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1 Introduction and main results

Consider a Liénard system with a vector parameter of the form

ẋ = y − F (x, a), ẏ = −g(x), (1.1)

where F and g are C∞ functions satisfying

g(0) = 0, g′(0) > 0, F (0, a) = 0, a ∈ D (1.2)

with D ⊂ Rm, m � 1. It is easy to see that the origin is a focus or node of (1.1) for all a ∈ D. If
∂F
∂x (0, a0) = 0 for some a0 ∈ D, then the origin is a focus or center, and (1.1) may have a limit cycle

near the origin for a near a0. Further, for a near a0 the Poincaré return map, denoted by P (r, a), can be

defined for |r| small and it has a formal expansion of the form

P (r, a)− r =
∑
j�1

dj(a)r
j .

For fixed a ∈ D, the origin is called a focus of order k if

dj(a) = 0, j = 1, . . . , 2k, d2k+1(a) �= 0.
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Let us introduce two numbers H∗
D and ĤD for the family (1.1). First, H∗

D is defined as follows:

H∗
D = max

a∈D
{the order of the focus at the origin for (1.1)}.

More precisely, for all a ∈ D, the origin is a focus of order at most H∗
D unless it is a center, and there

exists a∗ ∈ D such that the origin is a focus of order H∗
D. Thus, H∗

D is the maximal order of the origin

as a focus of (1.1) for all possible a ∈ D.

Then, we define ĤD by

ĤD = max
a∈D

{the number of limit cycles of (1.1) near the origin}.

In other words, there exists a neighborhood V of the origin such that (1.1) has at most ĤD limit cycles

in V for all a ∈ D, and for any neighborhood U ⊂ V of the origin, there exists a ∈ D such that (1.1) has

ĤD limit cycles in U . The number ĤD is called the cyclicity of the family (1.1) at the origin.

Han [5] gave a way to find H∗
D and ĤD, obtaining the following theorem.

Theorem 1.1. Let (1.2) be satisfied. Suppose

F (α(x), a) − F (x, a) =
∑
j�1

Bj(a)x
j ,

where α(x) = −x + O(x2) is the solution to the equation G(x) = G(y) on y < 0 < x with G(x) =∫ x

0
g(x)dx. Then

(1) for all k � 1 B2k = O(|B1, B3, . . . , B2k−1|), and for fixed a ∈ D the origin is a focus of order k if

and only if

Bj(a) = 0, j = 1, . . . , 2k, B2k+1(a) �= 0;

in this case, it is stable (unstable) if B2k+1(a) < 0 (> 0).

(2) If (i) for some a0 ∈ D B2j+1(a0) = 0, j = 0, . . . , k, and

rank
∂(B1, B3, . . . , B2k+1)

∂(a1, a2, . . . , am)

∣∣∣∣
a=a0

= k + 1,

then (1.1) has at least k limit cycles near the origin for some a near a0, each having an odd multiplicity.

If further (ii) F (α(x), a)−F (x, a) ≡ 0 as B2j+1 = 0, j = 0, . . . , k, then the cyclicity of (1.1) at the origin

is k for all a near a0. Moreover, when F is linear in a then the cyclicity of (1.1) at the origin is k for all

a ∈ D, and hence we have H∗
D = ĤD = k in this case.

An easy corollary of the above theorem is that H∗
D = ĤD = [n−1

2 ] for the system

ẋ = y −
n∑

j=1

ajx
j , ẏ = −x,

where D = Rn = {(a1, a2, . . . , an)|aj ∈ R}, n � 1. Han [5] proved H∗
D = ĤD = [ 2n−1

3 ] for the system

ẋ = y −
n∑

j=1

ajx
j , ẏ = −x(1− x), n � 1.

A new proof of this conclusion can be found in [11].

Jiang and Han [6] observed the following theorem from the proof of the above theorem given in [5].

