

12

− a12b01 − 2b2
01) − 9(2a12 − b01)(444a12 − 17b01)

]
a3

01 − 8
{
5971968b01(64a2

12

− b2
01)(2a12 − b01) − 175π

[
224b2

01(8a12 − b01)
3(10a12 + b01)(5a12 − b01)(4a12 + b01)

− 36b01(8a12 − b01)(2a12 − b01)(35768a3
12 − 1918a2

12b01 − 851a12b
2
01 + 34b3

01)

+ 81(14080a4
12 + 8136a3

12b01 + 14028a2
12b

2
01 − 3734a12b

3
01 + 243b4

01)
]}

a2
01

+ 2
{
(221184(8a12 + b01)(2a12 − b01)

[
24b01(8a12 − b01)(40a2

12 − b2
01)

− 5(2a12 − b01)(172a12 − 7b01)
] + 175π

[
32b01(8a12 − b01)

2(2a12 − b01)(4a12

+ b01)(21560a3
12 − 3150a2

12b01 − 339a12b
2
01 + 17b3

01) − 216(371200a6
12

− 96080a5
12b01 + 257680a4

12b
2
01 − 64312a3

12b
3
01 + 124a2

12b
4
01 + 1033a12b

5
01 − 71b6

01)

+ 135(8a12 − b01)(2a12 − b01)(6880a2
12 + 4322a12b01 − 191b2

01)
]}

a01 + 245760(2a12

− b01)(8a12 + b01)
[
2(2a12 − b01)(6784a3

12 − 384a2
12b01 − 168a12b

2
01 + 7b3

01)

− 243(8a12 − b01)
2
] + 875π(8a12 − b01)

[
32(2a12 − b01)

2(4a12 + b01)(32a12

− b01)(1036a3
12 − 168a2

12b01 − 15a12b
2
01 + b3

01) − 108(2a12 − b01)(29120a4
12

+ 20328a3
12b01 − 2796a2

12b
2
01 − 334a12b

3
01 + 15b4

01) − 81(24448a3
12 − 45036a2

12b01

+ 10068a12b
2
01 − 611b3

01)
]
,

and the lengthy polynomials F3 and F4 in a01, b01 and b12 can be found from the supplement 
posted on the journal website.

Now, we turn to discuss the center conditions of system (10). From Theorem 3.1 we have the 
following result.
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Theorem 3.2. System (10) has a center at the origin if and only if one of the following conditions 
is satisfied:

(a) δ = b02 = b01 = b03 = a12 = 0.
(b) δ = b02 = b01 = 3b03 + a12 = 2a01 − 2b12 − 1 = 0.

That is, the above conditions are the necessary and sufficient conditions for the symmetric sin-
gular points (±1, 0) of system (3) to be bi-centers.

Proof. To show that the two conditions in the theorem give the complete classification on the 
center conditions, we first prove these two conditions are only necessary conditions for the origin 
of system (10) to be center. Assume that the origin of system (10) is a center. Then, all the 
Lyapunov constants at the origin of the system should vanish. From the Lyapunov constants 
given in Theorem 3.1, it is easy to see that V0 = 0 yields δ = 0. Next, we solve V1 = 0 to obtain 
b02 = 0. Then, solving V2 = 0 yields

b03 = 1

6

[
(8b12 − 8a01 + 2)a12 + b01(2b12 − 1)

]
. (11)

Now it can be seen from V3 that there are two cases. First, consider the case 8a12 − b01 = 0, 
with the Lyapunov constants given in (I) of Theorem 3.1. For this case, V3 = 64

15 a12, and all 
higher Lyapunov constants have a factor a12. Thus, letting a12 = 0 yields V3 = V4 = · · · = 0, 
from which we obtain the necessary condition for the origin of system (10) to be a center: a12 =
b01 = b03 = 0, leading to the condition (a).

Next, consider the case 8a12 − b01 �= 0, under which we use b12 to linearly solve V3 = 0 to 
obtain

b12 = 16a12(2a01 − 1) − (4a01 + 1) b01

4(8a12 − b01)
. (12)

Then it is obvious to see from (IIa) that under the condition 2a12 − b01 �= 0, setting b01 = 0
results in V4 = V5 = · · · = 0. This gives another necessary condition for the origin of system (10)
to be a center: b01 = 2a01 − 2b12 − 1 = 3b03 + a12 = 0, leading to the condition (b).

On the other hand, if 2a12 − b01 = 0, it can be seen from (IIb) that setting a12 = 0 yields 

the condition (a). Suppose a12 �= 0. Then, solving V4 = 0 gives a2
12 = 4a2

01+15
32a01

, and then solving 

V5 = 0 yields a30 = 5
324a01

(72a3
01 − 89a2

01 + 27a01 − 45). Then, V6 and V7 become two rational 
functions of a01, which cannot be simultaneously vanished. Thus, (IIb) does not yield center 
conditions.

