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ties) and then, to parametric generalized Hopf singularity. We pro-
vide the simplest parametric normal form for these cases.
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1. Introduction

This paper extends the recent developments of normal form theory (without parameters) via the
spectral sequence method to parametric normal forms. We consider the following system:

ẋ = v(x,μ), (1.1)

where v represents a formal vector field, x = (x1, x2, . . . , xp) ∈ F
p , μ = (μ1,μ2, . . . ,μq) ∈ R

q,

v(0,μ) = 0. We refer to xi as a state variable and μi as a parameter.
The idea of normal form theory is to simplify system (1.1) via near-identity change of state vari-

ables (near-identity ensures that such transformations are locally invertible) such that certain local
dynamical features (such as stability of equilibrium, limit cycles, etc.) of the system do not change.
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Then, instead of the original vector field, one analyzes the normalized vector field, see, e.g., [10,16,
29,34,37]. Real life problems modeled by scientists and engineers usually involve parameters, and ob-
taining the transformations between the original system and its normalized system is fundamentally
important in applications. Thus, computing these transformations is one of the main goals of paramet-
ric normal form theory, see, e.g., [38,39]. Since μ represents parameters such as control, perturbation
or bifurcation parameters, we assume that parameters are constants with respect to time and are in
the neighborhood of the origin. The later indicates that division by parameters are not permitted. In
order to effectively simplify systems with parameters such that their stability and bifurcation analy-
sis would be possible, we may also need to use time rescaling and reparametrization, see, e.g., [1,2,
30–32].

When time rescaling and changes of state variables are used, we call the simplified system orbital
normal form. Note that some features, that usually remain the same between the original systems
and their normal forms, may be changed when time rescaling is used. For example, a system and
one of its orbitally equivalent systems can have cycles that look like the same closed curves in the
phase space but can have different periods. When the change of state variable, time rescaling and
reparametrization are used, we call the simplified system parametric normal form.

The near-identity changes of state variables form a group under Campbell–Hausdorff–Baker for-
mula as it does for near-identity time rescaling and near-identity reparametrization under multiplica-
tion of functions and compositions of functions, respectively. Linear changes of variables also form a
group. They all generate a subgroup in the group of filtration-preserving automorphisms of the vector
fields (they act on vector fields like group acting on a vector space). We may refer to this subgroup of
automorphisms as the group of changes of variables (variables are time, parameters and state variables).
Given this, parametric normal form theory is to provide a unique representative for any orbit gener-
ated by this group associated with a given parametric system. Linear changes of state variables (i.e.,
only depending on state variables) are used to put the linear part of the system in a certain form. We
assume this is already done and thus, it shall not be used in our normal form computations. Linear
reparametrization (independent of state variables) is necessary for a possible reduction of number of
parameters that explicitly appear in the system.

The spectral sequence method is one of the most elegant and powerful methods of computation.
It has been applied in different branches of mathematics and has helped in solving many difficult
computational problems. Arnold [3,4] was the first to apply this method on singularity theory, and
recently the method has been further elaborated in normal form theory [9,22,27,28]. Sanders [27,
28] and Murdock [22] mainly focused on normal forms of non-parametric vector fields while Ben-
deresky and Churchill [9] applied the method to matrix normal forms. The later put their results
in an innovative general setting, by introducing a group structure acting on a vector space. We use
their results to establish a foundation for parametric normal forms of vector fields which also includes
reparametrization as well as time rescaling. The existing results in [9,22,27,28] use neither time rescal-
ing nor reparametrization while the use of these is the main new feature of this paper. Obviously, our
method is also suitable for obtaining the spectral sequences for the infinite level orbital normal forms
of non-parametric vector fields.

Since the spectral sequence spaces appear as quotient spaces, we require a rule on how to choose
a representative from each coset. We imply this kind of rule from what is commonly defined as
style in the literature. A style is a rule on how to choose a unique complement space of a subspace.
Representatives of the infinite level quotient spaces in the spectral sequences are our candidates for
the most simplified normal forms. This is because all the spectral data from the transformation space
at the infinite level have been used to simplify the system. Different names are used in the literature
such as unique normal form, hypernormal form, infinite order normal form, infinite level normal form and the
simplest normal form. We follow Murdock and Sanders [22] to use the infinite level normal forms, for
more details see [21].

Spectral sequences have been introduced for normal form calculations in [9,22,27,28]. But even
in these papers, the spectral sequence method is usually kept in the background as a guide to the
calculations, while the calculations themselves are done in the ordinary way [22]. Here we will show
how it would look like to employ the notations of the spectral sequences in full. This has the ad-
vantage that the exact range of non-uniqueness is displayed all times in every step. The associated
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disadvantage is the complexity of the notation. It seems worthwhile to have some examples of this
type of calculation in the literature, even if most users may choose to use a simpler notation and do
some extra work on the side to keep track of the range of non-uniqueness when that is desired. In
other words, the method of spectral sequences provides a systematic way for computing the spec-
tral data left at our disposal to carry them forward for further simplification. We believe that the
spectral sequence method is powerful and seems necessary for the cases in which time rescaling is
used. Indeed, the computation of the infinite level orbital normal form requires a systematic algebraic
approach to track the spectral data, see however [30–32] where a non-algebraic method is used to
classify orbital normal forms for germs of analytic complex vector fields. Spectral sequence method
determines this and demonstrates how to compute the infinite level orbital (and parametric) normal
forms. This information for non-orbital (non-parametric) normal forms has been computed in the lit-
erature by alternative approaches, e.g., using multiple Lie brackets in the homological equations by
defining higher level normal forms. Indeed, in this way one computes the spectral data at each step.
This approach cannot be easily applied for time rescaling, since the ring associated with time rescal-
ing is a torsion free ring acting on the space of vector fields as a torsion free module structure [13,14].
Besides, some time rescaling terms are often needed for further simplification of the system in higher
levels. Therefore, the notion of higher level maps for time rescaling transformations cannot be applied
unless through a well-coordinated method with other transformations of state and parameters.

The remaining of this paper is organized as follows. Section 2 describes the relation between
unique complement spaces and quotient spaces based on notions of style and costyle. Section 3 de-
scribes the group of changes of variables, their correlations and how they act on a system. Note that
the results presented in Sections 2 and 3 may seem to be unrelated, while all these pieces have
been introduced to work together to establish our results in the following sections. The cohomology
spectral sequences and how to use it for computing parametric normal forms are briefly discussed in
Section 4. Then, the method is applied on three main examples, each presented in a separate section.
In Section 5, we show that under certain technical conditions, a perturbation of the scalar (x ∈ F)
differential equation (single zero singularity)

ẋ =
∞∑

i=k

aix
i

can be put into infinite level parametric normal form

ẋ = xk +
k−1∑
i=1

xiμi,

see also [36] for the simplest orbital normal form of zero singularity with a single parameter. A per-
turbation of the planar (x, y ∈ F) resonant saddle singularity system

{
ẋ = mx + h.o.t.,
ẏ = −ny + h.o.t.,

for m,n ∈ N, h.o.t. stands for nonlinear terms,

is considered in Section 6. Assuming some technical conditions, we prove that its infinite level para-
metric normal form is

⎧⎪⎨
⎪⎩

ẋ = mx,

ẏ = −ny + axkn ykm+1 + (b + μk+1)x2kn y2km+1 +
k−1∑
i=0

xin yim+1μi+1,
for some k ∈ N.

Finally, Section 7 deals with a perturbation of the planar (z, z ∈ C) system (Hopf singularity)
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ż = iz + h.o.t., h.o.t. stands for nonlinear part in terms of z, z,

where for simplicity the equation for ż has been ignored. Again some technical conditions are as-
sumed and it is proved that the infinite level parametric normal form of this system is

ż = iz +
k∑

l=1

zl zl−1μl + zk+1zk + (a + μk+1)z2k+1z2k, for some k ∈ N,

see [14,15,38,39] for alternative parametric normal forms. Finally, conclusion is drawn in Section 8.

2. Quotient and complement spaces

In this section, we define the notions of formal basis B, formal basis complement (B-comple-
ment) of a subspace, and formal basis normal form style and costyle. We also describe how to use
formal bases to identify quotient spaces with complement spaces (see also [13,14]).

Let V =∏∞
i=1 V i, where V i ’s are finite dimensional vector spaces over a field F of characteristic

zero which in our applications will be R or C. We call V a locally finite graded vector space and each
V i a homogeneous space of grade i. We denote by Jk(v) the k-jet of the vector field v defined by
Jk(v) := ∑k

i=1 vi, where vi ∈ V i . In order to make the paper more readable, we follow Murdock
and Sanders [21,24] to write V =⊕∞

i=1 V i , indicating the elements of V , written as countable sums
(i.e. formal series v1 + v2 + · · ·) rather than as sequences (v1, v2, . . .). This notation should not be
confused with the common direct sum of vector spaces whose elements can only be represented as
a finite sum of non-zero terms. A finite or countable ordered set (sequence) B = {e j | j ∈ N} ⊆ V is
called a formal basis for V if every element v ∈ V is uniquely represented by v =∑

a je j for a j ∈ F

where the sum is either finite or infinite.
A filtration is associated with any grading. Indeed, let F k V = {∑∞

i=k vi | vi ∈ V i} and call F =
{F k V }∞k=1 a filtration associated with the graded vector space V =⊕∞

i=1 V i . The filtration F induces
a topology on V by considering {v + F k V } as a neighborhood of v ∈ V . The induced topology τF

from F is called filtration topology, see [5]. The filtration F is Hausdorff, i.e.,
⋂

p F p V = {0}, and

exhaustive, i.e., F 0 V = V .
For a vector subspace W of V , a unique complement space W c is defined as the vector space span

of a subset of a known formal basis B that provides a formal basis for W c . Given W , we inductively
choose the least natural number nk such that enk is not an element of W ⊕ span{eni | i < k}. We
continue this until either the process terminates for a finite number N (i.e., W c = span{eni | i � N})
or we obtain an infinite sequence {eni } (i.e., W c = span{eni }). From now on, we refer to W c as the
unique B-complement space for W in V . Notice that the order of the basis elements e1, e2, . . . in
B has a strong effect on the construction of W c; if i < j then ei is preferred over e j in choosing the
basis for W c . Observe that W1 ⊂ W2 implies W c

2 ⊂ W c
1; this is because if em is not an element of

span{ei | i < m} + W2, then em is also not an element of span{ei | i < m} + W1.

Note that W c is the B-complement space for W , but W is not always the B-complement space
for W c . The only case in which W and W c are B-complement spaces for each other is when W
is generated by the formal basis. Therefore, we call a space W a B-space when W = span(B ∩ W ).

Since complement spaces are B-subspaces in V , W = (W c)c if and only if W is a B-space. Further-
more, for any B-space W we always have W c = span(B ∩ (V \ W )), where V \ W represents the
set of elements in V that are not in W . Any summation of two B-subspaces is a B-subspace.

A formal basis B defines a unique B-projection πW onto a subspace W of V . Recall that V =
W ⊕ W c and that given W , we have chosen a subset {ei} of B that forms a basis for W c . Therefore,
for any v ∈ V there exist unique scalars an1 ,an2 , . . . , and w ∈ W such that v = w +∑

ani eni . Now
define πW (v) = w. As a simple example to illustrate this, consider πW (e1 + 2e2) for which V =
F

2 with standard ordered basis B = {e1, e2} and W = span{e1 + e2}. Therefore, W c = span{e1} and
πW (e1 + 2e2) = 2e1 + 2e2.
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The method of spectral sequences works with quotient spaces rather than complement spaces.
The notion of B-complement spaces helps to present a quotient space by unique representative of its
cosets, see also [27]. Any coset v + W can be written uniquely as u + W for some u ∈ W c . We often
identify V /W with W c by mapping u + W 	→ u. To avoid confusions in this section and Lemma 4.1,
any quotient space E/F is denoted for the set of cosets, and E/F denotes the B-complement space
of F in E. However, for convenience in the rest of this paper, we shall use E/F for both purposes. The
formal basis B for V gives a natural formal basis for the quotient space V /W , i.e., BV /W = {eni +W }
where B ∩ W c = {eni }. Thus, we have the following lemma.

