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In this paper, we introduce a suitable algebraic structure for efficient computation of the para-
metric normal form of Hopf singularity based on a notion of formal decompositions. Our para-
metric state and time spaces are respectively graded parametric Lie algebra and graded ring. As
a consequence, the parametric state space is also a graded module. Parameter space is observed
as an integral domain as well as a vector space, while the near-identity parameter map acts on
the parametric state space. The method of multiple Lie bracket is used to obtain an infinite order
parametric normal form of codimension-one Hopf singularity. Filtration topology is revisited and
proved that state, parameter and time (near-identity) maps are continuous. Furthermore, para-
metric normal form is a convergent process with respect to filtration topology. All the results
presented in this paper are verified by using Maple.
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formal basis.

1. Introduction

The history of normal form theory goes back to
more than one hundred years ago, when Poincaré
approached the problem of integrating nonlinear
differential equations and developed normal form
theory (see [Poincaré, 1879]). Since then normal
form theory has played a fundamental role in the
study of qualitative behavior of dynamical systems,
e.g. see [Chow & Hale, 1982; Chow et al., 1994;
Dumortier et al., 1991; Kuznetsov, 2004; Liao et al.,
2007]. Classical normal forms are useful, yet neither
unique nor sufficient to fulfil all of its possible appli-
cations. Takens [1973] noticed that classical nor-
mal forms could be further simplified. This finding,
with the invention of computer algebra systems and
its vast applications, has attracted the attention
of many researchers to work in this field. Various
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methods have been developed for computing unique
normal forms. A unique normal form is the simplest
normal form (SNF) in its own style.

The results in the existing literature widely
vary from methods and techniques in practical
and efficient computations to abstract concepts.
The abstract concepts bridges the normal form
theory to other areas of mathematics. Interest-
ingly, some of these results sometimes naively
seem unrelated but they end up being quite
helpful. For example, Sanders [2003, 2005] has
recently paid attention to applications of coho-
mology theory and spectral sequences in the com-
putation of normal forms. Kokubu et al. [1996]
raised the notion of multiple Lie bracket method
and quasi homogeneous normal form theory, see
also [Algaba et al., 2003; Ashkenazi & Chow,
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1988; Chen & Della Dora, 2000; Chen et al.,
2000; Peng & Wang, 2004; Wang et al., 2000].
Baider, Churchill and Sanders [Baider & Churchill,
1988; Baider, 1989; Baider & Sanders, 1991, 1992]
brought up the concept of filtered Lie algebra and
its associated topology in normal form theory for
which the normal forms are convergent. Yu et al.
[Yu, 1999; Yu & Yuan, 2000, 2001; Yu & Leung,
2002; Yu & Yuan, 2003a, 2003b] developed the
theory for efficient computation of normal forms,
based on a refinement of conventional normal forms.
Kuznetsov [2005] considered the normal theory in
an application-oriented way for computation of high
dimensional systems and applied to some practical
problems. Time rescaling was used by Strézyna and
Zoladek [2002, 2003], and Sadovskii [1985] to obtain
the results on orbital equivalence of vector fields,
while Dumortier et al. [1991] paid attention to C'*°-
conjugates, see also [Algaba et al., 2003]. There
are many other important contributions made by
the aforementioned researchers, their colleagues and
other well-known mathematicians in this field.

Most results obtained, and approaches devel-
oped so far have focused on the systems without
perturbation parameters (unfolding). It is evident
that the parametric normal form theory is much
more complicated than, and different from, normal
form without unfolding. This is the main reason
that most results and theorems have been obtained
by using simplified systems without unfolding. How-
ever, in reality all systems contain some parameters,
and thus parametric normal forms are the only use-
ful tool in the direct analysis of engineering and
practical problems. Recently, several researchers
[Yu, 2002; Yu & Leung, 2003; Liao et al., 2007; Yu &
Chen, 2007] have paid particular attention to this
problem. They have extended the efficient comput-
ing normal form theory with their novel formulas
in which the computation of the simplest normal
form (SNF) with unfolding is only involved with
some successive algebraic equations at each degree.
They have also developed efficient Maple programs
to compute the SNF of the systems with parame-
ters for several different singularities. This problem,
however, has not been touched by using other well-
known approaches which have been widely used to
consider systems without unfolding.

In this paper, we introduce an algebraic struc-
ture for computation of infinite order parametric
normal form of Hopf singularity. Our structures
generalize multiple Lie bracket method to paramet-
ric normal form theory which can be modified to

consider other singularities. We prove that the sim-
plest normal form obtained in [Yu & Leung, 2003]
is an infinite order parametric normal form and is
unique. While the efficient computing method rep-
resents the simplest normal form, it is instructive to
reconsider it by other well-known methods such as
multiple Lie bracket method. We compare and unify
the two different approaches. The implementation
of the formulas and results obtained here gener-
ates simpler and more systematic Maple programs.
It has been noticed that the parametric simplest
normal form may not be obtained without time
rescaling and reparametrization [Yu, 2002; Yu &
Leung, 2003; Liao et al., 2007; Yu & Chen, 2007].
Thus, our algebraic structure develops the necessary
tools for time rescaling and reparametrization. For
a good background and some original ideas used in
this paper, we refer the reader to [Jacobson, 1966;
Baider & Churchill, 1988; Chua & Kokubu, 1988;
Baider, 1989; Baider & Sanders, 1991, 1992; Wang,
1993; Kokubu et al., 1996; Chen & Dora, 2000;
Wang et al., 2000; Yu, 2002; Algaba et al., 2003;
Yu & Leung, 2003; Peng & Wang, 2004; Liao et al.,
2007; Yu & Chen, 2007].

The structure of the near-identity change of
state variable, reparametrization, and time rescal-
ing are totally different from each other and there-
fore, they have been studied separately. Unlike the
normal form of a system with no parameters, the
computation of lower order terms depend on higher
order terms. Thus, we have to predict “all” possi-
ble changes and outcomes that may get involved
and then take the best choices. To this end, we
have to determine a solid strategy with regard to
the parametric “time” space and the “complemen-
tary” subspaces, based on the specific singularity
and its conditions. We present this strategy by
means of formal decomposition (and basis) of para-
metric time and state spaces. Thus, all the graded
structures and our algebraic setting are presented in
terms of formal basis and decomposition. This con-
cept is one of the main tools used in this paper. In
order to introduce this concept (analogous concept
of formal power series) we revisit filtration topology
which is among the best approaches of representing
this concept (since, roughly speaking, direct sum is
dense in direct product).

The rest of this paper is organized as follows.
Section 2 introduces formal bases and its associated
decompositions via filtration topology, followed by
a presentation of a Lie algebraic structure for para-
metric state space. Parameter space and parametric
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time space are discussed in Sec. 3. Section 4 presents
a method in obtaining an infinite order parametric
normal form. The general theory and methodology
are then applied to consider parametric normal form
of codimension-1 Hopf singularity in Sec. 5, and
finally conclusions are given in Sec. 6.