Theorem 1.2. If there exists k � 1 such that for j � k + 1, B2j+1 = O(B1, B3, . . . , B2k+1) as

|B1|, |B3|, . . . , |B2k+1| are sufficiently small, then there exists a neighborhood U of the origin such that (1.1)

has at most k limit cycles in U for all a ∈ D.
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By using Theorems 1.1 and 1.2, it was proved in [6] that the system

ẋ = y −
∑n

i=1 aix
i

1 +
∑m

i=1 bix
i
, ẏ = −g(x),

where g(0) = 0, g′(0) > 0, g(−x) = −g(x), has the cyclicity [n+m−1
2 ] at the origin. The result implies

H∗
D = ĤD = [n+m−1

2 ] with D = Rn+m = {(a1, . . . , an, b1, . . . , bm)}.
Then, a question arises naturally: Is it true H∗

D = ĤD for any system (1.1)? We will give an example

in Section 3 to show that the answer is negative, see Proposition 3.1.

Next, consider a polynomial system of the form

ẋ = y, ẏ = −gm(x) − fn(x)y, (1.3)

where fn and gm are polynomials in x of degrees n and m, respectively. Taking all coefficients of fn
and gm as parameters, one can define two numbers H∗

n,m and Ĥn,m for (1.3) as before, see [3]. In other

words, H∗
n,m is the maximal order of the origin as a focus of (1.3), and Ĥn,m is the cyclicity of (1.3) at

the origin for all possible fn and gm.

We haveH∗
n,1 = Ĥn,1 = [n2 ] andH

∗
n,2 = Ĥn,2 = [ 2n+1

3 ] from the discussion after Theorem 1.1. From the

works of [1–4,7,9,10,12], we can find the values of H∗
n,m for many n and m, which suggest H∗

n,m = Ĥn,m.

As suggested in [3, p. 1101] it may hold that H∗
n,m � Ĥn,m. However, from Proposition 3.1 and the

discussion to (3.7) and (3.8) it must be nontrivial to prove either H∗
n,m � Ĥn,m or H∗

n,m � Ĥn,m for

general system (1.3). That is, it is an open problem to prove that any one of the two inequalities is true.

From the discussion in [3], one can see that

H∗
n,3 = 2

[
3n+ 2

8

]
� Ĥn,3 for 1 � n � 50,

H∗
3,m = 2

[
3m+ 2

8

]
� Ĥ3,m for 1 � m � 50.

In Llibre et al. [8], the authors considered a system of the form

ẋ = y, ẏ = −x− εgm(x)− εfn(x)y. (1.4)

A number was introduced in [8] for (1.4) which is the maximal number of limit cycles bifurcating from

the periodic orbits of the linear center ẋ = y, ẏ = −x for all possible fn and gm. We denote the number

by H̃
(1)
n,m. By using the averaging theory of order 3, Llibre et al. [8] obtained

H̃(1)
n,m �

[
n+m− 1

2

]
.

The proof of the above inequality is very technical and complicated.

To our knowledge, we do not find other results for arbitrary m and n. As was shown in [5–7, 11],

if the function F or g in (1.1) has a particular form, then one can use Theorems 1.1 and 1.2 to find

a sharp estimate of the number of limit cycles in Hopf bifurcations. However, if both of the functions

are polynomials of arbitrary degrees, the theorems are very hard to be used to find a sharp estimate.

To overcome this difficulty, in this paper, we first introduce a small parameter in (1.1) and establish a

general theorem, and then apply it to give a new lower bound of the maximal number of limit cycles for

arbitrary m and n. More precisely, we first consider a system of the form with small parameter λ,

ẋ = y, ẏ = −g0(x)− λg1(x) − λ2g2(x) − [f0(x) + λf1(x) + λ2f2(x)]y, (1.5)

where fj and gj are C∞ functions with

gj(0) = 0, j = 0, 1, 2, g′0(0) > 0.
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We will discuss the number of limit cycles in Hopf bifurcation.