Lemma 2.1. Let W and B be a vector subspace and a formal basis for V , respectively. Then:

(a) For any quotient space V /W , there exists a unique B-space U in V such that V /W = V /U .

(b) Let W1 be a B-subspace in V , and W2 be a vector subspace of W1. Then, V /W1 = (V /W2)/(W1/W2).

Proof. Since W c = V /W , we define U = (W c)c . Then, V /U = U c = ((W c)c)c = W c = V /W . This
proves the existence of U . For uniqueness suppose U is B-space and V /U = V /W . Then, U =
(U c)c = V /U c = (W c)c . This completes the proof of (a).

For (b), W1 needs to be a B-space in order that W1/W2 be a well-defined B-complement
space of W2 in W1. Note that B ∩ W c

2 = (B ∩ W1 ∩ W c
2) ∪ (B ∩ W c

1) and (B ∩ W1 ∩ W c
2) ∩ (B ∩

W c
1) = ∅. Thereby, W1/W2 = span(B ∩ W c

2 ∩ W1) is a B-space. Since V /W2 = W c
2 is also a B-

space, (V /W2)/(W1/W2) is spanned by the elements of B ∩ W c
2 that are not in B ∩ W c

2 ∩ W1.

Thus, (V /W2)/(W1/W2) is spanned by B ∩ W c
1. This implies (V /W2)/(W1/W2) = W c

2/W1/W2 =
V /W1. �

Roughly speaking, a system is in normal form if it lies in a complement to a removable space,
which is the image of some operator (a Lie bracket or sum of brackets, when only state change of
variables are used). A style is a rule for choosing the complement of the removable space, see [21–23].
Examples are the inner product style and the sl(2) style. When such a rule is intended for the space
of transformations rather than the space of vector fields, it is called costyle [23].

In this paper, our normal forms follow the formal basis style. Further, since vectors remaining in
the complement spaces are the candidates for normal forms, our normal forms can be presented by
terms of the system. Thereby, by choosing the order of the formal basis elements we automatically
determine the approach in which terms will be eliminated. The terms succeeding the others in the
ordering of the formal basis are in priority for elimination. This is, indeed, one of the main purposes
of using formal bases in this paper. Despite other common styles, we believe it is an advantage for
our approach to decide the priority in eliminating certain terms from the system well in advance of
calculations by setting a fixed order on formal basis. For example, in the case of Hopf singularity, we
practically give priority to the amplitude terms rather than phase terms of the same grade. This way
we calculate the complement spaces based on the order of the formal basis rather than making a
choice at each step of computations.

Remark 2.2. Formal basis and the inner product styles are styles that work for higher level normal
forms, while the sl(2) style has not been extended from the first level normal form to higher levels.
Another advantage for formal basis style is that other styles, e.g., the inner product and sl(2) styles,
can be expressed as formal basis styles by making the correct choice of B. A choice of an orthogonal
formal basis (with respect to an inner product) unifies the formal basis and the inner product style
normal form. In order to obtain an sl(2) normal form style for a nilpotent singularity via a formal
basis style, we can choose a formal basis such that it is sl(2)-invariant. Thus, if the basis terms in
the classical sl(2) style normal form are ordered before other basis terms, the first level normal form
in formal basis style will coincide with classical sl(2) style normal form. Finally, it is imperative to
distinguish the formal basis from the method of formal decompositions (described in [13,14]).
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The order of formal basis is very important in obtaining normal forms. Throughout this paper we
consider the following rules on every formal basis:

(I) Terms of lower grades precede terms of higher grades in the ordering.
(II) Terms without parameter precedes terms with parameter in the ordering when they have the

same grade.
(III) For the case of transformation spaces, state terms precede time terms while parameter terms

succeed time terms, when they all have the same grade. (Note that this is only relevant when
costyle is concerned, see below.)

The reasons behind the rules (I) and (II) are easy to observe; the rule (I) means that lower grade terms
are in priority for elimination while the rule (II) gives the priority to omit terms with parameters
rather than terms without parameters of the same grade.

Remark 2.3. We may or may not require additional rules for each singularity. Nevertheless, the above
rules (with possible additional rules) are not sufficient to set up a unique order for B, but yet they
are sufficient that any fixed order satisfying them would lead to a unique parametric normal form for
each of the singularities considered in this paper; see Sections 5–7.

Any element of the formal basis multiplied with a scalar is called a term. We follow the
common practice to denote μm = μ

m1
1 μ

m2
2 · · ·μmq

p with |m| = m1 + m2 + · · · + mq for any m =
(m1,m2, . . . ,mq) ∈ N

q.

The notation πW should be distinguished from πi(v); indeed, πi(v) = vi where vi is the i-th
component of the vector v ∈ F

n for 1 � i � n. Further, ei ∈ F
n denotes the i-th element of the standard

basis, i.e., π j(ei) = δi j , where δi j stands for the Kronecker delta function and should not be confused
with δα which represents grading functions. Further, we denote v = [v1, v2, . . . , vn] for a column
vector and v = (v1, v2, . . . , vn) for a row vector.

3. Change of variables and their structures

In this section, we review the algebraic structures of invertible formal change of variables. We first
present five different kind of changes of variables and then, the link between them is illustrated in
terms of semidirect products of subgroups. We prove that any finite (infinite, if they are convergent
with respect to filtration topology) composite of these can be described uniquely by a composite of
five transformations.

Any near-identity change of state variable can be generated by a formal function S : C
p ×C

q → C
p

(containing only monomials that are either of at least degree 2 in x, or of at least degree 1 in x and
at least degree 1 in μ) as follows. Denote S for the set of all such functions and let x(t; y,μ) be the
solution of the initial value problem:

d

dt
x(t; y,μ) = S

(
x(t; y,μ),μ

)
,

x(0, y,μ) = y. (3.1)

Now for any S ∈ S define the mapping φS : C
p ×C

q → C
p by φS(y,μ) = x(1; y,μ), where x(1; y,μ)

is the solution of Eq. (3.1). This is a near-identity coordinate transformation given by x = φS (y,μ),

transforming the new variable y to the old variable x. This is the standard Lie transform in the sense
of Hori (not Deprit), see [21, format 2b]. If we begin with the vector field v expressed in (x,μ) given
by Eq. (1.1) and apply the coordinate change φS , we obtain the same vector field in the form ΦS v,

which is now expressed in the variables (y,μ). Then,
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(ΦS v)(y,μ) = [
(DφS)(y,μ)

]−1
v
(
φS(y,μ),μ

)
= v + [v, S] + 1

2

[[v, S, ], S
]+ 1

6

[[[v, S], S
]
, S
]+ · · · , (3.2)

where D is the matrix of partial derivatives with respect to y, with μ held constant and Lie bracket
is defined by [u, w] = w ′u − u′w (which equals the Wronskian(u, w), see, e.g., [21]). Thus, system
(1.1) is transformed into ẏ = (ΦS v)(y,μ). This imposes a Lie algebraic structure on the space of all
formal vector fields.

Near-identity reparametrization can also be generated by formal functions like P : C
q → C

q, where
P contains no constant or linear term. We denote the set of all such functions by P. Then, for any
P ∈ P a near-identity change of parameters is defined by

μ = ψP (ν) = ν + P (ν). (3.3)

Similarly, denote ΨP v for the updated vector field v in terms of new variable ν through the formula

(ΨP v)(x, ν) = v
(
x,ψP (ν)

)= v
(
x, ν + P (ν)

)=
∞∑

n=0

1

n! Dn
μ(v, P ), (3.4)

where Dn
μ(v, P ) denotes the n-th order formal Fréchet derivative of v(μ) with respect to μ and

evaluated at ν and [P , P , . . . , P ] ∈ C
q×q , see also [14,18].

Let T be the set of all formal power series T (x,μ) with no constant terms, i.e., F�x,μ� = F⊕T .

The near-identity time rescaling map is given by

t = θT (τ ) = τ + T (x,μ)τ , where T (x,μ) ∈ T . (3.5)

The operator ΘT generated by T sends the vector field v into a vector field given by

(ΘT v)(x,μ) = dθT

dτ
= (

1 + T (x,μ)
)

v(x,μ).

In order to consider linear change of variables, let GL(n) denote n × n invertible matrices. Thus,
GL(p) and GL(q) are generators of invertible linear change of state variables and invertible linear
reparametrization, respectively. One can consider the cases with a countable infinite number of pa-
rameters to treat formal versal deformations of a system with infinite number of versal parameters;
this is out of the scope of this paper. Therefore, for any B ∈ GL(p) and C ∈ GL(q) we have

x = γB(y) = B y, ΓB(v)(y,μ) = B−1 v(B y,μ), (3.6)

and

μ = λCν = Cν and (ΛC v)(x, ν) = v(x, Cν). (3.7)

Linear changes of state variables are usually used to put the linear part of the system into a certain
normal form, e.g., Jordan canonical form. In Sections 5–7, we assume that the linear part is already
in the desired form, and thus, linear change of state variable will not be used in our normal form
computations.

Remark 3.1. All systems and changes of variables here are presented in formal power series, and we
treat them without any concern about their convergence, see [26] for a powerful analogous result on
analytic vector fields. One can also consider the formal vector fields as germs of smooth vector fields
and by using the Borel–Ritt Lemma try to extend the results from formal normal forms to smooth
normal forms; which however are not discussed in this paper, see, e.g., [12,21].
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A sequence of polynomial generators for the state, time and parameter changes, i.e., Eqs. (3.1)–
(3.5), are generally used and consecutively applied to normalize a system. Thus, they must be very
well coordinated in a systematic approach and their composition is important.

Let L denote the vector space span of all vector fields having linear part Ax, where A is a fixed
non-zero matrix. This implies that L consists of vector fields v with a linear part c Ax for some c ∈ F.

In Section 5 we consider the case A = 0 and L will be defined differently. The spaces of near-identity
change of variables and their associated operators make up a group structure as follows. We use the
following notations:

S := {ΦS | S ∈ S }, P := {ΨP | P ∈ P} and T := {ΘT | T ∈ T }.
The group action for the state variable follows ΦS1 ◦ ΦS2 = ΦS1∗S2 , where S1 ∗ S2 follows the
Campbell–Baker–Hausdorff formula. For time and parameter, it is a straightforward calculation. All
these operators act on the vector fields and are subgroups of the group of formal invertible transfor-
mations acting on vector fields in L . So, let

G (p) := {
ΓB
∣∣ B ∈ GL(p)

}
, (3.8)

H (q) := {
ΛC

∣∣ C ∈ GL(q)
}
, (3.9)

G1 := S P T = {ΦS ◦ ΨP ◦ ΘT | S ∈ S , P ∈ P, T ∈ T }, (3.10)

G := G (p)H (q)G1 = {
ΛC ◦ ΓB ◦ g

∣∣ C ∈ GL(p), B ∈ GL(q), g ∈ G1
}
. (3.11)

In the following, we prove that G1 and G are groups and then they are called the group of near-
identity transformations and invertible transformations, respectively. We denote the identity map by 1.