Thus, the only other possibility for the origin of system (10) to be a center comes from the
conditions: V4 = F1 = F2 = F3 = F4 = 0 (b01 �= 0). This will be discussed in the next subsection.

Now we turn to prove the sufficiency of the conditions (a) and (b). When the condition (a) 
holds, system (10) can be rewritten as
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⎧⎪⎪⎨
⎪⎪⎩

dx1

dt
= −y1 + (1 − 2a01)x1y1 − 2y2

1 − 1

4
(1 − 2a01)x

2
1y1 − 2a03y

3
1 ,

dy1

dt
= x1 − 3

4
x2

1 + b12y
2
1 + 1

8
x3

1 − 1

2
b12x1y

2
1 ,

(y1 > 0);

⎧⎪⎪⎨
⎪⎪⎩

dx1

dt
= −y1 + (1 − 2a01)x1y1 + 2y2

1 − 1
4 (1 − 2a01)x

2
1y1 − 2a03y

3
1 ,

dy1

dt
= x1 − 3

4
x2

1 + b12y
2
1 + 1

8
x3

1 − 1

2
b12x1y

2
1 ,

(y1 < 0),

(13)

showing that the system is symmetric with the x1-axis, and thus by Lemma 2.2, the origin of 
system (10) is a center.

When the condition (b) is satisfied, system (10) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx1

dt
=−y1 + (1 − 2a01)x1y1 − 2(1 + a12)y

2
1

− 1

4
(1 − 2a01)x

2
1y1 + a12x1y

2
1 − 2a03y

3
1 ,

dy1

dt
=x1 − 3

4
x2

1 − 1

2
(1 − 2a01)y

2
1 + 1

8
x3

1 + 1

4
(1 − 2a01)x1y

2
1 − 1

3
a12y

3
1 ,

(y1 > 0);

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx1

dt
=−y1 + (1 − 2a01)x1y1 + 2(1 − a12)y

2
1

− 1

4
(1 − 2a01)x

2
1y1 + a12x1y

2
1 − 2a03y

3
1 ,

dy1

dt
=x1 − 3

4
x2

1 − 1

2
(1 − 2a01)y

2
1 + 1

8
x3

1 + 1

4
(1 − 2a01)x1y

2
1 − 1

3
a12y

3
1 ,

(y1 < 0).

(14)

The upper and lower systems have analytic first integrals,

H1(x1, y1) = −1

2
(x2

1 + y2
1) + 1

4
x3

1 + 1

2
(1 − 2a01)x1y

2
1 − 2

3
(1 + a12)y

3
1 − 1

32
x4

1

+ 1

3
a12x1y

3
1 − 1

8
(1 − 2a01)x

2
1y2

1 − 1

2
a03y

4
1 ,

and

H2(x1, y1) = −1

2
(x2

1 + y2
1) + 1

4
x3

1 + 1

2
(1 − 2a01)x1y

2
1 + 2

3
(1 − a12)y

3
1 − 1

32
x4

1

+ 1

3
a12x1y

3
1 − 1

8
(1 − 2a01)x

2
1y2

1 − 1

2
a03y

4
1 ,

respectively, indicating that H1(x1, 0) = H2(x1, 0). So by Lemma 2.1, the origin of system (10)
is a center.

The proof of Theorem 3.2 is complete. �
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3.2. Bifurcation of limit cycles in system (3)

In this section, we consider the limit cycles bifurcating from the symmetric singular points 
(±1, 0) of (3). We prove the following theorem using the Lyapunov constants given in Theo-
rem 3.1.

Theorem 3.3. System (10) can have 8 small-amplitude limit cycles bifurcating from the origin, 
that is, system (3) can have 16 limit cycles with the 8 ∪ 8 distribution around the singular points 
(1, 0) and (−1, 0).

Proof. It has been shown in proving Theorem 3.2 that setting V0, V1 and V2 zero respectively 
yields δ = 0, b02 = 0 and the solution b03 given in (11). In order to obtain maximal number of 
small-amplitude limit cycles bifurcating from the origin of (10), we have to assume that

(8a12 − b01)(2a12 − b01)b01 �= 0. (15)

Otherwise, if 8a12 − b01 = 0 we can get maximal 3 limit cycles around the origin; and if 2a12 −
b01 = 0, we can obtain maximal 7 limit cycles, as shown in the proof of Theorem 3.2.

So suppose the condition (15) holds. Then, solving V3 = 0 yields the solution b12 given in 
(12). Further, solving V4 = 0 for a03 we obtain

a03 = 1

36(8a12 − b01)(2a12 − b01)

{
36(8a12 − b01)(2a12 + b01)a

2
01

− [
8b01(8a12 − b01)

2(10a12 + b01) − 9(2a12 − b01)(32a12 − b01)
]
a01

− 2(8a12 − b01)(2a12 − b01)(10a12 + b01)(32a12 − b01) + 90(8a12 − b01)
2
}
.