Let

F (x, λ) = F0(x) + λF1(x) + λ2F2(x), (1.3)

G(x, λ) = G0(x) + λG1(x) + λ2G2(x), (1.4)

where

Fj(x) =

∫ x

0

fj(x)dx, Gj(x) =

∫ x

0

gj(x)dx, j = 0, 1, 2.

The following lemma is fundamental.

Lemma 1.3. Let

Φ(x, λ) = F (α(x, λ), λ) − F (x, λ),

where α(x, λ) = −x+O(x2) satisfies G(α(x, λ), λ) = G(x, λ) for (x, λ) near (0, 0). Then

α(x, λ) = α0(x) + λα1(x) + λ2α2(x) + · · · ,
and

Φ(x, λ) = Φ0(x) + λΦ1(x) + λ2Φ2(x) + · · · ,
where

G0(α0(x)) = G0(x), α1(x) =
G1(x)−G1(α0(x))

g0(α0(x))
,

α2(x) =
1

g0(α0(x))

[
G2(x)−G2(α0(x))− g1(α0(x))α1(x) − 1

2
g′0(α0(x))α

2
1(x)

]
,

Φ0(x) = F0(α0(x)) − F0(x), Φ1(x) = F1(α0(x)) − F1(x) + f0(α0(x))α1(x),

and

Φ2(x) = F2(α0(x))− F2(x) + f0(α0(x))α2(x) + f1(α0(x))α1(x) +
1

2
f ′
0(α0(x))α

2
1(x).

In particular, if Φ0(x) ≡ 0, then

Φ1(x) =
1

g0(x)
{g0(x)[F1(α0(x)) − F1(x)] − f0(x)[G1(α0(x)) −G1(x)]} . (1.6)

Now suppose the functions fj and gj in (1.5) depend on a vector parameter δ ∈ Rm. Then the function

Φ = Φ(x, λ, δ) is a function of (x, λ, δ). In this case, the main results can be stated as follows.

Theorem 1.4. Let for k = 1 or k = 2

Φ(x, λ, δ) = λkϕ0(x, δ)Φ̃k(x, δ) +O(λk+1),

Φ̃k(x, δ) =
∑
j�1

B∗
j (δ)x

j , ϕ0(0, δ) �= 0.

Suppose there exists δ0 ∈ Rm such that

B∗
2j+1(δ0) = 0, j = 0, 1, . . . ,m− 1,

and

det
∂(B∗

1 , B
∗
3 , . . . , B

∗
2m−1)

∂(δ1, δ2, . . . , δm)
(δ0) �= 0.

Then

(i) If B∗
2m+1(δ0) �= 0, (1.5) has at least m limit cycles, each having an odd multiplicity, in an arbitrary

neighborhood of the origin for some (λ, δ) sufficiently closed to (0, δ0).

(ii) If Φ(x, λ, δ) ≡ 0 as B∗
2j+1 = 0, j = 0, 1, . . . ,m − 1, then there exist a constant ε > 0 and a

neighborhood U of the origin such that for all |λ| < ε, |δ − δ0| < ε, (1.5) has at most m − 1 limit cycles

in U . Moreover, m− 1 limit cycles can appear in an arbitrary neighborhood of the origin for some (λ, δ)

near (0, δ0).
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We remark that if δ ∈ Rm+1 and

B∗
2j+1(δ0) = 0, j = 0, 1, . . . ,m,

det
∂(B∗

1 , B
∗
3 , . . . , B

∗
2m+1)

∂(δ1, δ2, . . . , δm+1)
(δ0) �= 0

for some δ0, then by the first conclusion of the above theorem it is obvious that (1.5) has at least m limit

cycles in an arbitrary neighborhood of the origin for some (λ, δ) sufficiently closed to (0, δ0).

To show that the above theorem is a nice development of Theorem 1.1, we apply it to the polynomial

system

ẋ = y, ẏ = −ḡk(x) − εgm(x) − εfn(x)y, (1.7)

where ε is small and ḡk is a polynomial of degree k satisfying ḡk(0) = 0 and ḡ′k(0) > 0. We can obtain

the following theorem.