Thus, ΦS = 1 (ΨP = 1 or ΘT = 1) if and only if S = 0 (P = 0 or T = 0, respectively).
For any ΘT ∈ T ,ΦS ∈ S and an arbitrary vector field v ∈ L we have

(
ΦS ◦ ΘT (v)

)
(y,μ) = ΦS(v)(y,μ) + ΦS(T v)(y,μ)

= (DφS)
−1 v(φS ,μ) + (DφS)

−1T (φS ,μ)v(φS ,μ)

= (DφS)
−1 v(φS ,μ) + T (φS ,μ)(DφS)

−1 v(φS ,μ)

= ΘT (φS ,μ)

(
(DφS)

−1 v(φS ,μ)
)= (

ΘT̃ ◦ ΦS(v)
)
(y,μ), (3.12)

where T̃ (y,μ) := T (φS (y,μ),μ). Thus, T is a subgroup of T S. By

(
ΨP ◦ ΦS(v)

)
(y, ν) = ΨP (DφS(y,ν))

−1 v(φS(y,ν), ν)

= (DφS(y,ψP ))
−1 v(φS(y,ψP ),ψP )

= ΦS(y,ψP )(v)(y,ψP ) = (
Φ Ŝ ◦ ΨP (v)

)
(y,μ), (3.13)

for Ŝ(y,μ) := S(y,ψP (μ)), and by denoting T̂ (x, ν) := T (x,ψP (ν)) we have

(
ΨP ◦ ΘT (v)

)
(x, ν) = ΨP (v)(x, ν) + ΨP (T v)(x, ν)

= v(x,ψP ) + T (x,ψP )v(x,ψP )

= ΘT (x,ψP )(v)(x,ψP ) = (
ΘT̂ ◦ ΨP (v)

)
(x, ν). (3.14)

Now for any C ∈ GL(q) and B ∈ GL(p), and by denoting S(y,μ) := S(y, λCν) and T (x, ν) := T (x, λCν)

we obtain
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ΛC ◦ ΦS(v)(y, ν) = (DφS(y,λC ν))
−1 v(φS(y,λC ν), λCν)

= ΦS(y,λC ν)(v)(y, λcν) = (
ΦS ◦ ΛC (v)

)
(y, ν), (3.15)

ΛC ◦ ΘT (v)(x, ν) = ΛC (v)(x, ν) + ΛC (T v)(x, ν)

= v(x, λCν) + T (x, λCν)v(x, λCν)

= ΘT (x,λC ν)(v)(x, λCν) = (
ΘT ◦ ΛC (v)

)
(x, ν), (3.16)

ΛC ◦ ΨP (v)(x, ν) = ΛC (v)
(
x,ψP (ν)

)
= v

(
x,ψP (Cν)

)= (
ΨλC (C−1 P ) ◦ ΛC (v)

)
(x, ν). (3.17)

Further, let S̆(y,μ) := S(B y,μ) and T̆ (y,μ) := T (γB y,μ). Then, we have (Dφ S̆ )(y,μ) =
(DφS )(B y,μ)B = (DφS B)(B y,μ) and

ΓB ◦ ΦS(v)(y,μ) = B−1((DφS)(B y,μ)

)−1
v(φS(B y,μ),μ)

= (Dφ S̆(y,μ)
)−1 v(φ S̆(y,μ)

,μ) = Φ S̆(v)(y,μ), (3.18)

ΦS ◦ ΓB(v)(y,μ) = (DφS)
−1 B−1 v(BφS(y,μ),μ)

= (DφB S(y,μ))
−1 v(φB S(y,μ),μ) = ΦB S(v)(y,μ), (3.19)

ΓB ◦ ΘT (v)(y,μ) = ΓB(v)(y,μ) + ΓB(T v)(y,μ)

= B−1 v(γB y,μ) + B−1T (γB y,μ)v(γB y,μ)

= ΘB−1 T (γB y,μ)B

(
B−1 v

)
(γB y,μ) = (

ΘB−1 T̆ B ◦ ΓB(v)
)
(x, ν), (3.20)

ΓB ◦ ΨP (v)(y, ν) = ΓB(v)
(

y,ψP (ν)
)

= B−1 v
(
γB y,ψP (ν)

)= (
ΨP ◦ ΓB(v)

)
(y, ν). (3.21)

Note that Eqs. (3.12)–(3.21) imply that G is a group and G1 is its subgroup.

Remark 3.2. Any g ∈ G acts linearly on L , i.e., for any a ∈ R and formal vector fields v and w we
have g(av + w) = agv + g w. Therefore, G is a subgroup of the vector space automorphisms of L .
Further, Assumption 6.3 given in [9] also holds.

Experience shows that it is useful to consider various gradings in different problems, e.g., see [2,
7,14,15,17]. For each nonnegative integer vector α = (α1,α2, . . . ,αq) ∈ N

q
0 we define three gradings,

all denoted by δα, on the three spaces S , P and T . For any monomial vector xnμmei ∈ S (for
ei ∈ F

p), we define δα(xnμmei) = |n| + α · m − 1, where α · m =∑q
i=1 αimi . When μmfi ∈ P (for

fi ∈ F
q), δα(μmfi) = α · m −αi, and finally for xnμm ∈ T , δα(xnμm) = |n| +α · m. For each problem,

a choice of α will be stated but it will be the same for all of the three gradings. The spectral sequence
construction in Section 4 depends on a choice of grading and automatically gives the various kinds
of normal forms obtained by Baider and Sanders [7], Algaba et al. [2], and Kokubu et al. [17] as soon
as the values of αi ’s are specified. For simplicity an integer subscript, say k, is used to denote the
subspace of all homogeneous terms of grade k, e.g., Lk, Tk , Pk, etc. (This should not be confused
with Er in Section 4, in which r stands for the level of E-terms.) This results in graded structures and
their associated filtration needed throughout this paper. We have [Lk,Ll] ⊆ Lk+l, TkTl ⊆ Tk+l and
TkLl ⊆ Lk+l for any k, l ∈ N0.



1012 M. Gazor, P. Yu / J. Differential Equations 252 (2012) 1003–1031
Remark 3.3. We can think of ei = ∂
∂xi

and f j = ∂
∂μ j

. Since xi has degree 1, ∂
∂xi

has degree −1. Since

μ j has degree α j,
∂

∂μ j
has degree −α j . With this convention, all three gradings δα follow the same

form.

Note that G1 is not merely a subgroup of the automorphisms of L but also a subgroup of the
filtration-preserving automorphisms, i.e., ΦS (FnL ) ⊆ FnL for n ∈ N0 and S ∈ S . (This is similar
for reparametrization and time rescaling.) Given the gradings and their associated filtration, we now
present G as a filtration-preserving group in terms of its subgroups. The following also generalizes
the results of Baider and Churchill [6, Section 3] that in terms of our notations it indicates SG (p) =
G (p) �γ S (� denotes semidirect product), where no parameter was involved and γ was restricted
to S.

Theorem 3.4. There exist group homomorphisms σ , β and ρ such that G1 = (T �σ S) �β P and G =
(H (q) × G (p)) �ρ G1 . Further, G is a subgroup of filtration-preserving automorphisms of L .

Proof. Define

σ : S → Aut(T ),

ΦS 	→ σ(ΦS),

by σ(ΦS )ΘT := ΦS ◦ ΘT ◦ Φ−1
S = ΘT̃ for any T ∈ T , where T̃ (y,μ) = T (φS (y,μ),μ). Campbell–

Baker–Hausdorff formula proves that σ is a group homomorphism. Eq. (3.12) implies that T S = S T
and T S is a group. Further, we have T ∩ S = {1}. These prove T S = T �σ S. It is easy to see that
P ∩ S = T ∩ P = {1}. By Eqs. (3.13)–(3.14) we have S � P S (i.e., S is a normal subgroup of P S),

T � G1, and S T � G1.

Now we claim P ∩ S T = {1}. By contradiction we assume 1 �= g ∈ P ∩ S T . Then, there exist
non-zero elements S ∈ S , P ∈ P and T ∈ T such that g = ΨP = ΘT ΦS . Thereby, there exists an i
(0 < i � q) such that the i-th component of P , say Pi , is non-zero. So, for any natural number k we
have ΨP (μk

i S(x,0)) = (μi + Pi)
k S(x,0) while

ΘT ◦ ΦS
(
μk

i S(x,0)
)= ΘT

(
μk

i S(x,0)
)= (

μk
i + μk

i T
)

S(x,0).

This results in (μi + Pi)
k = μk

i + μk
i T . Recall that P and T have no constant or linear terms. So,

the highest degree of both sides are (Pi)
k and μk

i T . Hence, (Pi)
k = μk

i T for any k ∈ N. This is a
contradiction and therefore, P ∩ S T = {1}. Thus, the formulas (3.13) and (3.14) imply S T � P (S T ).

Next, define the map

β : P → Aut(T S),

ΨP 	→ β(ΨP ),

by β(ΨP )ΘT := ΨP ◦ ΘT ◦ Ψ −1
P = ΘT̂ and β(ΨP )ΦS := ΨP ◦ ΦS ◦ Ψ −1

P = ΦŜ , where T̂ (x, ν) =
T (x,ψP (ν)) and Ŝ(x, ν) = S(x,ψP (ν)). Then, β is a group homomorphism and thus, we have G1 =

T S �β P . Eqs. (3.15)–(3.21) infer that H (q) × G (p) = H (q)G (p) � G. Now define

ρ :H (q) × G (p) → Aut(G1)

by ρ((ΛC ,ΓB)) = ρ(ΛC ) ◦ ρ(ΓB), and

ρ(ΛC )(ΨP ◦ ΘT ◦ ΦS) := ΛC ◦ ΨP ◦ ΘT ◦ ΦS ◦ Λ−1
C = ΨC P ◦ ΘT̆ ◦ Φ S̆ ,
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where T̆ (x, ν) = T (x, λCν), S̆(x, ν) = S(x, λCν) and

ρ(ΓB)(ΨP ◦ ΘT ◦ ΦS) := ΓB ◦ ΨP ◦ ΘT ◦ ΦS ◦ Γ −1
B = ΨP ◦ ΘT ◦ ΦS ,

with T (y,μ) = T (γB y,μ) and S(y,μ) = S(γB y,μ). It is easy to verify that ρ is a group homomor-
phism and thus, G = (H (q) × G (p)) �ρ G1. Furthermore, each generator of the group G preserves
filtration.

This completes the proof. �
Theorem 3.4 explains how any finite number of transformations can be composed together, i.e.,

for any g ∈ G, there exist B , C , T , S , and P such that g = ΛC ΓBΘT ΦSΨP . This theorem also implies
that none of the three near-identity transformations can be obtained from the other two. This is
consistent with our claim that all of the three near-identity transformations are needed for parametric
normal forms. It also explains why normal forms alongside with their orbital normal forms have been
considered in the literature.

Let

Fm S = {
ΦS

∣∣ S ∈ FmS
}
, Fm T = {

ΘT
∣∣ T ∈ FmT

}
and Fm P = {

ΨP
∣∣ P ∈ FmP

}
for any m ∈ N. Thus, the following holds.

Corollary 3.5. For any v ∈ F kL and g ∈ Fm X (X denotes either of P , T and S) define (g − 1)(v) =
gv − v. Then, we have

F l X = F p XF q X, where l = min{p,q}, (3.22)

πLs (gv) = πLs (v) for s < k + m, (3.23)(
Fm X − 1

)(
FkL

)⊆ Fm+kL . (3.24)

Now we follow [9] to define initially linear group actions. Let V and W be two graded vector
spaces, h : V → W and h = hL + hH . We assume that hL and hH are filtration-preserving maps, i.e.,
hL(F p V ) ⊆ F p W and hH (F p V ) ⊆ F p W . Here, L stands for linear and H stands for higher order.
Further, assume hL is linear and for any v ∈ V ,

hL v ∈ F p W �⇒ hH v ∈ F p+1W . (3.25)

Then, we say that h is an initially linear map and refer to hL as its linear part. Now let A0 be a
group, A1 a vector space and A0 act on A1 as a group action on a vector space, i.e., g : A1 → A1 is
linear for any g ∈ A0. This group action is called initially linear when the map hg : A1 → A1 (given by
hg(v) = gv − v for any v ∈ L ) is an initially linear map.