Next, to solve V5 = V6 = V7 = 0, i.e. F1 = F2 = F3 = 0, we use the Maple built-in command 
“eliminate”, eliminate({F1, F2, F3}, a01), to obtain the expression of a01 = a01N

a01D
, where

a01N = −1215(8a12 − b01)
2(64a2

12 + 23476a12b01 − 689b2
01) + 4(2170880a6

12

− 2314804736a5
12b01 + 3406137856a4

12b
2
01 − 1252652096a3

12b
3
01 + 195375952a2

12b
4
01

− 13917038a12b
5
01 + 373277b6

01) + 192b01(8a12 − b01)(14819328a6
12

− 71382720a5
12b01 + 26937688a4

12b
2
01 − 3022718a3

12b
3
01 + 112215a2

12b
4
01 + 232a12b

5
01

+ 10b6
01) + 161280a2

12b
2
01(8a12 − b01)

2(2a12 − b01)(6784a3
12 − 384a2

12b01

− 168a12b
2
01 + 7b3

01)

and

a01D = 18(55040a4
12 + 3456752a3

12b01 − 1293012a2
12b

2
01 + 141454a12b

3
01 − 5861b4

01)

+ 432b01(8a12 − b01)(10752a4
12 + 2631716a3

12b01 − 979246a2
12b

2
01 + 122008a12b

3
01

− 5123b4
01) − 20736a2

12b
2
01(8a12 − b01)

2(8312a2
12 − 7010a12b01 + 329b2

01)

− 3483648a2 b3 (8a − b )3(40a2 − b2 ),
12 01 12 01 12 01
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and two resultants F12 and F13:

F12 = πb01(8a12 − b01)(2a12 − b01)F12a, F13 = b01(8a12 − b01)(2a12 − b01)F13a,

in which F12a, F13a are lengthy polynomials in a12 and b01, which can be found from the 
supplement posted on the journal website. To solve the two equations F12a = F13a = 0, we have

F1213a = Res(F12a,F13a, a12) = C1b
108
01 G1G2,

where C1 is a constant, G1 and G2 are respectively 84th- and 172th-degree polynomials in b01, 
which can be found from the supplement posted on the journal website.

To this end, we need to solve b01 from the equation F1213a = 0. It can be shown that G1 has 
20 real solutions, and G2 has 60 real solutions, which in turn yield corresponding 80 solutions 
for a12. By verifying the original equations F12a = F13a = 0, we take one of them:

b01 = 9.845873500 · · · , a12 = −0.0831832490 · · · .

Then the other five perturbation parameters are equal to

a01 = −21.54010342 · · · , a03 = −0.075427946 · · · , b12 = −21.33758543 · · · ,

b03 = −71.72022380 · · · , b02 = 0.

At the above critical values, the Lyapunov constants become

Vi = 0, i = 1,2, . . . ,7, V8 = −22.67645322 · · · �= 0.

Moreover, at the above critical values, a direct calculation shows that

det

[
∂(V1,V2,V3,V4,V5,V6,V7)

∂(b02, b03, b12, a03, a01, b01, a12)

]
= 1.316056443 · · · × 1010 �= 0,

implying, by Theorem 2.1, that system (10) can have 7 small-amplitude limit cycles bifurcating 
from the origin. Further, a linear perturbation on δ yields additional one limit cycle, giving a total 
of 8 limit cycles around the origin of system (10). Thus, system (3) can have 16 limit cycles 
around the two symmetric singular points (±1, 0).

From the above discussions, we do not find any solutions such that V5 = V6 = V7 = V8 = 0
under the restriction (15). Therefore, except for the two center conditions given in Theorem 3.2, 
no more bi-center conditions are found.

Finally, we check if it is possible to have limit cycles bifurcating from the origin of system 
(3) under the above critical parameter values. A simple computation shows that the zero-order 
Lyapunov constant at the origin of system (3) is equal to e2π(δ+b01) = e2πb01 > 0 for δ = 0, b01 >

0, implying that under the above critical parameter values, the origin of system (3) is an unstable 
focus, and so no more limit cycles can bifurcate from the origin of system (3).

Summarizing the above results we have shown that system (3) has at least 16 limit cycles with 
8 ∪ 8 distribution around the singular points (1, 0) and (−1, 0). �
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4. 18 limit cycles generated by perturbing system (3) under the center condition (a)

In this section, we present our main result of this paper. We want to perturb the system (3)
to generate small-amplitude limit cycles around the two centers (±1, 0). We choose the center 
condition (a) and add cubic perturbations to system (3) to obtain the following perturbed system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx2

dt
= a01y2 + y2

2 + ( 1
2 − a01)x

2
2y2 + a03y

3
2 + ε

[
p00 + 1

2δ(x3
2 − x2)

+p10x2 + p01y2 + p20x
2
2 + p11x2y2 + p02y

2
2 + p30x

3
2 + p21x

2
2y2

+p12x2y
2
2 + p03y

3
2

]
,

dy2

dt
= x2 − x3

2 + b12x2y
2
2 + ε

[
q00 + q10x2 + (δ + q01)y2 + q20x

2
2 + q11x2y2

+q02y
2
2 + q30x

3
2 + q21x

2
2y2 + q12x2y

2
2 + q03y

3
2

]
,

(y2 > 0);