2. Formal Basis and Parametric
Lie Algebra .#?

In this section, we present concepts of formal bases,
formal decompositions and parametric state space.
The reader should note that the concepts presented
in the following are known but they are necessary
in defining formal basis and formal decomposition,
which are needed for setting our time rescaling
scheme. We denote F for a field of characteristic
zero throughout this paper.

In this paper, a graded vector space over F is
a vector space V which can be written as a direct
product of the form V' = [[;2, Vi, where V; is a finite
dimensional vector space. For a given n, any element
v € V, is called a homogeneous element of grade n.
This graded structure is associated with a filtration
Ty = {F = [I2;Vi}. Obviously, {F;} con-
stitutes an open local base for zero whose induced
topology is called filtration topology denoted by
T=TF - It is easy to see that 7 is a metric topol-

ogy. Any sequence of {v, }>°; C V is convergent to
v € V if and only if for any N € N, there exists
ko € N such that v — v, € Fy for all n > k. It
is well known that V' is the 7-closure of ®&72,V,
(direct sum).

Now consider %, = {ei]l < i <
N,} (n € N) as a vector basis of V,. Then,
any v € V can be uniquely represented by v =
S0 SV aiel (a, € TF). Since we are inter-
ested in the order of 4 = U2 %,, and £
is a countable set, we fix an order on 4, i.e.
# = {ep}2,. Thus, # decomposes the vector
space V' to a product of one-dimensional vector
spaces, i.e. V = [[°2, ([TY", spang{é?}) is isomor-
phic to [[,2, spang{ey}, while the induced topology
remains unchanged (74 = T e, = Ty{vi}). Thus,
V = {>"12, arex|ar € F}. For a more detailed dis-
cussion see [Baider & Churchill, 1988; Baider, 1989;
Baider & Sanders, 1991, 1992] and the references
therein. We call Z a formal basis (FB) for V.

Example 2.1. Consider the set of all formal power
series over the field F, i.e. F[[z]]. Then, F[[z]]
is a graded vector space where the homogeneous

elements of grade n are exactly the monomials of
grade n. Then {1,z,22,...} with its natural order
is a formal basis.

It is useful to consider decomposition of V
where the components are subspaces of finite
dimensions of larger than one. A sequence {Wy|k €
N} of vector subspaces is called a formal decompo-
sition (FD) of a graded vector space V = [[;2 Vi
(where A is the fixed FB), denoted by V =
152y W, if

1. Wy is finite dimensional and every v € V has a
unique representation of the form v = )27, wy,
(wy, € Wy, for every k);

2. % N W, is an ordered basis for W and & =

iozl(‘% N Wi).

Note that the order of basis (FB) is important
in our setting. Obviously, 74 = TFwy = Ty
Since all graded structures defined in this paper are
also graded vector space over F, to avoid unneces-
sary repetition, the filtration topologies considered
throughout this paper is based on their graded vec-
tor space structure.

Notation 2.2. Let W be a vector subspace of V.
Then, we use my to denote its projection on W,
ie. my : V. — W is a surjective linear map and

wWowW:w%/:WW.

Proposition 2.3. Let V' and W be wvector spaces
over F and L : W — V be a linear map, where
V has an FB % = {e, };2, or a finite ordered basis

B = {en}i;mfv. Then, there exists a “unique” vec-

tor subspace N' C 'V such that

1. V.= L(W)®N. In other words, for any v € V
there exist unique vectors w € L(W) and vy €
N such that v = W + v

2. BNN = {ey,} is either an ordered basis or an
FB for N.

3. For any e, € P there exist a unique vector
w = L(w) (for some w € W) and unique scalars
Any s nys -Gy (RN < M) satisfying e, = W +

N
Zk:l Ony,Cny -

In particular, when W C 'V and L is the identity
map, N represents a unique complementary space

for W in V.

Proof. N is a complement space of L(W) in V.
It is unique since its basis (FB) is considered to
be unique (conditions 2.3.2 and 2.3.3). To con-
struct such complementary space, we just need
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to introduce its basis (FB). Based on condition
2.3, we choose inductively the least natural num-
ber ny in which e,, is not an element of L(W) @
spang{ey, |i < k}. If this procedure is terminated in
a finite process, say m, then ZNN = {e,, |1 <k <
m} and N = spanyp(#Z NN). Otherwise, ZNN =
{enJk € N} and A = {352, an,nla, €F). W

We now introduce an algebraic structure which
represents parametric state space .Z2. While any
V € £? can alternatively be represented by a for-
mal two-vector power series, working with this alge-
braic structure is much easier and more convenient.
Since any vector V € #? can be associated with a
formal two-vector field and any vector field f(z, i)
is associated with a system of differential equation
i = f(x, ), we may call V(V € £?) a vector field
or a system whenever it is appropriate. Let ng
denote the free vector space over F generated by
the set

Br,s = {Xij. Yijli,j € Noyi+j=k+1}, (1)
where X;; and Yj; are mutually distinct objects.

Definition 2.4. Let .2 = [[;2,.%%, denote the
state space without parameters. We define a map
(denoted by square bracket) from Zg x Bs (Bs =
Uzo:()f%)k,S) into gg by

L [ X, X = (0 — m)Xim-1)Gn) +
I X (in) (j+m—1) — X (ma4) (nti-1)5

2. Xon, Yoo = (m = PYoprm-1)(grn)
nY(erq)(ern—l) - qY(ner)(qumfl)v

3 [Ypg Yon] = (m = P)Xprm-1)(g4n)

X (m+q)ptn—1) T 49X @4p) (g+m-1)

for any i,j,m,n,p,q € Nog = N U {0}, see also
[Peng & Wang, 2004]. Note that Xyg and Yy are
not elements of ,2”3 We call

2% = Ziu)] = {Z Vip"|n € No, Vi, € fg,k}
k=0

the parametric state space.

Note that the graded structures defined in this
paper are based on direct product of vector spaces
rather than direct sum which are usually applied
in the literature for defining graded structures, e.g.
see [Jacobson, 1966] and also Remark 1.2 in [Baider,
1989)].

Theorem 2.5. The bracket defined in Definition 2.4
can be uniquely extended on £? such that (<2, [,])
is a graded, of type Z, parametric Lie algebra

over F (where [Vi, u"™, Vi, 1] = [Viy, Vieo Jut™1172),
and the Lie bracket is continuous with respect to
filtration topology 7. Besides (£2,[-,"]) is a Tp-
closed graded Lie subalgebra of (L2 [,-]). More
precisely,

1. There exist an FB for £?, namely &, and
a grading function & defined on % such that
Z5,, = spang (8|, (n)), £7 = spang(5~'(n)),
7 = Hiozogkzv [grgwgnz] C grgz-i—na and
[.i’gm,.iﬂszn] C .i’;ern, for any m,n € Ny.

2. If {vn} and {w,} C £? converge to v and w,
respectively, with respect to Tg. Then, [vy,vp]
converges to [v,w]. FPurthermore, v € £2, when
{vn} C L2 and v, converges to v.