Theorem 1.5. Let Ĥ
(k)
n,m denote the maximal number of limit cycles near the origin of (1.7) for all

possible fn and gm. Then for m,n � 1

Ĥ(1)
n,m �

[
n+m− 1

2

]
, Ĥ(2)

n,m � max

{[
m− 2

3

]
+

[
2n+ 1

3

]
,

[
n− 2

3

]
+

[
2m+ 1

3

]}
.

Corollary 1.6. For (1.4) we have Ĥn,m � max{[m−2
3 ] + [ 2n+1

3 ], [n−2
3 ] + [ 2m+1

3 ]}, where m � 2, n � 1.

To our knowledge, the result in the above corollary is the best lower bound for the maximal number

of limit cycles in Hopf bifurcations for arbitrary m and n.

It is not hard to prove that

hm,n ≡ max

{[
m− 2

3

]
+

[
2n+ 1

3

]
,

[
n− 2

3

]
+

[
2m+ 1

3

]}
�

[
n+m− 1

2

]
. (1.8)

See Proposition 3.2. Table 1 gives the values of the number pair (hm,n, [
n+m−1

2 ]) for 1 � n � 9 and

1 � m � 13 to show the difference of the two numbers.

In Section 2, we give a proof of Lemma 1.3 and Theorem 1.4. In Section 3, we present an application

of Theorem 1.4, proving Theorem 1.5.

Table 1 Some values of the pair (hm,n, [
n+m−1

2
])

m�n 1 2 3 4 5 6 7 8 9

1 (0, 0) (1, 1) (1, 1) (2, 2) (2, 2) (3, 3) (4, 3) (4, 4) (5, 4)

2 (1, 1) (1, 1) (2, 2) (3, 2) (3, 3) (4, 3) (5, 4) (5, 4) (6, 5)

3 (1, 1) (2, 2) (2, 2) (3, 3) (3, 3) (4, 4) (5, 4) (5, 5) (6, 5)

4 (2, 2) (3, 2) (3, 3) (3, 3) (4, 4) (4, 4) (5, 5) (5, 5) (6, 6)

5 (2, 2) (3, 3) (3, 3) (4, 4) (4, 4) (5, 5) (6, 5) (6, 6) (7, 6)

6 (3, 3) (4, 3) (4, 4) (4, 4) (5, 5) (5, 5) (6, 6) (6, 6) (7, 7)

7 (4, 3) (5, 4) (5, 4) (5, 5) (6, 5) (6, 6) (6, 6) (7, 7) (7, 7)

8 (4, 4) (5, 4) (5, 5) (5, 5) (6, 6) (6, 6) (7, 7) (7, 7) (8, 8)

9 (5, 4) (6, 5) (6, 5) (6, 6) (7, 6) (7, 7) (7, 7) (8, 8) (8, 8)

10 (6, 5) (7, 5) (7, 6) (7, 6) (8, 7) (8, 7) (8, 8) (9, 8) (9, 9)

11 (6, 5) (7, 6) (7, 6) (7, 7) (8, 7) (8, 8) (8, 8) (9, 9) (9, 9)

12 (7, 6) (8, 6) (8, 7) (8, 7) (9, 8) (9, 8) (9, 9) (10, 9) (10, 10)

13 (8, 6) (9, 7) (9, 7) (9, 8) (10, 8) (10, 9) (10, 9) (11, 10) (11, 10)
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2 Proofs of Lemma 1.3 and Theorem 1.4

Consider an equivalent form of (1.5) as follows:

ẋ = y − F (x, λ), ẏ = −g0(x)− λg1(x)− λ2g2(x) ≡ −g(x, λ). (2.1)

Lemma 2.1. There exists a unique function y = α(x, λ) with α(0, 0) = 0 and ∂α
∂x (0, λ) = −1 such that

G(α(x, λ), λ) = G(x, λ). Moreover,

α(x, λ) = α0(x) + λα1(x) + λ2α2(x) + · · · ,

where

G0(α0(x)) = G0(x), α1(x) =
G1(x)−G1(α0(x))

g0(α0(x))
,

α2(x) =
1

g0(α0(x))

[
G2(x)−G2(α0(x))− g1(α0(x))α1(x) − 1

2
g′0(α0(x))α

2
1(x)

]
.