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx2

dt
= a01y2 − y2

2 + ( 1
2 − a01)x

2
2y2 + a03y

3
2 + ε

[−p00 + 1
2δ(x3

2 − x2)

+p10x2 + p01y2 − p20x
2
2 − p11x2y2 − p02y

2
2 + p30x

3
2 + p21x

2
2y2

+p12x2y
2
2 + p03y

3
2

]
,

dy2

dt
= x2 − x3

2 + b12x2y
2
2 + ε

[−q00 + q10x2 + (δ + q01)y2 − q20x
2
2

−q11x2y2 − q02y
2
2 + q30x

3
2 + q21x

2
2y2 + q12x2y

2
2 + q03y

3
2

]
,

(y2 < 0),

(16)

where δ, pij ’s and qij ’s are real parameters, satisfying |δ| � 1 and 0 < ε � 1.
Without of loss of generality, suppose system (16) has Hopf singular points at (±1, 0), which 

requires that

p20 = −p00, q20 = −q00, p30 = −p10, q30 = −q10, q11 = 2p00, q21 = 2p10 − q01.

In order to avoid complicated transformation in computing the Lyapunov constants, we set 
p00 = p10 = 0. Further, solving higher Lyapunov constant equations shows that we may set 
the superfluous parameters (which are not used to solve the equations) to equal zero:

p01 = p02 = p21 = p03 = q10 = q12 = 0,

and choose q00 as a free parameter, which can be used to adjust the order of Lyapunov constants.
Then, for the perturbed system (16) we have the following theorem.

Theorem 4.1. The perturbed system (16) can have at least 18 small-amplitude limit cycles with 
9 each around the singular points (1, 0) and (−1, 0).

Proof. It is easy to verify that system (16) is a switching Z2-equivariant cubic system. Due to 
the symmetry of the system, the Lyapunov constants associated with the singular points (1, 0)

and (−1, 0) are same, hence we only need to consider the Hopf bifurcation at the singular point 
(1, 0). In order to study the limit cycles bifurcating from the Hopf critical point (1, 0), we need 
to compute its Lyapunov constants. To achieve this, we introduce the transformation,

x2 = 1 − X, y2 = 2
√

(1 + q00ε)(1 + 2εp11)
Y, t → 1√ t,
1 + 2εp11 (1 + q00ε)(1 + 2εp11)
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into the upper system of (16), and the transformation

x2 = 1 − X, y2 = 2
√

(1 − q00ε)(1 − 2εp11)

1 − 2εp11
Y, t → 1√

(1 − q00ε)(1 − 2εp11)
t,

into the lower system of (16), so that the singular point (1, 0) of (16) becomes the origin of the 
following system which have been expanded up to ε order,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX

dt
= −Y + 2(1 − 2a01)XY − 4Y 2 − (1 − 2a01)X

2Y − 8a03Y
3

+ ε
[
δ
(
X − 3

2X2 + 1
2X3

) − 2p11(1 − 4a01)XY − 2(q00 + 2p12 − 6p11)Y
2

+2p11(1 − 2a01)X
2Y + 4p12XY 2 − 8a03(q00 − 4p11))Y

3
]
,

dY

dt
= X − 3

2X2 + 2b12Y
2 + 1

2X3 − 2b12XY 2

+ ε
[
δY + q00X

2 + 2q01XY + 2(q02 − 2b12p11)Y
2

− 1
2q00X

3 − q01X
2Y + 4b12p11XY 2 + 4q03Y

3
]
,

(Y > 0);

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX

dt
= −Y + 2(1 − 2a01)XY + 4Y 2 − (1 − 2a01)X

2Y − 8a03Y
3

+ ε
[
δ
(
X − 3

2X2 + 1
2X3

) + 2p11(1 − 4a01)XY − 2(q00 + 2p12 − 6p11)Y
2

−2p11(1 − 2a01)X
2Y + 4p12XY 2 + 8a03(q00 − 4p11)Y

3
]
,

dY

dt
= X − 3

2X2 + 2b12Y
2 + 1

2X3 − 2b12XY 2

+ ε
[
δY − q00X

2 + 2q01XY − 2(q02 − 2b12p11)Y
2

+ 1
2q00X

3 − q01X
2Y − 4b12p11XY 2 + 4q03Y

3
]
,

(Y < 0).

(17)

To prove the existence of 18 small-amplitude limit cycles, we need to find the ε-order Lyapunov 
constants εV1i , i = 0, 1, 2 · · · . First, we have V10 = 2πδ, thus letting δ = 0 yields V10 = 0. Then, 
we obtain

V11 = 4

3

[
4q02 + 8(a01 − b12)p11 + q00 − 2p11

]
.