Proof. Let # = {X;;pu™,Yi;pu"|n € No}. We con-
sider a fixed order for # = {e,}2, (Bs =
{en, 172, C #) in the following manner:

1. Lower order elements are designated by lower
degree terms based on a grading function 4. (Our
grading function 0 is given below.)

2. Y}, is before X,,,,, when both of them have the
same degree.

3. The terms without parameters are before the
terms with parameters where they have the same
degree.

Thus, #(%s) is an FB for .£?(.£Z). Now define the
grading function § : Z — Ny as:
6(Xypu") =0(Yijp") =i+j—1+r,
where » € Ny. Then, we have Zg,N =
span{X;;,Yijli+j—1= N},
L= Laye Y Bl (N0,
i+r=N

and L% = .i’;N = {0}, when N < 0. Obviously,
L3, = spang (3] (n), and £% = [}, =
{0 yanenlan, € F}. On the other hand, the
bracket [-,:] is defined on the formal basis %
of 2. Thus, it can be uniquely extended on
ON_ L2 (VN € Ny) as a bilinear map. Therefore,
(Lp, L2 © Ly, and [£8,,,25,] C L& in
for any m,n € Ny. Then, the bracket [-,:] can be

uniquely extended as a continuous bilinear opera-
tion on .Z?, i.e.

neENe
k=n k=m

00
:[ymayn]g H ggzﬂ\m—l—n
k=m+4n
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and [ym,Sy yn,S] C ym—i—n,Sy where yn,S =
[132,,-Z2 .. Since it also satisfies Jacobian identity,

the bracket is a Lie bracket and (.£2, [-,]) is a closed
Lie subalgebra of (£2[,-]). W

It should be noted that A(Ag) is not a basis
for £?(£Z). In fact, any basis for .£?(Z2) has
an uncountable cardinal number, while any formal
basis is a sequence.

Proposition 2.6. Let .,2”[?[ = spanﬂ;{X(kH)kur,
}/v(k+1)k/1/7"| k €Ny, r e No},

23 = {Xyu'li,j,r € Nosi+j > 1}, and

2 = (Yyu'li,jor € Nosi+j > 1},

Then, .iﬂfl and T2 (.,2’]?[) are Tg-closed graded Lie
subalgebras of £?, while T2 (L7) is a Ty-closed

commutative Lie subalgebra. Furthermore, for any
vector V € L2\ L%, we have T2 ([V, Z2)) = {0}

Proof. The claim can be easily shown based on the
following formulas:
[Xijs Xenrya] = (047 =1 = D X(ipn)4n)
X (1)) (n+i-1);
[Xomn, Yigr1)g) = (M =1 = ¢ = 1)Y(m1q)(g1n)
~ WY ntg+1)(g+m-1);
[qua Y(n-i-l)n] =(Mn+q—-p+ 1)X(p+n)(q+n)
— X (nt14q)(p+n—1);
[X(ns1yn Ypal = (2 =P = ¢+ DY g (g4n)
— WY (nt14q)(p+n-1);
and

(X (15> X+ vnl = 200 = ) X (jnt1)(n)»
[X 1) Yig+1)g) = —20Y(n+g+1)(g4n)
Yig+1)g» Yin+1)n] = 0.

Note that the latter structure has been studied in
[Peng & Wang, 2004]. N

Consider the time one-mapping ¢4 (n € R),
given by the flow ¢} generated from x = Y'(x, 1)
|

(x € R™ and Y (x, 1) is a vector field with no lin-
ear terms). Then, the transformation ¢{-(x), a near-
identity change of the state variable, sends the sys-
tem x = f(x, ) to

(qﬁ‘)‘/)*(f(x, w)) = exp(ady)(f(x, 1))
= f(x, 1) +ady f(x, p) + -

1
+ady fxp) + -,

where ady (f(x,pn)) = [Y, f(x, )] and ady = ady o
ady™ ! (Vn € N), e.g. see [Chua & Kokubu, 1988]
and Sec. 3 in [Kokubu et al., 1996]. Thus, ¢, :
L? — £? defined by

3y (V) = exp(ady) (V)

=1
:hénzﬁadlffv YV eZ?H (2
k=0

(the limit is with respect to 74) may represent the
state map associated with Y € #?. It is not hard
to prove that ¢5 (V) (Eq. 2) is Tg-convergent and
well defined for any Y,V € £2.

For any Vk((?) € .iﬂkzo we define the first-order
linear state operator as:

2 2

LEN w0y
ko YN*ko — [YN,kO,Vk(OO)], VN > k.

(1)
One of the key ideas in computing the SNF is to
use all possible vectors to eliminate terms as many
as possible. Therefore, we use multiple Lie bracket
method (e.g. see [Kokubu et al., 1996]) to define an
nth-order state operator associated with a sequence

(0 (k (ko+1) (ko+n—1
v =yl ylot Ly ket

ko+n—1
meN, vt Ve g2 . (3)

Note that the sequence 3 is computed in the normal
form process, e.g. see Theorem 4.3 given in Sec. 4.

Definition 2.7. Define L
(ko+n71)) by

S,N _ 1SN (ko) (ko+1)
(n) _L(n) (Vkoo ) ko-(lj—l )

P
S,N—1
ker(L(nfl) ) < (LR_ky) — LR
Lo i, poii), (form <N — ko),
) (YN—ko—n-i—la s 7YN—1€0) = Z[YN_kO_i’ Vk(o-(l)-jZ)]
=0

SN _ 1SN
and L(n) = L(n_l)

S,N

(for n > N —kg). We call the linear map L

fnj)v the nth-order state operator at degree V.

Lemma 2.8. For any m,n € N we have Im(L(n) ) C Im(L>Y )).

(n+1
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Proof. It is straightforward to prove the lemma
by definition and a similar argument used in
Lemma 3.6 of [Kokubu et al., 1996]. W

3. Parameter Space £™ and
Parametric Time Space #

We call the space of all formal power series in terms
of parameter p, i.e. ™ = F[[u]], as the parameter
space. Let 2" =F and 64 m( ") =r. Then 2™ =
112, 2, where 227 = § ;.. (n), for all n € N.
We consider %7, = {u 12 as the formal basis for
P Let 27 = {pn+YPIYP e T[22, 27} denote
the affine space of the near-identity reparametriza-
tion. Obviously, (£}, 27, | ) is homeomorphic
to ([[nZo %' 77, oo, ) Where Ing% ] e denotes the
relative topology.