Proof. Let

H(x, y, λ) =

⎧⎨⎩
G(y, λ) −G(x, λ)

y − x
, y �= x,

g(x, λ), y = x.

Then H is of C∞ and satisfies

H(x, y, λ) =
2∑

j=0

Gj(y)−Gj(x)

y − x
λj .

Since Gj(x) =
1
2g

′
j(0)x

2 +O(|x|3), we have

Gj(y)−Gj(x) = (y − x)

[
1

2
g′j(0)(y + x) +O(|x, y|2)

]
.

Hence, the first part follows from the implicit function theorem.

Then twice differentiating both sides of the quality G(α(x, λ), λ) = G(x, λ) in λ yields

Gx(α, λ)αλ +Gλ(α, λ) = Gλ(x, λ),

and

Gxx(α, λ)(αλ)
2 +Gx(α, λ)αλλ + 2Gλx(α, λ)αλ +Gλλ(α, λ) = Gλλ(x, λ).

Thus, taking λ = 0 in the above two formulas gives the formula of α1 and α2. This finishes the proof.

Lemma 2.2. Let

Φ(x, λ) = F (α(x, λ), λ) − F (x, λ) = Φ0(x) + λΦ1(x) + λ2Φ2(x) + · · · .

Then

Φ0(x) = F0(α0(x))− F0(x), Φ1(x) = F1(α0(x)) − F1(x) + f0(α0(x))α1(x), (2.2)

Φ2(x) = F2(α0(x))− F2(x) + f0(α0(x))α2(x) + f1(α0(x))α1(x) +
1

2
f ′
0(α0(x))α

2
1(x). (2.3)

In particular, if Φ0(x) ≡ 0, then (1.6) holds.

Proof. We have

F (α, λ) = F0(α) + λF1(α) + λ2F2(α),
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F0(α) = F0(α0) + λf0(α0)α1 + λ2
[
f0(α0)α2 +

1

2
f ′
0(α0)α

2
1

]
+O(λ3),

and

F1(α) = F1(α0) + λf1(α0)α1 +O(λ2).

Then the formula of Φ0, Φ1 and Φ2 follows immediately.

When Φ0(x) ≡ 0, we have

f0(α0)α
′
0 = f0(x), g0(α0)α

′
0 = g0(x),

which implies
f0(α0)

g0(α0)
=
f0(x)

g0(x)
.

Hence, (1.6) follows from the formula of α1 and Φ1. The proof is completed.

Let (x(t), y(t)) be the solution to (2.1) with the initial value x(0) = 0, y(0) = r0. Then there exists a

first return time τ0(r0, λ) ∈ C∞ such that x(τ0) = 0. Define d(r0, λ) = y(τ0) − r0. It is obvious that the

function d is C∞ for (r0, λ) near (0, 0) and system (2.1) has a periodic orbit near the origin if and only

if the function has two zeros in r0 (with one positive and the other negative) near r0 = 0. The function

d is called a displacement function or a bifurcation function.

From [5] we have the following lemma.

Lemma 2.3. Suppose formally

F (α(x, λ), λ) − F (x, λ) =
∑
i�1

Bi(λ)x
i, (2.4)

and

d(r0, λ) =
∑
i�1

di(λ)r
i
0.