Remark 3.6. Note that any g ∈ P does not necessarily act as an initially linear map on L , see
Remark 7.2. For example, consider p = 1, q = 2, v = x(μ2

1 + μ2
2) and P = [−μ2

2,μ1μ2]. Then,

Dμ

(
v(μ), P

)= 0 and ΨP v(μ) = 1

2
D2

μ

(
v(μ), P

)= xμ2
2

(
μ2

1 + μ2
2

) �= 0.

This implies that ΨP is not initially linear. This is because its linear part, Dμ(v(μ), ·), is neither an
injective nor a bijective linear map. Our method was applied in [13] on a generalized Hopf singularity
and the system was called parametric generic system where this map was injective, see also Re-
mark 7.6. We work on a vector field v which is called a non-degenerated deformation for the vector
field v(x,0), where this map is onto, see also [11]. Instead of a general definition, we shall formally
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define non-degenerated deformation for individual vector fields associated with single zero, resonant
saddle, and Hopf singularities discussed in Sections 5–7, respectively.

4. Cohomology spectral sequences

In this section, we present a quick review on the spectral sequence method and its relation with
parametric normal forms (see also [20,35], and for a more detailed discussion on normal forms, see
[9,22,27–29]). The reader can simply assume the formula (4.5) as a systematic method for tracking
normal forms and their uniqueness through spectral sequences method and skip the first two pages
of this section.

Spectral sequences (of cohomological type) in general are a page-sequence of left R-modules
(where R is a commutative ring with identity) which comes with a page-sequence of differentials
and each page is the cohomology of the previous page as follows. Recall that we express most iso-
morphisms with equality throughout this paper. Consider the cochain complex

· · · → An−1 dn−1−−→ An dn−→ An+1 → ·· · (4.1)

where An is an R-module, dn is R-linear and dndn−1 = 0 for n ∈ Z. This is equivalent to considering
A∗ =⊕

n An,

d∗ : A∗ → A∗ with dn = d∗|An : An → An+1

(i.e., d∗ has a degree of +1) and d∗ ◦ d∗ = 0. (A∗,d∗) is called a differential graded R-module.
Denote by Hn(A∗,d) the cohomology of d∗ at grade n, i.e., Hn(A∗,d∗) := ker dn/ Im dn−1. Now

assume that A∗ comes equipped with a filtration F compatible with the differential d∗; that is,

· · · ⊆ Fn+1 A∗ ⊆ Fn A∗ ⊆ · · · ⊆ A∗,

and d∗ :Fn A∗ → Fn A∗ for n ∈ Z. Then, (A∗,d,F ) is called a filtered differential graded R-module. For
simplicity, assume that filtration comes from a grading structure, that is, A∗,∗ is a bi-graded R-module

A = A∗,∗ =
⊕

m

A∗,m =
⊕

n

An,∗, A∗,m =
⊕

n

An,m, An,∗ =
⊕

m

An,m,

and Fm A∗,∗ =⊕
k�m A∗,k. Thereby, the filtration is Hausdorff and exhaustive.

Spectral sequences are aimed at computing H∗(A,d) =⊕
m Hm(A,d), where Hm denotes the co-

homology of the differential d at degree m. In the context of normal form theory H∗(A,d) can be
interpreted as the space of unique normal forms, when the graded differential (A,d) is properly cho-
sen. This is clearly demonstrated by Sanders [27,28]. Although

H∗(A,d) =
⊕

n

⊕
m

Fn Hm(A,d)

Fn+1 Hm(A,d)
=
⊕

m

⊕
n

Fn Hm(A,d)

Fn+1 Hm(A,d)
,

it is, in principal, not possible to compute H∗(A,d) directly from this equation. This is why the spec-
tral sequences are designed to compute Em,n∞ in a systematic approach. Obviously, it is important to
properly define the differential, grading structure and the filtration in such a way that E∗,∗

r converges
to E∗,∗∞ = H∗(A,d). To describe the spectral sequences, we denote

Em,n
0 := Fm Am+n

m+1 m+n
= Am+n,m
F A
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and define the differential d0 with degree +1 by dm,∗
0 = d|Em,∗

0
: Em,∗

0 → Em,∗
0 . Since Em,∗

r =⊕
n Em,n

r

is isomorphic to a quotient space of A∗,m, we can inductively define the r-th level differential of
bi-degree (r,1 − r) by

dm,∗
r = d|Em,∗

r
,dm,n

r : Em,n
r → Em+r,n+1−r

r , and also Em,n
r+1 = Hn(Em,∗

r ,dm,∗
r

)
.

The filtration F is called strongly convergent in the sense of Cartan and Eilenberg [20, p. 69] if
the filtration is Hausdorff and exhaustive and we have

H∗(A,d) = lim←n

H∗(A,d)

Fn H∗(A,d)
, (4.2)

where lim←n stands for the projective (or inverse) limit. Since

lim←n

H∗(A,d)

Fn H∗(A,d)
=

∞⊕
n=0

Fn H∗(A,d)

Fn+1 H∗(A,d)
,

our filtration automatically satisfies the condition (4.2). Therefore, the associated spectral sequence
E j,k

r is given by

Em,n
r = Zm,n

r

Zm+1,n−1
r−1 + Bm,n

r−1

and Em,n∞ := Zm,n∞
Zm+1,n−1∞ + Bm,n∞

, (4.3)

where

Zm,n
r := Fm Am+n,∗ ∩ d−1Fm+r Am+n+1,∗ and Bm,n

r := Fm Am+n,∗ ∩ d
(
Fm−r Am+n−1,∗).

Therefore, Zm,n∞ := ker d ∩ Fm Am+n,∗ and Bm,n∞ := Im d ∩ Fm Am+n,∗. Furthermore, Em,n
r strongly con-

verges to H∗(A,d), that is,

E j,k∞ = F j H j+k(A,d)

F j+1 H j+k(A,d)
,

according to [20, Theorems 2.6, 3.2, 3.12] and that the filtered module (A,F ) is Hausdorff and ex-
haustive. Finally, we call a spectral sequence collapses at level r, when E∗,∗

n = E∗,∗
r for any n � r; this

means that in order to obtain E∗,∗∞ we only need to compute E∗,∗
r .

In this paper, the cochain complex (4.1) is just a short cochain complex given by

0 ↪→ A0 d−→ A1 → 0, (4.4)

where A0 represents the space of change of variables and A1 represents the space in which the vector
fields live. This short cochain complex simplifies the formulas for E∗,∗

r -terms in Eq. (4.3) as follows:

Em,n
r =

⎧⎨
⎩

0, where n �= −m,−m + 1,

(Fm A0 ∩ d−1Fm+r A1)/(Fm+1 A0 ∩ d−1Fm+r A1), where n = −m,

Fm A1/(d(Fm−r+1 A0) ∩ Fm A1 + Fm+1 A1) when n = −m + 1

(4.5)

(for an illuminating presentation and the proof see [9]). One may simply assume the formula (4.5) as
a systematic method for tracking normal forms and their uniqueness. Indeed, the r-th level normal
forms of vector fields live in

⊕
n En,−n+1

r while their available symmetries (in the transformation
space) live in

⊕
n En,−n

r .
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Now we demonstrate the role of spectral sequences method in computation of normal form theory.
Recalling the identification in Lemma 2.1, one can correlate normal form computations and the con-
secutive quotients appearing in the spectral sequence method. Indeed, it indicates the terms which
may or may not be eliminated from the system, i.e., the B-space U represents the terms that are
being eliminated while the B-complement space identified with the quotient space represents terms
which may not be eliminated. Note that this is not to say that terms in the B-complement space
will not be changed (or accidentally eliminated) at this step. The other motivation for this is the
following lemma. So, consider that we are at some step of normal form computation. The idea is
to identify the consecutive quotient spaces with descending B-complement spaces. We also wish to
identify the updated maps (differentials) simply with the original map being sequentially restricted to
the descending B-complement spaces. This is why we need to look at quotient spaces at some point
as space of cosets (in homology theory) and at the rest as B-complement spaces (in normal form
theory). Let us describe B-spaces T0,T1 and N1 used in the following lemma by their terms as
follows. Denote T0 (that is in the denominator) for terms that had already been eliminated, N1 for
terms not being eliminated at this step (although they can be still modified or accidentally elimi-
nated), and T1 for terms being eliminated at this step (that will appear in the dominator of the next
step). Further, let d and d∗ stand for the differential (map) of the previous level and the updated
differential, respectively. Recall that E/F denotes the B-complement space of F in E in the following
lemma to avoid confusion.

Lemma 4.1. Let V and W be vector spaces over F, B = {en}∞n=1 a formal basis or B = {en}dim V
n=1 a finite

ordered basis for V , and T0 a B-subspace of V . Furthermore, assume that d : W → V is a linear map satisfy-
ing πT0 ◦ d(W ) = 0. Then, d naturally induces linear maps given by d∗ : W → V /T0 and d∗ : W → V /T0.

Hence, there exist unique B-subspaces N1 and T1 ⊆ V such that

(1) coker d∗ = V /T1 = (N1 + T1)/T1 = N1 , for T0 ⊆ T1 and N1 ⊕ T1 = V ;
(2) for any em ∈ B there exist a unique vector ŵ ∈ V (where ŵ + T0 = d∗(w) for some w ∈ W and

πT0 ŵ = 0) and unique scalars an1 ,an2 , . . . ,anN (nN � m) satisfying em − (ŵ +∑N
k=1 ank enk ) ∈ T0,

where B ∩ N1 = {enk };
(3) for any v ∈ V satisfying πT0 (v) = 0, there exists a vector w ∈ W such that v − d(w) ∈ N1 .

(These properties ensure that N1 fulfills the role of complement spaces for the image of the updated map d∗ .)

Proof. First notice that d∗ is the same map as d, except that now its codomain is V /T0 (the comple-
ment of T0 in V , not as a space of cosets). In particular, Im d = Im d∗ is a subspace of V /T0. Further,

coker d∗ = V /T0/ Im d∗ = T c
0 / Im d∗. Note that T c

0 / Im d∗ and (Im d ⊕ T0)
c are both B-space and

πT0 d(W ) = {0}. So, the condition of an ei ∈ B not being an element of span{e j | j < i} + Im d ⊕ T0
is equivalent to ei being neither in span{e j | j < i, e j ∈ T c

0 } + Im d nor in T0. Thus, (Im d ⊕ T0)
c =

T c
0 / Im d∗. Let N1 = (Im d ⊕ T0)

c . Since N1 = coker d∗, N1 is a unique B-space. The condition
N1 ⊕T1 = V requires that T1 = N c

1 = ((Im d ⊕T0)
c)c be a unique B-space satisfying condition (1).