Since the elements of y + 22 and . can be

respectively formulated as

¢yr():F—F

Gy r (1) = n+ Yy (),
where YkP € 27 and
V() :F— T,

in which V3, = Vi (u) for any p € F and V;, € £2,
2" may act on parametric Lie algebra #? (via the
parametric map gzbg r,) by

oL (-)
V() =

c P L L
Sy e, V(1)

Z )Y, ()

¢y (Y7,

where Dj; denotes the nth-order formal Frechet
derivative of V' (u) with respect to p, see [Kuznetsov,
2005; Liao et al., 2007]. It is easy to see that the for-
mal sum (4) is Tg-convergent and well defined, i.e.
¢pLp, (V) € L2 for any V € £? and YT € 2.
o' (-) is a continuous map from (27 x £2 1) to
(L% 74), where T denotes the Tikhonov topology
with respect to T, |p, and 7.

Definition 3.1. Let k be the least number satisfy-
ing Du(Vk(k)) # 0, ko < k < N. Consider the linear
map
P7N .
L(k) S LN

k
Y g1 = Du(Vk( ))Ylg—k-i-l

and Lf’ﬁv = Lf’jjl), for n > k. When n < k, let

L{;? and L(n 1) be a zero operator. Then, we call

Lfgv the parameter operator at degree N. So, we

have Tm(L (") € Im(L Vn,N eN.

Note that D (Vi(1)(YT)" = 0 (Vi(n) € £2)
implies DZ‘(Vk(,u))(YP)m =0 (Vm,m >n). When
the bifurcation parameter is multidimensional, how-
ever, this statement is not true in general and
then, the structure of the parameter operators is
more complicated. This requires developing a new
approach, which will be discussed in a separate
work.

Next, we turn to construct an appropriate ring
structure for parametric time space.

(i)

Theorem 3.2. Let %y = [[;°g %', where %' =
FZ; and {Z;}; is an infinite sequence of distinct
objects. Then, %y can be associated with a ring
structure for which the parametric time space X =
Rol[p]] is an integral domain. There exists a grad-
ing function 8z defined on By = {Z;u"} satis-
fying {0} = spanpdyp (k) = spangd (VE < 0),
FZy = spanpdz '(0), and %, = spanpdy (k)
such that Z = ([0 PRrs BmPn < Rmin, and
BR C R, for all m,n € Ng. In other words,
Z is a graded ring and Xy is a graded subring of X% .

Proof. Consider the natural vector space structure
on %y over F as (%, +,-). Define

a0 : | JFZim — Z (5)

op(aZip”)=2i+r, VYacF.

Then,

RN = Z FZu", VYN €N,
2i+r=N

and Zy = {0} for any N < 0. Let By = {Z;i"}
(Bw, C PBz) be the fixed FB for #Z (%y) whose
order must obey the following rules:

1. The terms of lower degrees are in lower orders.

2. The terms without parameters are before the
terms with parameters, provided they have the
same degree.

Obviously, Bz, = {Zi}2,. Thus, %y =
{>°2aiZila; € F}. Now for any z1,2zy € % define



Int. J. Bifurcation Chaos 2008.18:3393-3408. Downloaded from www.worldscientific.com
by UNIVERSITY OF WESTERN ONTARIO WESTERN LIBRARIES on 07/25/12. For personal use only.

Infinite Order Parametric Normal Form of Hopf Singularity 3399

the operation * on %, by

Ty (2) = Togn (21 * 22)
n

- Z T gnt (21) * 7o (22)

k=0
n
- Z al(nfk)a@an’ (6)
k=0
where z; = Y ainZy,, for ¢ = 1,2. It is

not very difficult to verify that Eq. (6) is 7, -
convergent, x is a well-defined continuous opera-
tion, and (%o, +,*) is an integral domain. Thus,
* can be uniquely extended on % as a con-
tinuous operation such that Z; pu™ x Z,pu™? =
Ziy+igt™ 172 (Viy,i9,7m1,72 € Np). As a result, Z =
Ho|[p]] is an integral domain and Zy = 14. Further-
more, ZN, %N, < ZN,+N,, where the notation * is
omitted for simplicity. B

Theorem 3.3. There exists a continuous scalar
product from % x L% to L? such that £? is a
torsion-free graded left Z-module of type Z over
the graded ring Z. More precisely, %N1$J%2 C
.i”N N, (YN1,Na € No). In particular, L2 s a
graded % -submodule of L2, while .,2’3 s just an Zg-
submodule of £2.

Proof. We define the scalar product as follows:

* o ,%7%7 X f@‘gz — ,%{gQ

Ziﬂrl * anﬂm - X(i+m)(i+n):u'n+r2

Ziﬂrl * Y'Trm,U'T2 - Y(ier)(iJrn):U'T1 L

Then, it can be uniquely extended as a continu-
ous operator x : # x £? — £?. Since Z is an
integral domain, £2 is a torsion-free %Z-module.
It is easy to see that %y, 2%, C £x, .y, and
RN 131%2 C ,2”1%1 +N,» Where x is dropped for con-
venience. Because Z.£7 = .,2’]3 and %0.,2’3 = .,2’3,
ZLZ is a graded Z-submodule of Z? and 7 is a
graded Zp-submodule. W

In practice, the near-identity time rescaling is
a function of real numbers, given as
pLr():R—R
yr(t) = L+ YT (D),
and time map ¢;‘CT*(') ivs defined by ¢i, (V) =
V + YTV, see [Sadovskii, 1985; Dumortier, 1991;

Strézyna & Zoladek, 2002; Algaba et al., 2003; Yu &
Leung, 2003]. So, the affine space Zr = 1+][[ | %

may represent the space of near-identity time rescal-
ings, while time rescaling map is defined by

oL T x L* — L2,
oI (YT, V)=l (V) =V +YTV.

Obviously, ¢! is well defined and is continuous with
respect to the filtration topologies.

Remark 3.4. One may want to define the first-order
time linear operator as

LT’N : ‘@N*ko — .ﬁ/ﬂ]%
YR = Y Vi),

However, the parametric time space is a torsion-
free ring. Therefore, the above linear operator is an
injective transformation and thus its kernel does not
have nonzero terms in order to define higher-order
time operators. It, however, is evident that some
terms in its domain may not be useful via this lin-
ear operator while we need to use them to eliminate
some higher-order terms. This, in fact, has led us to
the innovation of FD.

Based on the sequence (3) and a parametric
time space decomposition:

R =1+ [[ % (Where Fon = Ky @%ﬁo“) :
n=1 =0
(7)

we shall define the time operators, namely Laﬁv

Laﬁv is used to determine the time solution Y7V at
step N, which is specifically designed to eliminate
terms not only at degree N but also some terms
with degrees hlgher than N. To achieve this, we use
the notation %A? ko tO indicate that the homoge-
neous time terms of degree N — kg in this subspace
of # are used to eliminate any remaining terms in

the system which belong to F.Z 2 ﬂ%f{?Jr,zOV(kOH).

ko+1
Therefore, Lz;zév is defined by

N—ko

TN k‘0+l
EB%N o 2 Lt

(YT,k‘o “+n YT,k0+1 T k‘o

ZYT ko-‘rz (ko+1i)
N—ko """ N—ko ’

o+z

where YTkOH € %kﬁl (n < N — kp). Let
T,N TN

Ly = Loy Vn > N — ko). Note that ZY
denotes the unused time subspace. Our normal

form largely depends on parametric time space
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decomposition (7). Thus, this decomposition is very
important in order to achieve an infinite order nor-
mal form, see Egs. (15) and (16). We have the fol-
lowing result, similar to Lemma 2.8.