Solving V11 = 0 for q02 yields

q02 = −1

4

[
8(a01 − b12)p11 + q00 − 2p11

]
. (18)

Next, we solve V12 = 0 for q03 to get

q03 = −1

6

[
4(a01 − b12)(q00 − 6p11 + 2p12) − (2b12 − 1)q01 + 2(6p11 − p12)

]
(19)

Now, in order to solve higher Lyapunov constant equations using the remaining perturbations 
parameters, we assume that F0 = F01F02F03 �= 0, where
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F01 =(2a01 − 2b12 − 1),

F02 =6(4a01 − 4b12 − 3)a03 + 2a01(4a01 − 12b12 − 3)b12 + 16a3
01 − 8a2

01 + 9a01 + 60,

F03 =720a3
01b

3
12 − 3240a3

03 + 10a01(356a01 + 616b12 − 409)a2
03 − {

4b12
[
2a2

01(578a01

+ 475b12) − 1265a2
01 + 450

] + 9(144a4
01 − 352a3

01 + 185a2
01 + 80a01 − 120)

}
a03

+ 6a01(252a3
01 − 255a2

01 + 280)b2
12 + a01(880a4

01 − 2008a3
01 + 1035a2

01 + 864a01

− 1890)b12 + 128a6
01 − 600a5

01 + 658a4
01 − 249a3

01 − 498a2
01 + 525a01 − 360.

Then, solving V13 = 0 for p12 we have

p12 = 1

8
q01 + 1

32
(3a01 + 12a03 − 16)q00 + 3

16

[
a01(4a01 + 4b12 − 3) − 8a03 + 16

]
p11

+ 3

64F01

{
4q01 + [

4a03 − a01(4a01 − 5)
]
q00

}
,

(20)

and solving V14 = 0 for q01 yields

q01 = − 1

4F02

{
12F01

[
2a03

(
40a03 − a01(36a01 + 44b12 − 27)

) + 2b12(4a2
01(5a01 + 3b12)

− 15a2
01 + 24) + 16a4

01 − 24a3
01 + 9a2

01 + 12a01 − 24
]
p11 − [

6a03
(
20(4a01 − 4b12

− 1)a03 − 16a01b12(a01 − 3b12 + 2) − 32a3
01 + 32a2

01 + 9a01 − 40
) + 2b12(12(3a2

01

− 8)b12 + 24a3
01 − 45a2

01 + 176a01 + 48) − a01(36a2
01 − 107a01 + 460)

]
q00

}
(21)

There are two remaining perturbation parameters p11 and q00, but only one is independent. We 
use p11 to solve V15 = 0 to obtain

p11 = − q00

32F01F03

{
5760(10a01 − 10b12 − 3)a3

03 − 80
[
(4a01(142a01 − 236b12 + 141)b12

+ 376a3
01 − 792a2

01 + 83a01 + 144
]
a2

03 − 2
[
9600a2

01b
3
12 − 176(8a3

01 + 115a2
01 − 40)b2

12

− 16b12(424a4
01 − 434a3

01 + 380 − 935a2
01 + 620a01) − 1408a5

01 + 5616a4
01 − 3776a3

01

− 12375a2
01 + 22800a01 + 1200

]
a03 − 3840a3

01b
4
12 − 160a01(4a3

01 − 3a2
01 − 144)b3

12

+ 64a01(50a4
01 − 134a3

01 + 195a2
01 − 426a01 − 345)b2

12 + 2(640a6
01 − 3632a5

01 + 6432a4
01

− 11593a3
01 + 20904a2

01 + 1440a01 − 8320)b12 − 960a6
01 + 3408a5

01 − 364a4
01

+ 14045a3
01 − 19380a2

01 + 23600a01 + 8000
}
.

(22)

It is noted that p11 has a factor q00, and so does q01, and so on, showing that q00 can indeed 
treated as a free parameter.
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Now, for the above solutions, higher Lyapunov constants are obtained as follows:

V16 = 5π q00

64F03
F16, V17 = − q00

846720F03
F17,

V18 = q00

508032F03
F18, V19 = − q00

167650560F03
F19,

where

F16 = 322560a6
03 − 7680a01(74a01 + 178b12 − 145)a5

03 + 64(37680a2
01b

2
12 + 8(4083a3

01

− 7680a2
01 + 1450)b12 + 5256a4

01 − 24948a3
01 + 23715a2

01 − 13700a01 − 6920)a4
03

− 8(285440a3
01b

3
12 + 16a01(23776a3

01 − 43305a2
01 + 16500)b2

12 + 16a01(8176a4
01

− 36602a3
01 + 33330a2

01 − 10818a01 − 22695)b12 + 9728a6
01 − 93904a5

01 + 215200a4
01

− 289487a3
01 + 139716a2

01 + 116400a01 + 60480)a3
03 + 4(308480a4

01b
4
12

+ 160a2
01(3448a3

01 − 6135a2
01 + 3612)b3

12 + 16(18640a6
01 − 79636a5

01 + 70055a4
01

− 6132a3
01 − 75795a2

01 + 8960)b2
12 + 2(24832a7

01 − 217968a6
01 + 470288a5

01

− 533773a4
01 + 60540a3

01 + 411750a2
01 − 5280a01 − 83360)b12 + 1536a8

01

− 33536a7
01 + 153040a6

01 − 386240a5
01 − 65832a3

01 + 514735a4
01 − 31160a2

01

− 7200a01 + 46400)a2
03 − 2(181760a5

01b
5
12 + 320a3

01(1740 − 2199a2
01 + 1256a3

01)b
4
12

+ 64a01(4624a6
01 − 19158a5

01 + 16415a4
01 + 3210a3

01 − 24865a2
01 + 6700)b3

12

+ 4a01(20480a7
01 − 164720a6

01 + 338432a5
01 − 334789a4

01 − 116164a3
01 + 412740a2

01

− 63264a01 − 193200)b2
12 + 4(1536a9

01 − 28288a8
01 + 117456a7

01 − 257720a6
01

+ 277423a5
01 + 77576a4

01 − 191589a3
01 + 54508a2

01 + 114800a01 + 32960)b12

− 3840a9
01 + 37632a8

01 − 174528a7
01 + 423472a6

01 − 366805a5
01 + 192628a4

01

+ 106974a3
01 − 45240a2

01 − 20240a01 − 83840)a03 + 46080a6
01b

6
12 + 384a4

01(308a3
01

− 535a2
01 + 500)b5

12 + 192a2
01(568a6

01 − 2312a5
01 + 1940a4

01 + 1080a3
01 − 3755a2

01

+ 1560)b4
12 + 24(1792a9

01 − 13552a8
01 + 26928a7

01 − 22765a6
01 − 23636a5

01

+ 42890a4
01 − 6528a3

01 − 33480a2
01 + 6400)b3

12 + 12(512a1
010 − 7680a9

01 + 29296a8
01

− 59408a7
01 + 48749a6

01 + 47240a5
01 − 77626a4

01 + 20040a3
01 + 64740a2

01 − 4480a01

− 20800)b2
12 − 2(3840a1

010 − 31488a9
01 + 119488a8

01 − 265264a7
01 + 170709a6

01

+ 58284a5
01 − 231042a4

01 + 57096a3
01 + 53328a2

01 − 13440a01 − 67200)b12

+ 2304a1
010 − 24064a9

01 + 90528a8
01 − 162848a7

01 + 192489a6
01 − 66576a5

01

− 90174a4
01 + 102576a3

01 − 48708a2
01 − 77760,

while F17, F18, F19 are lengthy polynomials in a01, a03, and b12, which can be found from 
the supplement posted on the journal website. Therefore, the best choice for obtaining maximal 
number of limit cycles is to find the solutions of a03, a01 and b12 such that F16 = F17 = F18 = 0, 
but F0F19 �= 0, which results in at most 9 small-amplitude limit cycles from the origin of system 
(17).
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To find the solutions of F16 = F17 = F18 = 0, we again apply the Maple built-in command 

“eliminate” to compute eliminate({F16, F17, F18}, a03), yielding a03 = a03N

2a03D

, and two resultants 

F67 and F68,

F67 = G678F67a, F68 = G678F68a,

where a03N , a03D , F67a , F68a and G678 are polynomials in a01, b12, which can be found from 
the supplement of the paper (as posted on the journal website). We need to find solutions of a01
and b12 such that F67a = F68a = 0, but a03DF0F19 �= 0. For F67a = F68a = 0, we have

F6768a = Res(F67a,F68a, b12),

and F6768a is a lengthy polynomial in a01. Now we solve the polynomial equation F6768a = 0 to 
find the solutions of a01. It can be shown that this polynomial has 23 real roots, which in turn 
yield 23 corresponding solutions for b12. By verifying that F67a = F68a = 0 and a03DF0F19 �= 0, 
we take one of the solutions:

a01 = 0.771804218 · · · , b12 = 1.884124074 · · · =⇒ a03 = 0.859592555 · · · , (23)

for which the other perturbation parameters are equal to

p11 = 0.160897025 · · · q00, p12 = 0.285394345 · · · q00, q01 = 0.140458877 · · · q00,

q02 = 0.188386424 · · · q00, q03 = 0.287078710 · · · q00.

The above critical values can be used to define a critical point, called pc, for which the ε-order 
Lyapunov constants become

V1i = 0, i = 1,2, . . . ,8, V19 = 82.19417558 · · · q00 �= 0, (q00 �= 0).

Moreover, a direct calculation shows that

det

[
∂(V11,V 12,V 13,V14,V15,V16,V17,V18)

∂(p11,p12, q01, q02, q03, a01, b12, a03)

]
= 0.78482376 · · · × 1013q3

00 �= 0, (q00 �= 0),

implying, by Theorem 2.1, that system (17) can indeed have 8 small-amplitude limit cycles bi-
furcating from the center-type singular point (the origin). Finally, a linear perturbation is applied 
to the parameter δ to yield one more small limit cycles, and so system (17) has a total 9 limit 
cycles around the origin. Thus, system (16) can have 18 limit cycles.