Therefore, (Im d∗ ⊕ T0) ⊕ N1 = V . Moreover, for any em ∈ B, there exist d∗(w) = ŵ ∈ Im d∗ and
v0 ∈ T0 such that em − ŵ − v0 ∈ N1. Thus, d∗(w) + T0 = d∗(w) for which πT0 (d

∗(w)) = 0. So,
we have unique scalars an1 ,an2 , . . . ,anN (nN � m) satisfying em − ŵ − ∑

ank enk = v0 ∈ T0, where
{enk } = B ∩ N1. (3) is straightforward by (2). �

Next, we follow Benderesky and Churchill [9] to present spectral sequences as a method of normal
form computations. They are associated with a spectral sequence having any orbit {gv | g ∈ S} for
v ∈ A1 = L . Then, dv : A0 → A1 for a short cochain complex is defined by dv (g) = hg

L (v), where hg
L

denotes the linear part of the map g = ΦS for any S ∈ A0. For the case of parametric normal forms
without linear change of state variable and reparametrization, A0 corresponds to the generators of
the group

G1 := (T �θ S) �β P. (4.6)
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Let v = Ax + h.o.t. be the vector field in Eq. (1.1). We recall that L is the vector space span of all
formal vector fields having a linear part of the form Ax, when A is fixed. Define

A1,∗ := L , A0,∗ := S × P × T and A∗,∗ = A0,∗ ⊕ A1,∗,

where A j,k := {0} for j �= 0,1. Note that A0,∗ is a graded space, since it is the product of graded
spaces. Now the linear part of the group action defines the differential d = dv by

0 → A0,∗ d−→ L → 0,

dv(S, P , T ) := Dμ(v)P + T v + adS v, (4.7)

where ΦSΨP ΘT ∈ G1. This results in the infinite level parametric normal form of v via computation
of E∞-terms. Then, (A∗,∗,d,F ) is a locally finite graded filtered differential F-vector space. Finally,
we define total complexes for E-terms by

Total0
(

E∗,∗
r

)=
⊕

m

Em,−m
r and Total1

(
E∗,∗

r

)=
⊕

m

Em,−m+1
r . (4.8)

The former represents the r-th level conormal form space (space of transformations) and the latter is
the space in which the r-th level normal forms live in, see [27,28].

Up to now we have described Benderesky and Churchill’s approach on normal forms. The earlier
approach of Sanders [27] considered the spectral sequence E j,k

r by allowing v(r) to be updated during
the process of normal form, i.e., E j,k

r = E j,k
r (v(r−1)). This is the most common and convenient ap-

proach in normal form theory. Benderesky and Churchill’s results in [9] imply that updating v(r) does
not change En,−n+1

r (by proving that E j,k
r (v) is invariant under the group orbit of v). Therefore, both

approaches are equivalent, see Lemma 4.3 and [9, Theorem 6.11]. One should note that the authors
in [9] applied the method in the context of matrix normal form theory, that is why they chose not
to update the differentials. It, however, is evident that updating the differential substantially reduces
the complexity of computation, see, e.g., [13, Example 2.4.4]. Therefore, we use the converging differ-
entials dr = d∗,∗

r (v(r)) at each new level of the spectral sequence. Thus, the results [20, Theorems 2.6,
3.2, 3.12] are still valid on normal form theory of vector fields as long as we work with initially linear
maps. So, our spectral sequence computations use updating differentials.

Now we are ready to present the first level normal form space in terms of the first level spectral
sequence.

Lemma 4.2. For any v ∈ L , there exists an automorphism associated with g1 ∈ G such that it sends v into
the first level normal form ṽ(1) ∈⊕∞

n=0 N (1)
n ⊂ L , where

E−n,n+1
1 = Ln

T (1)
n

= N (1)
n + T (1)

n

T (1)
n

= N (1)
n (for n ∈ N0)

and the formal basis style is used for the complement spaces N (1)
n .

Proof. Following Lemma 4.1, there exist unique complement vector spaces N (1)
n and T (1)

n satisfying

En,−n+1
1 = FnL

FnL ∩ d(Fn A0,∗) + Fn+1L
= Ln

πL ◦ dA0,n
= N (1)

n + T (1)
n

(1)
.

n Tn
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Thus, there exists (Sn, Pn, Tn) ∈ A0,n such that vn−1
n + T (1)

n = vn
n + T (1)

n , where vn
n ∈ N (1)

n and vn
n =

vn−1
n + πLn dYn. Therefore,

vn = Φn
(

vn−1)= ΦSn ◦ ΨPn ◦ ΘTn

(
vn−1)= v0

0 + v1
1 + · · · + vn−1

n−1 + (
vn−1

n + πLn dYn
)+ · · · ,

where πLn vn = vn
n = vn−1

n + Dμv(0)
0 Pn + Tn v(0)

0 + adSn v(0)
0 . By Theorem 3.4, there exists

(S(n), P (n), T(n)) ∈ A0,∗ such that

vn = Φn · · ·Φ2Φ1
(

v0)= ΦS(n)
◦ ΨP(n)

◦ ΘT(n)

(
v0).

Corollary 3.5 implies that (S(n), P (n), T(n)) converges in filtration topology to an element (S, P , T ) from
A0,∗ and thus, vn is also convergent to ṽ(1) = g1 v, where g1 := ΦS ◦ ΨP ◦ ΘT .

The proof is complete. �
In this paper ṽ(1) (and ṽ(r)) is called the first (the r-th) level extended partial parametric normal form,

this comes from Murdock’s definition in [22, Section 5] where only non-parametric cases were under
consideration.

Lemma 4.3. For any v ∈ L , there exist parameter solution P ∈ P , time solution T ∈ T , and state solution
S ∈ S such that their associated automorphisms transform v into the r-th level extended partial parametric
normal form

ṽ(r) = gr v ∈
∞⊕

n=0

N (r)
n where gr = ΨP ◦ ΘT ◦ ΦS ,

in which N (r)
n follows Lemma 4.1, i.e., there exists B-space T (r)

n such that E−n,n+1
r = Ln/T (r)

n = (N (r)
n +

T (r)
n )/T (r)

n = N (r)
n for n ∈ N0.

Proof. By Lemma 4.2 there exists a unique (since ṽ(1) and (S, P , T ) ∈ A0 follow formal basis style and
costyle) vector field ṽ(1) = g1 v ∈⊕∞

n=0 N (1)
n = N (1), where Total1(E∗,∗

1 ) = (N (1) + T (1))/T (1) =
N (1) and g1 = ΦS ◦ ΨP ◦ ΘT . Now define a new differential d1 = dn,−n

1 induced by dṽ(1) (Yn) =
Dμ(ṽ(1))Pn + Tn ṽ(1) + adSn ṽ(1) (where Yn = (Sn, Pn, Tn)), i.e.,

ker dn,−n
0

dn,−n
1−−−→ coker dn+1,−n−1

0 ,

Yn + Zn+1,−n−1
0 	→ dṽ(1) (Yn)

(
mod Fn+1L ∩ d

(
Fn+1 A0,∗)+ Fn+2L

)
. (4.9)

Note that ṽ(1)
0 = v(0)

0 . Furthermore, En,−n
2 = Zn,−n

2 /Zn+1,−n−1
1 , where

Zn,−n
2 = Fn A0,∗ ∩ d−1

1 Fn+2 A1,∗ and Zn+1,−n−1
1 = Fn+1 A0,∗ ∩ d−1

1 Fn+2 A1,∗.

By Lemma 4.2 (similar to proof of Theorem 3.4) we can compose the transformations and then the
sequence of their composition is convergent to g2 ∈ G with respect to filtration topology. Then, we
have ṽ(2) = g2 v ∈ ⊕∞

n=0 N (2)
n , where ṽ(2) is the second level extended partial parametric normal

form of v. This confirms our claim for r = 2, and therefore the proof is finished by mathematical
induction. �
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By Lemma 4.3 there exist state solution Sn, parameter solution Pn and time solution Tn such that

v(n) := gn v(n−1) =
∞∑

k=k0

v(n)

k , where v(n)

k ∈ Nk for k � n, and gn = ΦSn ◦ ΨPn ◦ ΘTn ∈ G1.

Then, {v(n)}∞n=0 ⊂ L and {gn}n ⊂ G1 are convergent sequences to a vector field v(∞) ∈ L and a
g∞ ∈ G1 with respect to their filtration topologies. We call v(∞) an infinite level parametric normal
form. The above argument leads to the following theorem.

Theorem 4.4. Let v = v(0) = ∑∞
n=k0

v(0)
n ∈ L , where v(0)

n ∈ Ln. Then, there exists a sequence of near-

identity maps {gn}n ⊆ G1 which transforms v(n) to v(n+1) = gn+1 v(n) for n ∈ N0 in which v(n) converges
(with respect to filtration topology) to an infinite level parametric normal form v(∞) =∑∞

r=k0
v(∞)

r , where

v(∞)
r ∈ N (r)

r ,

E−r,r+1∞ = E−r,r+1
r = Lr

T (r)
r

= N (r)
r + T (r)

r

T (r)
r

= N (r)
r

for r ∈ N0 and N (r)
r follows Lemma 4.1. Furthermore, g(n) = gn · · · g2 g1 converges to g∞ with respect to

filtration topology, where g∞ is associated with (S, P , T ) ∈ A0,∗, and v(∞) = g∞v = ΦS ◦ ΨP ◦ ΘT (v).

Proof. For any p, r ∈ N0, we have Z p,−p+1
r = F p A1,∗ = Z p,−p+1∞ , while assuming p − r � 1, we have

B p,−p+1
r = F p A1,∗ ∩ d(F 1 A0,∗) = B p,−p+1∞ . Then,

Er,−r+1
r = Zr,−r+1

r

Zr+1,−r
r−1 + Br,−r+1

r−1

= Er,−r+1∞ and Total1
(

E∗,∗∞
)=

∞⊕
r=0

Er,−r+1
r .

Since A0,∗ is locally finite, the rest of the proof follows Lemma 4.3 and v(∞)
r = ṽ(r)

r , where ṽ(r) =∑∞
n=0 ṽ(r)

n denotes the r-th level extended partial parametric normal form. �
Remark 4.5. Since linear changes of variables (3.6) and (3.7) are not initially linear, these are not in-
cluded in our normal form computations through spectral sequences. As noted before, linear changes
of state variables are not used in our computations. However, linear reparametrization is essentially
necessary for any possible reduction in the number of parameters of a parametric system. We, how-
ever, apply this when the vector fields are in a certain level of normal form, say r-th level. This is
done without an inclusion of linear reparametrization in the formalism of spectral sequences. Thus,
we redefine E∗,∗

r -space as the vector space span of all vector fields in the r-th level normal form after
a proper linear reparametrization is applied on them. Thus, this violates the main property of spectral
sequences; i.e., each level is not a cohomology of the previous level. However, the most important
point is that the formulations in the method is still valid for computing the simplest (by using all the
available spectral data in the transformation space) parametric normal forms.

5. Parametric single zero singularity

In this section, we apply the method of spectral sequences to a scalar multi-parameter system
with single zero singularity. Yu [36] considered this problem with a single parameter and obtained its
simplest orbital normal form. We consider a system governed by

ẋ = v(x,μ) :=
∑

m∈N
q
0, |m|>0

a1mxμm +
∑

m∈N
q
0

a2mx2μm +
∑

m∈N
q
0

a3mx3μm + · · · , (5.1)

with x ∈ F (i.e., p = 1), μ ∈ F
q, (for a fixed k ∈ N) ak0 �= 0, and ai0 = 0 for any i < k.
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As noted in Section 3, L will be defined differently in this example, since A = 0. Define B as
(k − 1) × q matrix whose (i, j) entry is bij := aie j for i, j ∈ N, i < k and j � q. We call v a non-
degenerate deformation of v(x,0) when rank(B) = k − 1. Note that we do not consider the case of
general non-degenerate deformations that does not necessarily keep the origin as its rest point.
Therefore, we can choose an invertible linear reparametrization μ = Cν = C[ν1, ν2, . . . , νq] such that
(ν1, ν2, . . . , νk−1,0) = BCν and instead consider the system ΛC v. Thus, from now on, for convenience
we assume that these have already been done, so that the system v(x,μ) satisfies aie j = δi j when
i < k. In other words we consider the vector fields described by

L := span

{
xk +

k−1∑
i=1

xiμi + h.o.t.