Lemma 3.5. Im(L>"Y) C Im(L"Y ) Vn, N € N.

(n) (+1)

4. Infinite Order Parametric
Normal Forms

The notion of finite order parametric normal forms
is different from that of systems with no parame-
ters. Although we have enough tools to discuss the
notion here, it is beyond the scope of this paper.
Therefore, we directly describe infinite order para-
metric normal forms.

Remark 4.1. Note that the terms in the space

[Ako] [Ako]
—1i i ko+i

Do omm oLy = @ Ayt Vo) ®

- i=1

are associated with time operators (solutions) of
degrees less than N, which have actual designed
effect on terms of degree N. Thus, these terms
appear in YN~ (1 < 4 < [N5K]) as unknowns
which are to be predicted (computed in advance
until step N). For instance, let

Nko

(ko+i
@ %}@4};0 zvko—?—zl @NN7 (9)

where Ny is the unique subspace obtained (with
a simple argument) via Proposition 2.3. Then, Ny
indeed denotes the space terms (degree N) which
are not eliminated by time solutions Y% (k < N).

Notation 4.2. Let
ms.pr(Z7) = Im(LG) + Tm (L)
[n ko]
2

ko+i (ko+1)
+ Z '@no k:) szoJOri ’

and N T denote the unique space obtained from
PI"OpOSlthH 2.3 by s pr(L2) = (Im(L‘(gn?)
Im( )) ./\/

Let V(O) — V(ko) — Zzo:ko Vk(kO)a Where Vk(ko) c

.i”kz and Vk(fo) # 0. Assume the parametric time

space decomposition (7) is given. Obviously, the
Siko+1 S,ko+1 Pko+1 Pko+1
operators L(l)0 L(k ?H) and L( )0 L(k ?H)

can be defined. Thus, via a simple argument, Propo-

smon 2.3 provides a unique complementary space
N BT which satisfies

S,P,T
Ly =mspr(LR) BNy T, (10)
when N = kg + 1. Then, there exist state solution
Ys’koj“l, parameter solution Y ¥+ and time solu-
tion YT-ko+1 such that

T P S k
= ¢y yToko+1 o ¢YP,k0+1* © ¢yS,ko+1*(V( O))

ko) ko+1
= v gyt o,

v (ko+1)

(ko),S,P.T S,P,T
Vit 1 € ./\/kOJrl , and

and ¢;€T,ko+1 are the state,
*

where Vk(kﬂrl)

¢YS,kO+1*7 ¢YP,kO+1*
parameter, and time maps associated with
ySkotl yPkotl and yTkotl  respectively. Note
that the time terms associated with %{m“ in
yTko+1 are unknown. In fact, the sign of Y7 is
used to distinguish a completely known time solu-
tion (Y7") from a partially known time solution
(YT) at each step. Obviously, although Vk(kﬂrl)
(and h.o.t) depend on these unknowns, it still can
be used to determine the operators L‘(g’kOJr)2 and

Lﬁéfi;)z . By taking into account the decomposition

(10) when N = ko + 2, there exist state solution
Y Sko+2 parameter solution Y /#0012 and time solu-
tion YT-k0+2 such that

ykot2) — 4T TR+ © BY pigrz, © Bysigra (V)

=S v+ v o,
i<ko

(ko+2) (k0+1) S,P, T S, P, T
where V0% = V) € N5, and the

time solution Y Tko+2 yT#ko+2 is completely
determined. However, some terms associated with
52 and 25 in YTH#0+2 are the new unknowns
in the system.

Now consider the decomposition (10) (N =

k+ 1), where L(]; +1) and Lgf:{) are determined by
the mathematical induction hypothesis. There exist
state solution Y*F+1 parameter solution Y <+,
time solution Y7**+1 and unique vector VD such

k+1
that
y kD) ¢£T7k+1 o (ﬁ}lip,k“* o ¢$/S,k+1* (V(ko))

=S v+ v¥Y p o,

i<k
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where Vkﬁrl) e N, lf JﬁT and the unknowns are the

time terms associated with
%ﬁfjﬁo in yIm
ko<m<k+1&k+1—-—m<i<m-— k.

where

Clearly, for a natural number m € N at the step k+1
with k& > 2m— kg, the time solution Y7 = yTim ig
completely determined. Thus, in general, to obtain
the time solution Y7V, we may need to predict
the process for all steps less than and equal to
2N — kg + 1. Therefore, for any natural number N
there exist YSN ¢ £2 YPN ¢ om yT.N ¢ g,
and unique vector V]S,N) eN; j\gf’P’T C #2 such that

VIN=1) is transformed to
@N(V(Nfl)) _ (V(Nfl))

(V(Nfl),S)

ngt,N* o ¢$P,N* © ¢1S}S,N*

T P
= ¢yT,N* o ¢yP,N*

= ¢1TVTN (VISP
- Z vt Ly 4o,

= V(N)’ (11)

implying that
o0
VO = 3 g ooy o B (V)
N=ko
where @y, (V) = ko),
dy_q--- 0 @kO(V(kO)) € /\/j\qf’P’T and ./\/']\S,’P’T is
spanned by ZNNyT (where 2 is the FB), V() e
Z£? is well defined. Besides, V() — V(N) ¢ Zy
and thus, V() ig convergent. In other words, the
computation of normal form is a convergent process

with respect to filtration topology 74. Summarizing
above discussions leads to the following theorem.

Since mg2 o Oy o

Theorem 4.3. Let % be the formal basis in
Theorem 2.5 and

Hr =1+ H Dy, (where Ry, = %’{ @%ffbo“) ,
n=1 =0
(12)

be a parametric time space decomposition. Then, for

any V € L2,

ZV(O WV e 22 v 20,
k=ko
(13)

. (ko+i)
there exists a sequence of vectors {VkOJrZ ey C

L? such that by a sequence of near-identity
change of state wvariable, time rescaling and
reparametrization, V can be sent to a normal form

(koJrl koJrl S, P, T
k'0+’L 0+Z € Nk‘ +1 )’ (14)

where

2 = (m@ﬁ;’;) +Im(L)))

2
ko+i (ko+1) S,P,T
+ Z ‘@n ko— kao-l-z >@Nn ’

and ./\/'nS’P’T follows Proposition 2.3. In addition,
V(®) s convergent with respect to filtration

topology T4.

We call the vector field V() defined in
Theorem 4.3 as an infinite order parametric normal
form associated with parametric time space decom-
position (12). It is evident that an ideal approach
is to properly use time terms as much as possi-
ble to simplify the system. Therefore, an admissible
approach may follow the conditions:

L2 = I(LS”)@I( M e SNY

S,P,T
n () SN

(15)

dimp ./\/ 5P Z dimp( Rt ), and

n—ko—1i/"?