Then
d1 = B1N

∗
0 (B1),

d2j = O(|B1, B3, . . . , B2j−1|),
d2j+1 = B2j+1N

∗
j (B1) +O(|B1, B3, . . . , B2j−1|),

with N∗
j ∈ C∞ and N∗

j (0) > 0 for j � 0. Moreover, we have

F (α(x, λ), λ) − F (x, λ) =
∑
i�0

A2i+1(λ)u
2i+1, (2.5)

where u = (sgnx)
√
G(x, λ),

A1 = (2/gx(0, λ))
1
2 B1,

A2k+1 = (2/gx(0, λ))
k+ 1

2B2k+1 +O(|B1, B3, . . . , B2k−1|), k � 1.

Using the above lemma it is easy to prove the following lemma.

Lemma 2.4. Suppose formally

F (α(x, λ), λ) − F (x, λ) = λkϕ0(x)
∑
i�1

B̃i(λ)x
i, (2.6)

where ϕ0 ∈ C∞, ϕ0(0) �= 0. Then

d(r0, λ) = λk
∑
i�1

d̃i(λ)r
i
0,
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where
d̃1 = B̃1(β0 +O(λk)),

d̃2j = O(|B̃1, B̃3, . . . , B̃2j−1|),
d̃2j+1 = B̃2j+1(βj +O(λk)) +O(|B̃1, B̃3, . . . , B̃2j−1|),

with β0, β1, . . . being all nonzero constants.

Now, we are in a position to prove Lemma 1.3 and Theorem 1.4. It is clear that Lemma 1.3 is direct

from Lemmas 2.1 and 2.2. Then let us prove Theorem 1.4. Suppose all conditions of Theorem 1.4 are

satisfied. Then

Φ(x, λ, δ) = λkϕ0(x, δ)
∑
i�1

B̃i(λ, δ)x
i,

where

B̃i(λ, δ) = B∗
i (δ) +O(λ), j � 1.

Consider the change of parameters

bj = B̃2j−1(λ, δ), j = 1, 2, . . . ,m.

By our assumptions, we can solve from the above equations

δ = ψ(λ, b) = δ0 +O(|λ, b|),
where b = (b1, b2, . . . , bm). Then by Lemma 2.4 the succession function d has the form

d(r0, λ, δ) = λk
∑
i�1

d̃i(λ, δ)r
i
0 ≡ d̄(r0, λ, b),

where
d̃2j−1 = bj(βj−1 +O(|λk, b|)) +O(|b1, b2, . . . , bj−1|),
d̃2j = O(|b1, b2, . . . , bj|), j = 1, 2, . . . ,m.

Therefore, we can rewrite d̄ as

d̄(r0, λ, b) = λk
[ m∑

j=1

r2j−1
0 bjPj(r0, λ, b) + r2m+1

0 Pm+1(r0, λ, b)

]
, (2.7)

where P1, . . . , Pm are polynomials in r0 of degree at most 2m − 1, Pm+1 ∈ C∞, Pj(0, 0, 0) = βj−1 �= 0

for j = 1, 2, . . . ,m, and Pm+1(0, 0, 0) = B∗
2m+1(δ0)βm. For definiteness, we may suppose ϕ0(0, δ0) > 0,

which yields βj > 0 for all j � 1.

If B∗
2m+1(δ0) �= 0, we can change bm, bm−1, . . . , b1 in turn such that

0 � |bj| � |bj+1| � 1, bjbj+1 < 0, bmB
∗
2m+1(δ0) < 0.

Then by the form (2.7), the function d̄ has at least m positive zeros in r0 near r0 = 0 in this case.

If Φ(x, λ, δ) ≡ 0 as B∗
2j+1 = 0, j = 0, 1, . . . ,m− 1, then

B̃2j−1(λ, δ) = B∗
2j−1(δ) +O(λ) = O(B∗

2j−1(δ)), j = 1, 2, . . . ,m,

which implies

B∗
2j−1(δ) = 0, j = 1, 2, . . . , m⇔ b = 0.