}
, (5.2)

where h.o.t. denotes monomials of degree at least (k + 1) in x or degree 2 in μ.

Remark 5.1. The rank condition on B requires q � k − 1. Loosely speaking, this means that the system
has enough parameters to unfold the unperturbed (μ = 0) system, with the restriction that the origin
remains the rest point. The restriction is because Eq. (5.1) does not allow parameters to produce a
constant term.

Note that L constitutes a Lie algebra and is invariant under near-identity formal change of
variables. For this example, we put α = (k,k, . . . ,k). Therefore, the gradings δα for S , P , T are re-
spectively given by δα(xiμm) := i + k|m| − 1, δα(xiμm) := i + k|m|, and δα(μmei) := k|m| − k for
ei ∈ F

q. The reason that we put the weight of k for the parameters is that any term with parameters
would get a grade greater than or equal to k. Hence, homogeneous spaces Li = {0} for i � k − 1 and
Lk−1 = span{xk}. The set of all monomial vector fields with any fixed order makes a formal basis
leading to the following theorem.

Theorem 5.2. Let v(x,μ), given by Eq. (5.1), be a non-degenerate deformation of v(x,0). Then, there exists
a k ∈ N such that the automorphism g∞ constructed according to Theorem 4.4 sends v into the infinite level
parametric normal form

ṽ(∞) = xk +
k−1∑
i=1

xiμi .

Proof. Without loss of generality, we assume v ∈ L . Since δα(xk) = k − 1 and δα(xμi) = k for any
i � q, Jk−2(v) = 0, and Em,−m+1∞ = 0 for m < k − 1. Here, Ek−1,−k+2∞ depicts the terms of grade k − 1,

that is, the least grade term of the system. So, Ek−1,−k+2∞ = span{xk}. Next, d(Fm−r+1 A0) ∩ FmL =
{0} for r < k implies that

Em,−m+1
r = Lm for r < k and k � m.

By [xiμm, xk] = (k − i)xi+k−1μm, xiμm(xk) = xk+iμm (associated with time rescaling), Dμ(xk, P ) = 0
for any P ∈ P, we have

Em,−m+1∞ = Em,−m+1
k = span

{
xiμi

∣∣m + 1 = k + i, 1 � i < k
}

for k � m < 2k − 1,

and for j � k, x jμm-terms are eliminated by time rescaling at k-th level. Since Dμ(xiμ j, P ) = xi P e j

for P ∈ P , xiμm-terms are eliminated by reparametrization at the (i + k)-level normal form when
m � 2k − 1 � r > k, and i � r − k, i.e.,
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Em,−m+1
r = Fm A1

d(Fm−r+1 A0) ∩ FmL + Fm+1L

= span
{

xiμm
∣∣m + 1 = i + k|m|, r − k < i < k

}
.

Therefore,

Em,−m+1∞ = Em,−m+1
2k = {0} for any m > 2k − 2.

The proof is completed by Theorem 4.4. �
6. Parametric resonant saddle singularity

In this section, we consider the following system

ẋ = v(x,μ) := Ax + h.o.t., (6.1)

where p = 2, A = (m 0
0 −n

)
, m,n ∈ N, m/n is an irreducible fraction, v(0,μ) = 0, and h.o.t. stands for

higher order terms with respect to x = [x, y] and μ = [μ1,μ2, . . . ,μq]. Some related results can be
found in [12,19,33]. Denote Xij := [xi y j,0], Yij := [0, xi y j]. For this example we put α = (β,β, . . . , β).

Therefore, the gradings δα for S , P , T are respectively given by δα(Xijμ
m) = δα(Yijμ

m) = i + j +
β|m|− 1, δα(xi y jμm) = i + j +β|m| (associated with time rescaling) and δα(μmfi) = β|m|−β (asso-
ciated with reparametrization), fi ∈ F

q. B = span{Xijμ
m, Yijμ

m} forms a formal basis for L , where
its ordering must follow rules (I) and (II) and also Y -terms precede X-terms, when they have the
same grade.

Lemma 6.1. For any β ∈ N and any parametric system given by (6.1), there exists an automorphism g1 ∈ G
such that it sends v into

ṽ(1) = g1 v = Ax +
∑

i�0, m∈N
q
0

b(1)
i,m

[
0, xin yim+1μm], (6.2)

where b(1)
0,0 = 0.

Proof. Since xin yim Ax = mXin+1,im − nYin,im+1 (associated with time rescaling) and

[Xij, Ax] = (
m(1 − i) + nj

)
Xij,

[Yij, Ax] = (−mi + n( j − 1)
)
Yij

(associated with state transformation) we have

d
(
F l A0)∩ F lL = (

span
({

Xijμ
m
∣∣ δβ

(
Xijμ

m)= l, (i − 1)m �= jn
}∪ {c

∣∣ δα(c) = l
}

∪ {Yijμ
m
∣∣ δα(Yijμ

m)= l, (i, j) �= (in, im + 1)
})

mod
(
F l+1)),

where c = (mXin+1,im − nYin,im+1)μ
m. Therefore,

El,−l+1
1 = F l A1

d(F l A0) ∩ F lL + F l+1L
= span

{
Yin,im+1μ

m
∣∣ δα(Yin,im+1μ

m)= l, i ∈ N
}
.

Then, using Lemma 4.2 completes the proof. �
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The following lemma makes a particular choice for β. Then, it follows that the first (β − 1) levels
of spectral sequence remain the same, so do the normal form vector fields. Normal form vector fields
are indeed simplified again at their β-th level.

Lemma 6.2. Let ṽ(1) be the vector field obtained in Lemma 6.1, k = min{i | b(1)
i,0 �= 0} and β = k(m + n) + 1.

Then, ṽ(1) = ṽ(β−1), and ṽ(1) can be transformed into the β-th level extended partial parametric normal form

ṽ(β) = Ax + b(1)

k,0

[
0, xkn ykm+1]+ ∑

i<k, |m|�1

b(1)
im

[
0, xin yim+1μm]+ ∑

m∈N
q
0

b(β)

2k,m

[
0, x2kn y2km+1μm],

where b(β)

k,0 = b(1)

k,0 �= 0.

Proof. The condition β = k(m + n) + 1 implies that δα(Y01μi) = β and δα(Ykn,km+1) = β − 1. Thus,

E∗,∗
r = E∗,∗

1 for any r < β. This implies that ṽ(1) = ṽ(β−1). Furthermore, we have Ek(m+n),−k(m+n)+1∞ =
span{Ykn,km+1}, and El,−l+1∞ = El,−l+1

1 for any l < β. Now noticing

[Yln,lm+1, Ykn,km+1] = (km − lm)Y(ln+kn)(lm+1+km),

[Xkn+1,km, Ykn,km+1] = knY(2kn)(2km+1) − kmX(2kn+1)(2km),

and kx2kn y2km Ax = −knY2kn,2km+1 + kmX2kn+1,2km, we have

d
(
F l−β+1 A0)∩ F l A1 = (

span
({

Xijμ
m
∣∣ δα(Xijμ

m)= l, (i − 1)m �= jn
}∪ {c

∣∣ δα(c) = l
}

∪ {Yin,im+1μ
m
∣∣ i > k, δα

(
Yin,im+1μ

m)= l
}

∪ {Yijμ
m
∣∣ δα(Yijμ

m)= l, im �= ( j − 1)n
}

∪ {Ykn,km+1μ
m
∣∣m �= 0, l = β − 1 + β|m|})mod

(
F l+1 A1)),

where c = (mXin+1,im − nYin,im+1)μ
m. Therefore, for any l � β the following holds

El,−l+1
β = span

({
Yin,im+1μ

m
∣∣ l = δα

(
Yin,im+1μ

m) and (i < k or i = 2k)
})

.

It is easy to see that b(β)

im = b(1)
im for i � k. The proof is complete. �

Now we introduce the notion of non-degenerate deformations for the obtained β-th level ex-
tended partial parametric normal forms. Then, we need linear reparametrization in order to simplify
the system and possibly reduce the number of parameters. However, we do not apply the linear
reparametrization on the space E∗,∗

β but we rather apply linear reparametrization on the vector fields.

Then, we redefine the space E∗,∗
β in order to proceed the computation to higher level spaces.

Let the hypotheses in Lemma 6.1 hold. In addition, define

B(β) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b(β)

0,μ1
b(β)

0,μ2
· · · b(β)

0,μq

b(β)

1,μ1
b(β)

1,μ2
· · · b(β)

1,μq

· · · · · · · · · · · ·
b(β)

k,μ1
b(β)

k,μ2
· · · b(β)

k,μq

b(β) b(β) · · · b(β)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6.3)
2k,μ1 2k,μ2 2k,μq
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We say that v(x,μ) is a non-degenerate deformation for v(x,0) if rank(B(β)) = k + 2. A linear
reparametrization can put B(β) into [I 0] where I denotes the (k + 2) × (k + 2)-identity matrix and 0
denotes the (k + 2) × (q − k − 2)-zero matrix. This linear reparametrization sends ṽ(β) into

v̂(β) = Ax + b(1)

k,0

[
0, xkn ykm+1]+ k−1∑

i=0

[
0, xin yim+1μi+1

]+ ∑
i<k, |m|�2

b(1)
im

[
0, xin yim+1μm]

+
∑

m∈N
q
0

b(β)

2k,m

[
0, x2kn y2km+1μm]. (6.4)

We now build up our spectral sequence on all such vector fields. That is, E∗,∗
β is redefined to be the

vector space span of all such vector fields.

Theorem 6.3. Let v be a non-degenerate deformation of resonant saddle singularity vector field governed by
Eq. (6.1) and satisfy the hypothesis given in this section. Then, there exists a natural number k such that v can
be transformed by invertible transformation into the infinite level extended partial parametric normal form

ṽ(∞) =
(

mx

−ny + axkn ykm+1 + (b + μk+1)x2kn y2km+1 +∑k−1
i=0 xin yim+1μi+1

)
, (6.5)

where a,b ∈ R are constants, a �= 0, and μi ’s are scaled parameters.

Proof. Without loss of generality, we may assume v is transformed into v̂(β) (for β = k(m + n) + 1)
and is governed by Eq. (6.4). We claim that the 2β-th level extended partial parametric normal form
is the same as the infinite level given by Eq. (6.5).

Due to

δα(Yin,im+1μi) = in + im + β, Dμ(Yin,im+1μi, P ) = πi(P ) = Pi,

and rank(B(β)) = k + 2, for any β < r � (k − 1)(m + n) + β we have

El,−l+1
r = span

({
Yin,im+1μi+1

∣∣∣ l = δα(Yin,im+1) + β, i < floor

(
r − β

m + n

)}

∪
{

Yin,im+1μ
m
∣∣∣ l = δα

(
Yin,im+1μ

m),floor

(
r − β

m + n

)
< i < k

}

∪ {Y2kn,2km+1μ
m
∣∣ l = δα

(
Y2kn,2km+1μ

m)}).

For any (k − 1)(m + n) + β < r < 2k(m + n) + β, we have E∗,∗
r = E∗,∗

(k−1)(m+n)+β
and E∗,∗∞ = E∗,∗

2k(m+n)+β
.

Thus,

El,−l+1∞ =
{ {0}, if l > 2k(m + n) + β,

span{Y2kn,2km+1μk+1}, if l = 2k(m + n) + β.

This completes the proof. �
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Remark 6.4. An alternative parametric normal form to Eq. (6.5) is

ṽ(2β) =
(

mx

−bx2kn y2km+1 + axkn ykm+1 +∑k
i=0 xin yim+1μi+1 + ny

)
, (6.6)

but this requires another approach and is beyond the scope of this paper.