The proof of Theorem 4.1 is complete. �
5. Realization of 18 limit cycles

In this section, we present a method to show how to realize the 18 limit cycles arising from 
Hopf bifurcation by perturbing the singular points (1, 0) and (−1, 0) of system (16).

In general, determining the location of single limit cycle is straightforward, and is still easy 
for two limit cycles. However, it is somewhat challenging for finding the locations of three limit 
cycles [33]. Determining the locations of 9 limit cycles around a singular point is extremely hard. 
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The main difficulty comes from how to appropriately choosing perturbations of the parameters 
from the critical point so that the truncated Poincaré succession function can have 9 positive 
real roots. If the perturbations can be performed step by step and choose one parameter at each 
step, then the process is still straightforward. However, if the polynomial equations from the 
Poincaré succession function are coupled, then finding the perturbation is much more difficult. 
In the following, motivated by Liu’s idea [34], we develop a method to realize the 18 limit cycles.

Suppose in general we want to prove the existence of N small-amplitude limit cycles around 
an isolated singular point (the origin), and thus assume that the associated displacement function 
of the system is given by

	(h) = h

(
N∑

i=0

vi h
i + · · ·

)
, (24)

where vi is the ith-order Lyapunov constant. As discussed in Section 4, vi = εV1i + o(ε), i =
0, 1, 2 · · · . Thus, equation (24) can be rewritten as

	(h) = εh

(
N∑

i=0

V1i h
i + · · ·

)
+ o(ε) = εh	̄(h) + o(ε). (25)

Since we are interested in finding small-amplitude limit cycle solutions from the truncated equa-
tion 

∑N
i=0 V1i h

i , we introduce the scaling h → εh (0 < ε � 1) into (25) to obtain

	̄(εh) =
N∑

i=0

V1i ε
ihi + · · · (26)

When ε is small enough, solving for positive real solution of h from 	(εh) = 0 is equivalent to 
solving for positive real solution of h from 	̄(εh) = 0.

Next, we suppose the perturbed Lyapunov constants are given in the form of

V1i = Kiε
N−i + o(εN−i ), i = 0,1,2, · · · ,N − 1, and V1j = Kj + o(1), j ≥ N, (27)

under which equation 	̄(εh) = 0 becomes

εN

[
N∑

i=0

Ki h
i + εhG(ε,h)

]
= 0, (28)

where G(ε, h) is analytic at (0, 0). By implicit function theorem, when ε is small enough, it 
follows from (28) that if the equation

N∑
i=0

Ki x
i = 0 (29)

has N positive real roots hi, i = 1, 2, . . . , N , then the equation 	̄(εh) = 0 has N positive real 
roots, and so the system has N limit cycles near the origin.
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Now, for (16), we have the following theorem.

Theorem 5.1. With the following perturbed parameter values:

δ = 0.1 × 10−77, q00 = −0.001
q02 = −0.0001883900 · · · , q03 = −0.0002870751 · · · ,

p12 = −0.0002853968 · · · , q01 = −0.0001404514 · · · ,

p11 = −0.0001608979 · · · , a01 = 0.7718034681 · · · ,

b12 = 1.8841266284 · · · , a03 = 0.8595955621 · · · ,

the equation 	̄(εh) = 0 has 9 positive real roots, implying that system (16) has 9 limit cycles 
around the origin, and thus correspondingly, system (16) has 18 limit cycles around the two 
systematic singular points (±1, 0).

Proof. Since in the previous section we have shown that the first 6 Lyapunov constant equations: 
V1i = 0, i = 0, 1, . . . , 5 can be solved one by one using the 6 parameters: δ, q02, q03, p12, q01
and p11, respectively, we may use the above described method to first determine the perturbed 
values of the coefficients a01, b12 and a03 such that the truncated equation �̄(εh) has 3 positive 
roots. Once, the 3 roots are found, then we perturb the above mentioned 6 parameters to obtain 
the other 6 positive roots.

Therefore, we use the values of a01, b12 and a03 given in (23) to define a critical point 
(a01c, b12c, a03c), and suppose that the 3 positive roots satisfies the equation:

f (x) = x6(K6 + K7x + K8x
2 + K9x

3),

where K9 = −0.0821941755 · · · with x = 1, 2, 3. Then, solving the equations: f (i) = 0, i =
1, 2, 3 yields

K6 = K8 = 0.4931650534 · · · , K7 = −0.9041359314 · · · . (30)

Next, without loss of generality, we assume that

a01 = a01c + k11ε + k12ε
2 + k13ε

3,

b12 = b12c + k21ε + k22ε
2 + k23ε

3,

a03 = a03c + k31ε + k32ε
2 + k33ε

3.