Thus, by Lemma 2.4, in this case we have d̄(r0, λ, 0) = 0. Hence, the function Pm+1 in (2.7) satisfies

Pm+1(r0, λ, 0) = 0. It follows that

d̄(r0, λ, b) = λk
m∑
j=1

r2j−1
0 bjP̄j(r0, λ, b),

where P̄j = Pj + O(r
2(m−j)+2
0 ). Then using the above, we can prove that d̄ has at most m − 1 positive

zeros in r0 near r0 = 0 for all small |b|, and m− 1 positive zeros can appear for some b.

Then the conclusion of Theorem 1.4 follows.
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3 Proof of Theorem 1.5 and some propositions

In this section, we consider a system of Liénard type with the form

ẋ = y, ẏ = −gm(x, λ) − fn(x, λ)y, (3.1)

where gm and fn are polynomials in x of degree m and n, respectively, and have the form

gm(x, λ) = g0(x) + λg1(x), fn(x, λ) = f0(x) + λf1(x). (3.2)

First, we take

g0(x) =

m1∑
j=0

a0jx
2j+1, 2m1 + 1 � m, g1(x) =

m∑
j=1

a1jx
j ,

f0(x) =

n1∑
j=0

b0jx
2j+1, 2n1 + 1 � n, f1(x) =

n∑
j=0

b1jx
j ,

(3.3)

where a00 > 0.

In this case, we have by (1.6)

Φ1(x) =
1

g∗0(x)
Φ̃1(x),

where

Φ̃1(x) = g∗0(x)[F1(−x)− F1(x)] − f∗
0 (x)[G1(−x)−G1(x)],

g∗0(x) =
g0(x)

x
=

m1∑
j=0

a0jx
2j , f∗

0 (x) =
f0(x)

x
=

n1∑
j=0

b0jx
2j ,

F1(−x)− F1(x) =

n2∑
j=0

b̄jx
2j+1, n2 = [n/2], b̄j = − b1,2j

2j + 1
,

and

G1(−x)−G1(x) =

m2∑
j=1

ājx
2j+1, m2 = [m/2], āj = − a1,2j

2j + 1
.

Let r = x2, then it is easy to see that

Φ̃1(x) = x

[ m1∑
j=0

a0jr
j

n2∑
j=0

b̄jr
j −

n1∑
j=0

b0jr
j

m2∑
j=1

ājr
j

]
≡ xSM̄ (r),

where

SM̄ (r) =

M̄∑
k=0

Bk+1r
k, M̄ = max{m1 + n2, n1 +m2},

Bk+1 =
∑

i+j=k
0�i�m1
0�j�n2

a0ib̄j −
∑

i+j=k
0�i�n1
1�j�m2

b0iāj .

Let first m be even. In this case, we take m1 = 0, n1 = [n−1
2 ] so that

m1 + n2 �
[
m− 1

2

]
+

[
n

2

]
�

[
n− 1

2

]
+

[
m

2

]
= M̄.

We further take a00 = 1, b0n1 �= 0, b0i = 0 for 0 � i � n1 − 1, and set

μ = b0n1 , δ = (b̄0, b̄1, . . . , b̄n2 , ān2−n1+1, . . . , ām2) ∈ RM̄+1.
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Then

Bk+1 =

⎧⎪⎪⎨⎪⎪⎩
b̄k, 0 � k � n1,

b̄k − b0n1 ān2−n1 , k = n2 (for n even),

b0n1 āk−n1 , n2 + 1 � k � M̄.

Evidently,

Bk+1 = 0, k = 0, 1, . . . , M̄ ⇔ δ = 0;

det
∂(B1, . . . , BM̄+1)

∂δ

∣∣∣∣
δ=0

= (−b0n1)
M̄−n2 .

Now let m be odd. Then take n1 = 0, m1 = [m−1
2 ] so that

n1 +m2 �
[
n− 1

2

]
+

[
m

2

]
�

[
m− 1

2

]
+

[
n

2

]
= M̄.