7. Parametric generalized Hopf singularity

In this section, we present the parametric normal form of generalized Hopf singularity via the
spectral sequence method, see also [1,6,8,25,38]. The following presentation of our algebraic structures
was suggested in part by Murdock [21], see also [13,14,25]. We begin with the most general C∞
system in two dimensions with vector parameter μ having a Hopf singularity at the origin. When
expanded in a formal power series such a system takes on the form (modulo flat functions)

(
ẋ
ẏ

)
=
(−y

x

)
+
∑(

a jln
b jln

)
x j ylμn (7.1)

where summation is taken over j, l ∈ N0, n ∈ N
q
0, j+l+|n| > 1, and j+l � 1. Introducing the complex

variable z = x + iy we obtain

ż = iz +
∑

(b jln + ia jln)

(
z − z

2i

) j( z + iz

2

)l

μn

which can be expanded in the form

ż = iz +
∑

A jlnz j zlμn (7.2)

with A jln ∈ C. We now consider the following system, defined on C
2, with variables (z, w):

(
ż
ẇ

)
= i

(
z

−w

)
+
∑(

A jlm
B jlm

)
z j wlμm, (7.3)

where B jlm = A jlm . Eq. (7.3) reproduces our original system on the reality subspace of C
2 defined by

w = z. (This is a real vector space, that is, it is a subspace of C
2 over R. For a complete discussion of

reality conditions in normal form theory, see [21, pp. 203–206].) If we now set

X jl =
(

z j wl

w j zl

)
, Y jl =

(
iz j wl

iw j zl

)
,

and write A jlm = B jlm with α and β real, our system on C
2 takes the simple form

(
ż
ẇ

)
= Y10 +

∑
α jlm X jlμ

m +
∑

β jlmY jlμ
m, (7.4)

where the reality conditions are now simply given by the α and β coefficients lying in R. It is easy to
see that the case when the original system is complex (that is, (x, y) ∈ C

2) is included in the above
formula. We simply take the field F to be either R or C, and consider the right-hand side of Eq. (7.2)
to be a vector field on C

2 with coefficients in F. From here on we take (7.4) as the starting form for
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our analysis. This way we avoid the formulas for the coefficients of (7.4) in terms of those of (7.1),
which are of course rather complicated. Let

L =
{

aY10 +
∑

α jlm X jlμ
m +

∑
β jlmY jlμ

m
∣∣∣ a,α jlm, β jlm ∈ F, m ∈ N

q
0

}
.

We also use the subalgebra

C =
{

aY10 +
∑

α j+1, jm X j+1, jμ
m +

∑
β j+1, jmY j+1, jμ

m
}
,

which is a result of normalization in the classical sense (without time rescaling and reparametrization
and prior to hypernormalization). Let the ordering of formal basis

B = {
Xijμ

n, Yijμ
n
∣∣ n ∈ N

m
0 , i, j ∈ N0, i + j > 0

}
follow the rules (I) and (II), and Y -terms precede X-terms when they have the same grade. The reason
behind the latter condition is that {Yi+1,i, Xi+1,i}-terms only appear in classical normal forms (and in
the higher level normal forms) and Yi+1,i-terms represent phase terms while Xi+1,i-terms represent
amplitude terms.

Time rescaling is defined by

t = τ
(
1 + T (zz,μ)

)= τ + τ
∑

Tl,mzl zlμm, (7.5)

where the summation is taken over l ∈ N0 and m ∈ N
q
0, only if l + |m| � 1. Let Zl = zl zl (in particular

Z0 = 1) and define

T = span

{∑
Tl,m Zlμ

m
∣∣∣ l + |m| � 1

}
. (7.6)

Let {Ziμ
n} be a formal basis with an order satisfying the rules (I) and (II), when the grading function

is defined by

δα
(

Ziμ
m)= 2i + α · m, i ∈ N0.

Further, for any Ziμ
n1 ∈ {Ziμ

n} and X jlμ
n2 , Y jlμ

n2 ∈ B, we have

Ziμ
n1 X jlμ

n2 = X(i+ j)(i+l)μ
n1+n2 and Ziμ

n1 Y jlμ
n2 = Y(i+ j)(i+l)μ

n1+n2 .

The following lemma presents the first level parametric normal form of system (7.1).

Lemma 7.1. For any α ∈ N
q, there exists (S,0, T ) ∈⊕∞

n=1 A0,n that transforms v, given by

v = Y10 +
∞∑

i+ j+r=2, |n|=r, i+ j�1

a(0)
i jn Xijμ

n +
∞∑

i+ j+r=2, |n|=r, i+ j�1

b(0)
i jnYijμ

n, (7.7)

into the first level extended partial parametric normal form

ṽ(1) = ΦS ◦ ΘT (v) ∈ Y10 +
∞⊕

N (1)
n , (7.8)
n=1
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where

N (1)
n = span

{
X(l+1)lμ

n
∣∣ n = 2l + α · n,n ∈ N

q
0

}⊆ Cn

for n ∈ N. Furthermore, we have Total0(E∗,∗
1 ) =⊕∞

n=0{0} × Pn × Cn.

Proof. For any n ∈ N, we have

Zn,−n+1
1 = FnL , Zn+1,−n

0 = Fn+1L and Bn,−n+1
0 = FnL ∩ d0

(
Fn A0,∗),

where dv(S, P , T ) = Dμv P + T v + adS v. Therefore,

Bn,−n+1
0 + Zn+1,−n

0 = DμY10Pn + RnY10 + adY10Ln + Fn+1L

= RnY10 + adY10Ln + Fn+1L

= span
{

Y(l+1)lμ
n
∣∣ n = 2l + α · n, l ∈ N0

}+ C c
n + Fn+1L = Tn.

Thus, by Lemma 4.1 we have En,−n+1
1 = FnL /T (1)

n = (N (1)
n + T (1)

n )/T (1)
n , where

N (1)
n = span

{
X(l+1)lμ

n
∣∣ n = 2l + α · n, l ∈ N0

}
.

Since

Zn,−n
1 = {0} × Pn × Cn + Fn+1 A0,∗, Zn+1,−n−1

0 = Fn+1 A0,∗

and Bn,−n
0 = {0}, we have En,−n

1 = {0} × Pn × Cn + Fn+1 A0,∗/Fn+1 A0,∗. Then,

Total1
(

E∗,∗
1

)=
∞⊕

r=0

Er,−r+1
1 =

∞⊕
r=0

N (1)
r ⊂ L .

Besides, Total0(E∗,∗
1 ) =⊕∞

n=0 En,−n
1 =⊕∞

n=0{0} × Pn × Cn.

The rest of the proof is straightforward following Lemma 4.2. �
This lemma implies that the first level partial extended parametric normal form is

ṽ(1) = Y10 +
∑

a(1)
i,n Xi+1,iμ

n, (7.9)

where the summation is over i � 0 and |n| � 0. Following [11, p. 385], we say that v is a Hopf
singularity of order k, when

k := min
{

i
∣∣ a(1)

i,0 �= 0
}
. (7.10)

In this case, the origin is a weak focus of order k for v(x,μ = 0). Without loss of generality, we may
assume that a(1)

k,0 = 1. Systems with k > 1 are called generalized Hopf singularities. Now we intend to
put a condition on parametric terms of the form Xi+1,iμ j . So, define a (k + 1) × q matrix

B(1) = (bij)
(
bij = a(1)

ie j
for i � k, and bk+1, j = a(1)

2ke j

)
. (7.11)

When rank B(1) = k + 1, we refer to v as a non-degenerate deformation for the vector field v(1)(x,0).
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Now it is time to use a linear reparametrization. Similar to the previous section, we apply the
linear reparametrization on vector fields rather than on E∗,∗

1 -space. This simplifies non-degenerate
deformation of first level normal form vector fields and then, we restart a new spectral sequence by
defining E∗,∗

2 -space. This clearly violates the main property of spectral sequences, that is, each level
is the cohomology of previous level. However, the most important point is that this procedure does
not violate the rules of normal form computations. The later is the main purpose of this paper.

The condition (7.11) merely means that the parameters of the system are enough and in the right
places to make B(1) an onto matrix. Thus, there exists an invertible linear reparametrization ν = Cμ
such that νi = πi(B(1)Cμ) for i � k. Therefore, the first level extended partial parametric normal form
(7.9) can be sent to (denoting again μ instead of ν) ṽ(2) = ΨC (ṽ(1)) given by

ṽ(2) = Y10 + Xk+1,k +
k−1∑
i=0

Xi+1,iμi+1 + X2k+1,2kμk+1

+
∞∑

i=k+1

a(2)
i,n Xi+1,i +

∞∑
i=k, i �=2k

a(2)
i,n Xi+1,iμ

n +
∞∑

i=0

a(2)
in Xi+1,iμ

n, (7.12)

where the last two summations are taken over |n| = 1 and |n| > 1, respectively. Further, a(2)
i,0 = a(1)

i,0 .

We choose the weights for parameters such that the terms in the form of Xi+1,iμi+1 would have the
same grade; that is, α = (α1,α2, . . . ,αk+1),

αi = 4k − 2i + 3 (i � k), and αk+1 = 1. (7.13)

Thus, δα(Xi+1,iμ
n) = 2i + α · n, in particular we have δα(Xi+1,iμi+1) = δα(X2k+1,2kμk+1) = 4k + 1 for

i � k. This will significantly simplify our work compared with what is presented in [13].
Define

Total1
(

E∗,∗
2

) :=
∞⊕

r=0

Er,−r+1
2 , (7.14)

where E0,1
2 = span{Y10}; Er,−r+1

2 = {0} if 0 < r < 2k or 2k + 1 < r < 4k;

E2k,−2k+1
2 = span{Xk+1,k}; E4k,−4k+1

2 = span{X2k+1,2k};

and finally Er,−r+1
2 = span{Xi,i−1μ

n | r = 2i − 1 + α|n|} for any r > 4k. Roughly speaking Total1(E∗,∗
2 )

is the vector space span of all vector fields given by Eq. (7.12). Denote

V := span

{
X2k+1,2kμk+1 +

k∑
i=1

Xi,i−1μi

}
,

and note that V ⊂ E4k+1,−4k
2 . Further, we define

Total0(E∗,∗
2

)=
∞⊕

n=1

En,−n
2 =

∞⊕
n=1

{0} × Pn × Cn.

It can be seen that the set of transformations generated by elements from Total0(E∗,∗
2 ) constructs a

subgroup G from G.
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Remark 7.2. The invertible linear reparametrization was done outside the spectral sequences proce-
dure, and then we redefined Total1(E∗,∗

2 ) in Eq. (7.14). This destroys our spectral sequence structure,
i.e., H(E∗,∗

1 ) �= E∗,∗
2 . The reason to do this was: G does not act on L as an initially linear map and

the linear part of the action does not have the sole contribution in the normal form computation. The
problem only refers to the linear transformations. Therefore, we applied the linear reparametrization
on the vector fields to formulate them in a certain form and then, we considered the more restricted
space Total1(E∗,∗

2 ) and used the remaining spectral data for further normalization. Therefore, as far as
the spectral sequences are concerned, we may only discuss Er -terms for r � 2. This can be addressed
as follows. Let us denote

M := E0,1
2 ⊕ E2k,−2k+1

2 ⊕ V

and consider the quotient space N2 := Total2(E∗,∗
2 )/M (note that V is a B-space and thus in par-

ticular, Total2(E∗,∗
2 ) = V ⊕ N2). Then, define the induced group action G on the quotient space N2

by

(
g w = g

(
Y10 + Xk+1,k + X2k+1,2kμk+1 +

k∑
i=1

Xi,i−1μi + w

)
mod (M)

)

for any w ∈ N2 and g ∈ G. One can observe that this group action is initially linear with respect to
the associated filtration with the quotient space when q = k + 1.