AV, V( e WSPT(.,%?) (Vn, k € Np).
(16)

Throughout this paper we assume the conditions
(15) and (16) are satisfied for infinite order normal
forms. Note that the conditions (15) and (16) lead
to the computation of normal form process (at each
step V) to be freely split into four phases which
can be briefly expressed by the following decom-
positions (uniquely obtained via Proposition 2.3):

decomposition (9), Ny = Im(L> N )@NS,NS =
Im(L(N ) ® No¥, and NP = %]]i,o_ko\/,ffo) ®
./\/J‘\g,Pt. One may notice that finding the solu-
tions (YN, VPN YN and V]S,N)) via a four-
phase step is much easier and more efficient than

finding them in a one-phase step (when the condi-
tions (15) and (16) do not hold).
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5. Parametric Normal Form of Hopf
Singularity

In this section, we apply the results obtained in
the previous sections to derive the parametric nor-
mal form of a planar formal vector field with
codimension-1 Hopf singularity. Let H? = Yjo +
[12,-%? denote the parametric Hopf singularity
space.

Theorem 5.1.  Assume a(lg)l(agl)o - a(Q%)Obg% -

g%b%o) #£ 0. Consider V) € H2, given by

o0

v = Y10 + Z E;)])QXUN
it jtk=2,i+j>1

o0
0
S D L (17)
i+j+k=2,i+j>1

and a parametric time space decomposition

Hr = 1+10_OI Dy,
n=1

where
‘@gk—f—l = Fp?*+, %2219-1-1 =0,
A, =Fu*k, %% =FZy, and (19)
F =0 (Vi, 04i#2),

while Y = EBEC ]FZ w2k (Yn € N). Then,
by a sequence of near-identity change of state
variables, time rescaling maps and reparametriza-
tion maps, VO given in (17) can be transformed
to an infinite order parametric normal form:

V() =y + ag%)leo,u + aézl)onl

+ Z b Z+1 z+1 (20)
2 0 0 0) , (0
where aél)o = aél)o (ago)obgl)o gl)obgo)o)-

Proof. The FB of £? is 8 = Uy_o%Bn =
{Xiju",Yiju"|N =i+ j+r—1}, where By is the
basis of Xﬁ, Note that the same order described
in Theorem 2.5 is assumed for #. Consider (for
N >1)

YN — [YN, YIO]-

(= @i ) ag)

Then,

Im(L%;V) = SpanIE'{XijﬂT, Yij/ﬂ’N =i+j+r—1,
i#j+ 1} C LE\LE,

with ker(L(j)") = 7. Let
S,N a’gnnrl) r
Yo = > — Yo
m4n+r=N+1n+1#m
binrr
- X r
+ n+tl-m mnib

and Zp N denote the ordered basis of .,2’]3 N =
D%I?IN' Therefore, we have

Brige = {X(hmri 1) her) 1 Yimr i 1)y 12 oo,
and

B2k = {X (b—ri1)(b—ry >

Yv(k—r-l—l)(k—r)MQT—’—l}f:Oa
where their orders follow the order of %. Thus, fol-
lowing Proposition 2.3 we obtain
./\/'S’Qk = spang B, and

S, 2k+1
N = spang By 2k+1-

As a consequence, we have /\/g) = spangp{Xiou,
Yiop}. Since D, (Y19) = 0, we have Im(L ﬁ)l) = 0.

Obviously, Im(L (1)) = spang{Yiou}. So, we choose

Yyl = bg%)lu € % = % as the time solution.

Thus, by Proposition 2.3 we have

L = (Im(LG})) + Im(L()) + (L)) @ NP5,

where le PT _ spanp{ Xjop}. On the other hand,
WWS,P,T(gf)(stpaT(glz)) = ng.pr(Z?). Hence,

Vl(l) = ag%)leo,u,
and

Ly ke (LY ™) x Z5 — 2%
1
(¥ Y = 1Y) ] + [V, Yaol.
Now based on the formulas,
1 0
[X(n—i—l)na V1( )] = 2”“50)1X(n+1)n/%

and

1 0
[Yv(nJrl)na ‘/1( )] - 2na’(lo)lyv(nJrl)n/%
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we choose (for k> 1)

k—1 . (2k—1)

af (k—r+1)(k—r)2 _
Z - D TX(kfrJrl)(kfr)MQT !
=1 2(k— 7“)%01

k—1 b (2k—1)
(k— r+1 (k—r)2r 2r—1
(k—r41)(k—r)H )
=1 2(k —7")@101
k=1 ,(2F)

Y2k+1 k r+1)( 2r+1) o
Z (0) (k—r-i—l)(k—r)lu’
r=0 —7")@101
k—1 b 2k)

(k—r+1)(k—7)(2r+1) o
Z 0) (k—r+1)(k—r)H " 5
r=0 —7")@101

and VSN = YN 4+ Y(g)N This yields

N(Z’)QN = spanp{X10p*", Yiopu*"
X(N—}—I)NaY(N—i-l)N}a (21)
and

Ng’)QNH = spang{ X1op®V T, Yiou®N T} (22)

Further, noticing that

ng(y(%l) = —bl Xa0 + afonYao + b{Jp X1

ot )
—ayoY11 + %XOQ - %Yoz,

and

Tspang{ X1 } (ady(%l (7-(‘5?2 (V(O) ))

0) , (0 0
= 2(‘“&0)05751)0 - agl)obgo)o)le

= _Wspan]F{X21}(a’dY(~?)l (ng (‘/’(0)))7
by Eq. (2) we have

0),S 0 0) (0 0) (0
ass” = ablo — (asgebito +aliobion)  (23)

Let Y2 = (a102/—a101)p? and Y712 = 5(10)2:“ +
wZ € A ® B = PR Then, Im(L(Q)) =

spanr{Xm'uZ}’ where Lg’f — Lg)Q and
ﬂrff(Im(Lg)z)) = spanp{Yiou?}. Hence, by

Proposition 2.3 this leads to

25 = (Im(L33)) + Im(L{;f)

+ 7oz (Im(L5)))) & Ny,

where
S.PT
N0 = spang{Xa1, Y21},

7 (In(LE) = 1o, and 2 = 2 = {0},

Therefore, aél)O’SXgl is not effected by the state,

time and parameter maps due to the degrees of
1 and 2 (see Proposition 2.6). This implies that
asyy = G975 , and then by Eq. (23) we obtain
2 0 0 0) 1.(0 2
asy = a(21)02— (abubish + aiTobsiy)- So, Va2 =
a6 Xor + b5y Var.
SN

Now let K3 = T2 (ker(L ®) ) =

spang{ X1op™¥ 1, Yiou™N "1}, Then,

2’ YQIMALQ} c LS’N

[Kév_lvvf)] = Span]F{XQIMNi (2)

2

Q(ker(LS ) = ker(adKévq(VQ( )

3)
= spang{Yiou" 2},
and [K3 ™' Y] = 0 € LY (Vi). There-
fore, Tm(L33") = Tm(LyY) (VN > 2), and
Ty (ker(Li)') = {0} (Vi>2).
The parameter operator at degree N is
defined by

KY =
3 =Ty

Ly« PR — PR (YN,N=>1),
where
LY (Prp™) = algh Xa0 Dyu(p) Py
= o\ Py Xyop.
Thus,
Im(Lg’)N) = spangp{ X1op" } (24)

and the parameter solution can be chosen as
YEN = () /—a{D) . Note that Ly = Ly
(VN € N).