(31)

Substituting (31) into V16, V17 and V18, and expanding them in Taylor series, we obtain

V16 = E60 + E61ε + E62ε
2 + E63ε

3 + o(ε3),

V17 = E70 + E71ε + E72ε
2 + o(ε2),

V18 = E80 + E81ε + o(ε),

(32)

where Eij are functions of a01, b12 and a03, and so the functions of kij , i, j = 1, 2, 3.
Combining (27), (30) and (32), and balancing the coefficients of like powers of ε give the 

following equations,
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E60 = E61 = E62 = 0,

E70 = E71 = E80 = 0,

E63 = K6 = 0.4931650534 · · · ,

E72 = K7 = −0.9041359314 · · · ,

E81 = K8 = 0.4931650534 · · · .

(33)

Then, solving the equations in (33) yields the solutions:

k11 = −1.5005559300 · · · , k12 = 77.4164584360 · · · , k13 = 4308.6840042932 · · ·
k21 = 5.1087234435 · · · , k22 = −52.3053218513 · · · , k31 = 6.0142433205 · · · ,

k23 = k32 = k33 = 0.

Thus, the perturbed values of the parameters a01, b12, and a03 are obtained from (31) as

a01 = 0.7718042183 · · · − 1.5005559300 · · ·ε + 77.4164584360 · · ·ε2

+ 4308.6840042932 · · ·ε3,

b12 = 1.8841240740 · · · + 5.1087234435 · · ·ε − 52.3053218513 · · ·ε2,

a03 = 0.8595925550 · · · + 6.0142433205 · · ·ε.

Thus, the perturbed Lyapunov constants V16, V17 and V18 becomes

V16 ≈ 0.4931650534 · · ·ε3, V17 ≈ −0.9041359314 · · ·ε2, V18 ≈ 0.4931650534 · · ·ε.

In order for the truncated equation h6(V16 + V17h + V18h
2 + V19h

3) to have 3 positive roots, we 
choose ε = 0.0000005 and obtain the parameter values:

a01 = 0.7718034681 · · · , b12 = 1.8841266284 · · · , a03 = 0.8595955621 · · · ,

and 3 positive roots:

h = 0.15035837 · · · × 10−5, 0.99512380 · · · × 10−6, 0.50125398 · · · × 10−6.

Now we perturb p11 given in (22) as

p11 = p11(a01, b12, a03) − 10−28,

which yields V15 = −0.1847974495 · · · × 10−26, and then the truncated equation h5(V15 +
V16h + V17h

2 + V18h
3 + V19h

4 gives four positive roots:

h = 0.14703859 · · · × 10−5, 0.10800418 · · · × 10−5, 0.41545695 · · · × 10−6,

0.34076758 · · · × 10−7,

the first three of which are very close to that obtained above. Similarly, we can perturb q01 given 
in (21), p12 in (20), q03 in (19), q02 in (18) and δ as
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q01 = q01(a01, b12, a03,p11) − 10−36,

p12 = p12(a01, b12, a03,p11, q01) − 10−46,

q03 = q03(a01, b12, a03,p11, q01,p12) + 10−55,

q02 = q02(a01, b12, a03,p11, q01,p12, q03) − 10−66,

δ = 10−78,

so that the perturbed Laypunov constants are

V10 = 0.628318530 · · · × 10−77, V11 = −0.533333333 · · · × 10−65,

V12 = 0.942477796 · · · × 10−54, V13 = −0.733786184 · · · × 10−44,

V14 = 0.900230757 · · · × 10−35, V15 = −0.184797448 · · · × 10−26,

V16 = 0.652939927 · · · × 10−19, V17 = −0.225929658 · · · × 10−12,

V18 = 0.246578621 · · · × 10−6, V19 = −0.082193928 · · · ,

and then the truncated equation 
∑9

i=0 V1ih
i = 0 yields 9 positive roots:

h1 = 0.1657109744 · · · × 10−11, h2 = 0.4214638433 · · · × 10−11,

h3 = 0.1506345222 · · · × 10−9, h4 = 0.8244924206 · · · × 10−9,

h5 = 0.4932305243 · · · × 10−8, h6 = 0.2511209732 · · · × 10−7,

h7 = 0.5011772531 · · · × 10−6, h8 = 0.9133019498 · · · × 10−6,

h9 = 0.1554457849 · · · × 10−5,

which are approximated amplitudes of the 9 limit cycles.
The proof is complete. �

6. Conclusion

In this paper, we have studied planar switching systems, and applied a computationally effi-
cient algorithm to compute the Lyapunov constants for planar switching systems. With the help 
of this algorithm and Maple build-in commands, we have obtained the center conditions and 
proved the existence of 16 limit cycles for a class of cubic switching systems. Moreover, we 
have used one of the center conditions to construct a special integrable system and then per-
turbed this system to obtain 18 small-amplitude limit cycles, which is a new lower bound on the 
maximal number of small-amplitude limit cycles obtained in such cubic switching systems.
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