Lemma 7.3. Let v(2) ∈ Total1(E∗,∗
2 ) (given in Eq. (7.14)), α given by Eq. (7.13). Then, we have

ṽ(2k) = ṽ(2), Total1
(

E∗,∗
2k

)= Total1
(

E∗,∗
2

)
, Total0

(
E∗,∗

2k

)= Total0
(

E∗,∗
2

)
,

and ṽ(1) can be transformed to the (2k + 1)-th level partial extended normal form ṽ(2k+1) ∈ Total1(E∗,∗
2k+1),

where

Total1
(

E∗,∗
2k+1

)= M ⊕ span
{

X(l+1)lμ
n, X2k+1,2kμ

n
∣∣ l < k, |n| > 1

}
. (7.15)

Furthermore,

Total0
(

E∗,∗
2k+1

)= {0} × PI ×
⊕

span
{

Yl+1,lμ
m, Xk+1,kμ

m}.
Proof. The first part is straightforward. According to Lemma 7.1, for r = 2k + 1 and m > 2k, we have
d−1Fm+2k A1 ∩ Fm A0 = {0} × Pm × LH,m mod (Fm+1 A0). Thus, the equation [Xl+1,l, Xk+1,k] =
2(l − k)X(l+k+1)(l+k) completes the proof for Eq. (7.15). Let state terms precede time terms in the
formal basis costyle. Hence,

Total0 E∗,∗
2k+1 = {0} × P ×

⊕
span

({
Y(l+1)lμ

m, X(k+1)kμ
m}).

This completes the proof. �
Theorem 7.4. Assume that the hypotheses of Lemma 7.3 hold for v. Then, we have

Total1
(

E∗,∗
4k+2

)= span

{
Y10, Xk+1,k, X2k+1,2kμk+1 +

k∑
Xi,i−1μi, X2k+1,2k

}
. (7.16)
i=1
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Furthermore, by invertible transformations v can be sent into its infinite level parametric normal form v(∞) =
v(4k+2), i.e., Total1(E∗,∗∞ ) = Total1(E∗,∗

4k+2).

Proof. It is easy to observe from Eq. (7.11) that B(4k+1) := (b(4k)
ie j

) = B(2) , and

Total0
(

E∗,∗
4k+1

)= Total0
(

E∗,∗
2k+1

)
and Total1

(
E∗,∗

4k+1

)= Total1
(

E∗,∗
2k+1

)
.

Therefore, we have 〈Pn,ei〉 = P1
n+αi

:= span{μm | |m| = n + αi}, and

Dμ

(
v4k+1

4k+1,Pn
)=

k⊕
i=1

{
Xi,i−1P

1
n+αi

}⊕ {
X2k+1,2kP

1
n+αk+1

}
.

Thus, Dμ(v4k+1
4k+1,Pm) + T (4k+1)

m = Lm for any m > 4k + 1. Thereby,

Em,−m+1
4k+2 = Fm A1

d(Fm−4k−1 A0) ∩ Fm A1 + T (4k+1)
m + Fm+1 A1

= Fn A1

d(Fm−4k−1Total0(E∗,∗
2k+1)) ∩ Fm A1 + T (4k+1)

m + Fm+1 A1

= Fm A1

d(Fm−4k−1({0} × P × {0})) ∩ Fm A1 + T (4k+1)
m + Fm+1 A1

= FmL

Dμ(v4k+1
4k+1,Pm) + T (4k+1)

m + Fm+1L
= {0},

where m > 4k + 1. Therefore, the sequence {E∗,∗
r | r � 2} collapses at 4k + 2.

The proof is complete. �
Corollary 7.5. Let v be a Hopf singularity of order k, k ∈ N, and v be a non-degenerate deformation for v(x,0),

that is, rank B(1) = k + 1. Then, the invertible transformation g∞ ∈ G, constructed according to Theorem 4.4,
transforms v into the infinite level parametric normal form

v(∞) = Y10 +
k∑

l=1

Xl(l−1)μl + X(k+1)k + aX(2k+1)2k + X(2k+1)2kμk+1, (7.17)

where a ∈ F, or equivalently system (7.1) can be transformed into

1

ρ

dρ

dt
= aρ4k + ρ2k + ρ4kμk+1 +

k∑
l=1

ρ2l−2μl and
dθ

dt
= 1. (7.18)

Proof. Note that g∞ = ΛC ◦ ΦS ◦ ΨP ◦ ΘT for some (S, P , T ) ∈ T ×P ×S and C ∈ GL(q). The proof
is straightforward following Theorems 7.4 and 4.4. �
Remark 7.6. One can modify our method to obtain an alternative parametric normal form to Eq. (7.18),
given by
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1

ρ

dρ

dt
= ρ2k +

k∑
l=1

ρ2l−2μl and
dθ

dt
= 1 + ρ2kμk+1 + aρ2k. (7.19)

One may consider only k parameters in the system provided that they split the k zero roots (associated
with R = ρ2) for the unperturbed system (μ = 0) of the amplitude equation (7.19). This system was
called parametric generic in [14]. Its infinite level normal form has an infinitely many terms in the
phase equation (7.19), see [14,38,39].

8. Conclusion

The method of spectral sequences has been suitably generalized to consider the infinite level nor-
mal forms of parametric vector fields. Our results can also be considered as a generalization of the
spectral sequences of orbital normal forms of non-parametric systems. The method has been applied
to three cases with multiple parameters: single zero, resonant saddle and generalized Hopf singulari-
ties.

Acknowledgments

The first author would like to acknowledge Professor J. Murdock’s generous help and useful discus-
sions via numerous e-mails. The financial support received from the Natural Sciences and Engineering
Research Council of Canada (NSERC) is also acknowledged.

References

[1] A. Algaba, E. Freire, E. Gamero, Characterizing and computing normal forms using Lie transforms: a survey, Dyn. Contin.
Discrete Impuls. Syst. 8 (2001) 449–475.

[2] A. Algaba, E. Freire, E. Gamero, C. Garcia, Quasi-homogeneous normal forms, J. Comput. Appl. Math. 150 (2003) 193–216.
[3] V.I. Arnold, A spectral sequence for the reduction of functions to normal form, Funktsional. Anal. i Prilozhen. 9 (1975)

81–82.
[4] V.I. Arnold, Spectral sequences for the reduction of functions to normal forms, in: S.L. Dobolev, A.I. Suslov (Eds.), Problems

in Mechanics and Mathematical Physics, Nauka, Moscow, 1976, pp. 7–20 (in Russian).
[5] A. Baider, Unique normal forms for vector fields and hamiltonians, J. Differential Equations 78 (1989) 33–52.
[6] A. Baider, R.C. Churchill, Unique normal forms for planar vector fields, Math. Z. 199 (1988) 303–310.
[7] A. Baider, J.A. Sanders, Further reductions of the Takens–Bogdanov normal form, J. Differential Equations 99 (1992) 205–

244.
[8] G. Belitskii, Smooth equivalence of germs of C∞ of vector fields with zero or a pair of pure imaginary eigenvalues, Funct.

Anal. Appl. 20 (1986) 253–259.
[9] M. Benderesky, R. Churchill, A spectral sequence approach to normal forms, in: Recent Developments in Algebraic Topology,

in: Contemp. Math., vol. 407, Amer. Math. Soc., Providence, RI, 2006, pp. 27–81.
[10] G. Chen, J. Della Dora, Further reductions of normal forms for dynamical systems, J. Differential Equations 166 (2000)

79–106.
[11] S.N. Chow, C. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge,

UK, 1994.
[12] F. Dumortier, J. Llibre, J.C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, Heidelberg, 2006.
[13] M. Gazor, Spectral sequences method and computation of parametric normal forms of differential equations, PhD thesis,

Department of Applied Mathematics, University of Western Ontario, 2008.
[14] M. Gazor, P. Yu, Infinite order parametric normal form of Hopf singularity, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11

(2008) 3393–3408.
[15] M. Gazor, P. Yu, Formal decomposition method and parametric normal forms, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11

(2010) 3487–3515.
[16] G. Gaeta, Poincaré renormalized forms, Ann. Inst. H. Poincaré Phys. Theor. 70 (1999) 461–514.
[17] H. Kokubu, H. Oka, D. Wang, Linear grading function and further reduction of normal forms, J. Differential Equations 132

(1996) 293–318.
[18] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, third ed., Springer-Verlag, New York, 2004.
[19] J. Martinet, J.P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math.

Inst. Hautes Etudes Sci. 55 (1982) 63–164.
[20] J. McCleary, A User’s Guide to Spectral Sequences, second ed., Cambridge University Press, Cambridge, New York, 2001.
[21] J. Murdock, Normal Forms and Unfoldings for Local Dynamical Systems, Springer-Verlag, New York, 2003.
[22] J. Murdock, Hypernormal form theory: foundations and algorithms, J. Differential Equations 205 (2004) 424–465.
[23] J. Murdock, D. Malonza, An improved theory of asymptotic unfoldings, J. Differential Equations 247 (2009) 685–709.



M. Gazor, P. Yu / J. Differential Equations 252 (2012) 1003–1031 1031
[24] J. Murdock, J.A. Sanders, A new transvectant algorithm for nilpotent normal forms, J. Differential Equations 238 (2007)
234–256.

[25] J. Peng, D. Wang, A sufficient condition for the uniqueness of normal forms and unique normal forms of generalized Hopf
singularities, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 14 (2004) 3337–3345.

[26] D. Panazzolo, Desingularization of nilpotent singularities in families of planar vector fields, Mem. Amer. Math. Soc. 158
(2002), viii+108 pp.

[27] J.A. Sanders, Normal form theory and spectral sequences, J. Differential Equations 192 (2003) 536–552.
[28] J.A. Sanders, Normal form in filtered Lie algebra representations, Acta Appl. Math. 87 (2005) 165–189.
[29] J.A. Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, second ed., Appl. Math. Sci.,

vol. 59, Springer-Verlag, New York, 2007.
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[31] E. Stróżyna, H. Zoladek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations 179

(2002) 479–537.
[32] E. Stróżyna, H. Zoladek, Orbital formal normal forms for general Bogdanov–Takens singularity, J. Differential Equations 193

(2003) 239–259.
[33] S.M. Voronin, A.A. Grintchy, An analytic classification of saddle resonant singular points of holomorphic vector fields in the

complex plane, J. Dyn. Control Syst. 2 (1996) 21–53.
[34] D. Wang, J. Li, M. Huang, Y. Jiang, Unique normal form of Bogdanov–Takens singularities, J. Differential Equations 163 (1)

(2000) 223–238.
[35] C.A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, Cambridge, New York, 1994.
[36] P. Yu, Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling,

J. Comput. Appl. Math. 144 (2002) 359–373.
[37] P. Yu, Simplest normal forms of Hopf and generalized Hopf bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999)

1917–1939.
[38] P. Yu, G. Chen, The simplest parametrized normal forms of Hopf and generalized Hopf bifurcations, Nonlinear Dynam. 14

(2007) 297–313.
[39] P. Yu, A.Y.T. Leung, The simplest normal form of Hopf bifurcation, Nonlinearity 16 (2003) 277–300.


	Spectral sequences and parametric normal forms
	1 Introduction
	2 Quotient and complement spaces
	3 Change of variables and their structures
	4 Cohomology spectral sequences
	5 Parametric single zero singularity
	6 Parametric resonant saddle singularity
	7 Parametric generalized Hopf singularity
	8 Conclusion
	Acknowledgments
	References