Also note that Eq. (23) implies a2210 # 0, which
leads to a generic Hopf singularity case. B]Q]I the tljrn]\e[
decomposition (18)—(19), we obtain L( = Lo
(VN > 2) and

(2) LN — LR D L1 ® Ly

YTN YN (Yig + afQ) Xiop + aSip Xo1 + bSipYa1).
Thus, we choose

yT:2k+1 _ bgo(%kﬂ)/‘%ﬂ c %gkﬂ’ k>0,
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and (when N =2k > 1)
VTN = —bion Vi + oo Zy € B, © B, (25)
Now by recalling the formulas

2 2
Yiht1)ks VQ( )] = 274@(21)()Y(k+2)(k+1)7

Since ﬂgg(Y(‘g)N) =0 (when N € N.), we obtain

myz omgr L (Ve V2 ]) = 0.

Furthermore, Proposition 2.6 implies that

and T (YGY, V39 =0 (YN €N). So by Eq. (25),
(27 _ (2) _
[X(k-l—l)ka vy | =2(k - 1)a210X(k+2)(k+1) agi?nm = o@kag(()))l + agiil)lli’ls. On the other hand,
2
— 200 Y2 k1), O @S
we have (for N =2k + 1) y Sty _ @201 + Qpy1ykl
(2k) (2k) Tog oy (Yo ) = - () (k+1)k
- Q(Ys,zkﬂ) g1k . b(k+1)k1 | @101
Z = E+DE T — oy L (k+1ks
5@ 2k:a§%)1 ( 2k:a§%)1 and thus
and
5,2k+1 1,(2)
SN 1,(2 T2 OT 2 Y, ,V
g2 © 7TiﬂsQ,ijLQ([Y(Q) ’VQ( )]) “x 9292’”12([ ) ! D
— 0 2k—1),5, (2
_ k- 1a(2k—1) o x =TT 0 (0‘2ka(10)1 + aEkJrl)])gl )agl)()X(k+2)(k+1)'
- PO (k+1)k19210* (k+2) (k+1)- kajgy
@101
Therefore, we have
(2k-+1) k=1 (0) (2k—1),5\ (2) (2) (2k—1),8
A k12)(k+1)0 — _m(a%%m T Q)i Jasio + Qarasiy + @ (k12)(k+1)0
101
0) (2 2k—1),5 (2 0) (2k—1),8
B O‘2ka§0)1a§1)0 — (k- 1)“Ek+1);2;1 aél)o + kago)lagkm)()kﬂ)o
= 5 .
kago)1
Since agii;§2k+1)o = agii)é‘)g(kﬂ)o, in order to have agi{fg)?()kﬂ)o = 0, we only need to set agr =
2k—1),5\ ; (0 2k—1),8 2
(((k = Va1 i) /alh) = ((kales b5 1) /aSiy), namely
b 1)a(2k71),5 L (2k=1),S
T2k _ T2k 3 (2k—1) 2k ( (k+1)k1 (k+2)(k+1)0 0 2
Y == Y — _b10(2]€) + (0) - (2) Zk- E ‘@2]@‘ @ ‘%2]’»"
@101 @210

Thereby, the following holds:

Ly = (Im(LS’Qk) + Im(LP’%) + %gkvo(o) + %221@72‘/2(2)) @st}éP’T

2) 1)

s
where N7 = spanp{Yjuiipn}, #9Yie =

2 _
7oz (L)) and %23, Vs? = 7 ya (Im(L ).

2
By Egs. (21) and (24) we have

(2)
s
NQ;;P = Spaﬂy{ylou%, Xkt 1)k Ykt 1)k §»
and thus dimp NQSk’P — dimp NQ‘%P’T = dimp 2, +

dimp %gk =2, and

(%54
A = @@ FZy"?%  (Vn).
k=1

(N =2k > 2),

|
Then,

FG Y0 C Im(LGF) + 25,V

A5 Xron € Tm(LG5) + Tm(L(),

YYD C (LG, and Y © Im(L35)
(Vi,i > 1).

When N = 2k +1 > 1, by Egs. (22) and (24)
we have

S,2k+1 P2k+1 0
$22k+1 = Im(L(g) * ) S Im(L(l) * ) @%gk—i—lvb( )7

and dimp ./\/QSk’f1 — dimy Ni_]:fr = dimp 29, = 1.
This completes the proof. H
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Now we are ready to prove that the obtained
infinite order parametric normal form of Hopf singu-
larity [see Eq. (20)] is unique, see also Theorem 4.2
in [Kokubu et al., 1996].

Theorem 5.2. Let V,W € £? be two infinite order
parametric normal forms associated with the para-
metric time space decomposition (18)—(19), where

V =y
= k
= AR
k=0
(2)

= Y0+ ag%)leo,u + ayyXa1
(24)
+ Z b(z-l—l)z (i+1)i (26)

and ag%)lamo # 0. If there exists a permutation o on

{S,P, T} with
!

173
Nen—1 [t (A==t N-1
n=1 k=1 i=1 j=1

while Y%’+1 =

Wi =V = adys(Yio) + ¥, V10 € AP 0TV

0 Vk € Ny. Therefore,

=0, YS € ker(L?!

Thus, Wl(l) = V(l) B

IX = I;V. Since

), and

2
2 2 2—i 0
WQ( ) - VQ( )= ZainS(VQ(fi )) + a’(lo)leO(YQP)
i=1

+ YQT’OYm +d1Yo1,

A
]

3 3 ﬁD”(ad@s(
22 2w

m=ki+jn+ko r=

e’}

=Y v (e,
n=1
0o

P=yvP e,
n=2

and

9]
YT: Z YnT,O_f_Y;;LJ (YTT70 — Cnu’n7 Y277;71 _ ann)’
n=1

o(P)

o(S
such that W = gszJ(T) 0Py o(r), ongY(o()S)*(V). Then,

V=W, YT =YP =0, and Y° € ker(ady).
Proof. Let IX, = 7r57p7T(.,§,’]%), where the right-

hand side is associated with V. For our con-
venience, consider Vo= > Vk) and W =

> ko W, , where V( ) W,gk) € L2 Tt is easy to
see that k:o =0, Wéo) = Y719 and IY = I}’V. Let us

consider the case when o is the identity permuta-
tion. Since W = gbr{,T* o gb)]ip* o gzbf,s*(V), we have

[X41]

1 o (N—(i—1)n) n
HDHVN—(i—l)n (Yz‘p)

—_

T.r N—kz
¥ Tadfs (V)

N—ki—(j—1)n n
e o)

1
1 i—1)n—
Z 'YTk0+TDnv(N( 1) ])(sz)
mn

(i=L)n—j

1
1 m—ki—jn n
> D ady s (V)

nlk! m—ki—jn
0

and Wi — v — d1Yy € NOPT ATV, we have
VIO —vFP =0, (Y5, YF) € ker(Lg’Q) and W% =
VQ(Q) +d1Yo1.

Now by induction on [ € N, consider
Y0 =vP =0, (V°¥,...Y) €ker(LV)

J
(Vj,j <21),
Wi(i) _ Vi(i)’ v/l =0 (Vi,i<2l), and

l l
Wyt = Vit + diY .-
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Due to induction hypothesis, ./\/QSlfl’T

both W and V. Thus, Yo ' V") = a{0di X 41pm,

is the same for

1 0
Duvl( )(YJZH) = CL§0)1X10Y2IZ+17 and
(21+1) (21+1)
W21+1 - V21+1

20+1

A1—i 0

- (Z adnS(VQ(HJf—i )) + ago)1le(l+1)lM>
=1

0
+ a(10)1X10Y21?+1 + Y;lem-

241 (2141 o0 S,P.T
Then, W2(1+1 ) - Var ) e Ty NNy = {0}
This shows that Y212+1 = Y;{fl = 0, WQ(ZQJZII) =
V;ﬁf{l), and

. S,2041
(Y15, LYYy Y2§+1) € ker(L(21+1) );

where Yﬁ = Yflq— (di/21) X (141)1- On the other hand,

242
(2042) _ ,(21+2) (21+2—1)
Was” = Voo™ + Z ainSV21+24
i=1

+ dla&%)1X(l+1)lY2p + Yz?fzyl(J
2
+ (di1 + dbS)Ys2)041)

1 2
+ a§0)1X10Y21;+2 + dlaél)X(l+2)(l+1)7
which implies that

2142 2142 2
W2(1+J§ ) - VQ(H-JQF )~ (dpr + dlbél))y(z+2)(z+1)
€ Tyia NNy Y3 = {0}

142
Therefore,
T,0 oS S
dp = Y21+2 = Y212+2 =0, Yy =Yy,
2 2 2042 2042
WQ(Z = VQ(l )’ W2(l+2 = V2(1+2 : + dl+1Y(l+2)(l+1)7

and (Y%,...,Y5,,) € ker(Ly”5®). This implies
Y9 € ker(ady), since ker(ady) is 74-closed.
The proof is complete. H

The following corollary states that the simplest
normal form obtained in Theorem 3 of [Yu & Leung,
2003] is an infinite order normal form defined in this

paper.

Corollary 5.3. Consider the system

dx dy
Ea” + an = fi(z,y, )0z + fo(z,y, 1)0y

o0

— 20y + Z

it jrk=2,i+j>1
X (aijkxiyjﬂkam + ﬂijkxiyjﬂkay)a
(27)

= yaa:

where p € R, and assume A1 As10 # 0, where

1
Az = 5[3(04300 + Bosgo) + 120 + P10

— (1100200 + 110020)
+2(B200200 — Bo200020)
+ Bo206110 + B2005110)

and Ajgr = (@101 + Bo11)/2. Then, the system is
a codimension-1 generic Hopf singularity and by a
sequence of near-identity change of state variable,
time rescaling and reparametrization maps, system
(27) can be transformed to an infinite order para-
metric normal form:

d do
d—?(‘?p + E(% = p(Aso1 1t + A210p%)0,

. (2k) 2k
+ <1 + D bl ) s,
k=1

(2n)
(n+1)n
in terms of ayj, and Bijy.

where the coefficients b are uniquely expressed

Proof. Let g = fo+if1, 2 = y + iz, Xj;
270 + 2270, and Yy = i2'Z 01 — i2'27 0,

Zp = 2"ZF. Then, system (27) is equivalent to
the system associated with (17), where ag;),)c,bl(?,)c

are uniquely determined in terms of a;;i and 3;jy.
. 0

In particular, ago)l = (05101 +ﬂ011)/2 = Ajp1.-

Thus, system (27) can be transformed to the

system generated by (26) via near-identity state,

parameter and time maps. Recalling the formu-

las a(Q% = (3a00 + 120 + B210 + 36030)/8, a(Q(()))O =

(110 + Boz0 — B200) /4, b(l(i)() = (am00 + @020)/2,
a(l(i)() = (Bo20 + F200)/2, and b(Q%)O = (ago —
@200 — Pr10)/4, we have ag)o = As0. So, system
(27) is equivalent to

o
Z=r1iz+ Ajo1zp + A21022§ +1 Z bgi@l)kz(kﬂ)ik.

k=1
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Further, with the polar coordinates 2z = pe'? | we
obtain z(FtDzk = p2k+1eil = — 5eif 4 i0pet® and

o

. A . . 2k

p+ifp = Avorpp+ Anop® +ip+iy b2
k=1

This completes the proof. W

We have developed an efficient Maple program
to carry out all the algebraic structures described in
this paper. We have also implemented the formulas
and results presented in Theorem 5.1 and Corollary
5.3. To demonstrate our results, we execute our pro-
gram for the example in Sec. 4.1 of [Yu & Leung,
2003]:

dx dy 9
5 0o T 50y = (Y + po + pa” + 2ay
— 2 + 2%y)0, — 10,

which is equivalent to
X10— pX Yo + puY

Yio+ HAL0 — fAol  HE20 T HUX0,2

2 4
Y11+ Xoo — Xoo

2

3X12—-3X21 Yo1+Yio
8 8

~ Xo3+ Y30+ Yoz
8

in our notations. Our Maple output for the normal
form up to degree 8 (equivalent to degree 9 in [Yu &
Leung, 2003] is

1
+ + §X3,o

3 1 5 1
Yig— 2 “uX10— —Ye — —Y
1,0 3 21+ 2M 1,0 7 2.1 2883 3,2
1699877 62586677
37324800 3 T 10749542400 >t
This shows that the system can be transformed to
dp do
Lo, +29
ar T
s — _ 1 _ _
”(2“ g” )8”+< 72" " 283’
1699877 62586677
37324800" " 10749542400"

S (2k) 2k
+ ™ oo
k=5

which is exactly the same as that obtained in
[Yu & Leung, 2003]. This reaffirms Theorem 5.2 and
Corollary 5.3.

6. Conclusions

A suitable algebraic structure has been introduced,
leading to development of a new method for com-
puting infinite order parametric normal forms which
are convergent in filtration topology. The theory has
been applied to obtain an infinite order normal form
of Hopf singularity which agrees with the existing
result. Maple programs have also been developed to
affiliate applications of the results obtained in this
paper. The method presented in this paper can be
extended to consider degenerate Hopf bifurcation
and other singularities.
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