Further take a00 = 1, a0m1 �= 0, b00 �= 0, a0i = 0 for 0 � i � m1 − 1, and set

μ = (a0m1 , b00), δ = (ā1, ā2, . . . , ām2 , b̄0, . . . , b̄n2) ∈ RM̄+1.

Then noting m1 = m2, we have

Bk+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b̄0, k = 0,

b̄k − b00āk, 1 � k � m2 − 1,

b̄k + a0m1 b̄0 − b00āk, k = m2,

b̄k + a0m1 b̄k−m1 , m2 + 1 � k � M̄.

As above

Bk+1 = 0, k = 0, 1, . . . , M̄ ⇔ δ = 0;

det
∂(B1, . . . , BM̄+1)

∂δ

∣∣∣∣
δ=0

�= 0.

Then by Theorem 1.4(i) under (3.3) for all 0 < |λ| � |μ| and some δ near 0, the system (3.1) can have

at least M̄ limit cycles near the origin.

Note that M̄ = [m+n−1
2 ] and that |μ| can be taken very small. We have immediately Lemma 3.1.

Lemma 3.1. For any neighborhood U of the origin there exist ε0 > 0 and functions g0, g1, f0 and f1
of the form (3.3), where a00 > 0, |a0j | < ε0 for 1 � j � m1, |b0j | < ε0 for 0 � j � n1, |a1j | < ε0 for

1 � j � m and |b1j | < ε0 for 0 � j � n, such that for all 0 < |λ| < ε0, (3.1) has at least [m+n−1
2 ] limit

cycles in U .

Next, we take g0, g1, f0 and f1 in (3.2) to have the form

g0(x) = ḡ(x)

m1∑
j=0

a0j [Ḡ(x)]
j , g1(x) =

m∑
j=1

a1jx
j ,

f0(x) = ḡ(x)

n1∑
j=0

b0j [Ḡ(x)]
j , f1(x) =

n∑
j=0

b1jx
j ,

(3.4)

where

a00 > 0, ḡ(x) = x(1 − x), Ḡ(x) = x2/2− x3/3, 3m1 + 2 � m, 3n1 + 2 � n.

Obviously,

G0(x) =

∫ x

0

g0(x)dx =

m1∑
j=0

a0j
j + 1

[Ḡ(x)]j+1,
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F0(x) =

∫ x

0

f0(x)dx =

n1∑
j=0

b0j
j + 1

[Ḡ(x)]j+1,

which satisfy

G0(α0(x)) = G0(x), F0(α0(x)) = F0(x),

where α0(x) = −x+O(x2) is defined by Ḡ(α0(x)) = Ḡ(x).

By (1.6), we have

Φ1(x) =
1

g∗0(x)
Φ̃1(x),

where

Φ̃1(x) = g∗0(x)[F1(α0)− F1(x)] − f∗
0 (x)[G1(α0)−G1(x)],

g∗0(x) =
g0(x)

ḡ(x)
=

m1∑
j=0

a0jḠ
j , f∗

0 (x) =
f0(x)

ḡ(x)
=

n1∑
j=0

b0jḠ
j .

By (2.5), we have

F1(α0)− F1(x) =
∑
j�0

αju
2j+1,

G1(α0)−G1(x) =
∑
j�1

βju
2j+1,

where u = (sgnx)
√
Ḡ(x). By [5, Theorem 3 and Proof of Theorem 5] and Lemma 2.3 (or [5, Lemma 1]),

we know that α0, α1, . . . , αn3 and β1, β2, . . . , βm3 can be taken as free parameters, and

αj = O(|α0, α1, . . . , αn3 |), j � n3 + 1,

βj = O(|β1, β2, . . . , βm3 |), j � m3 + 1,

where m3 = [ 2m+1
3 ], n3 = [ 2n+1

3 ]. Therefore,

Φ̃1(x) = u

[ m1∑
j=0

a0ju
2j
∑
j�0

αju
2j −

n1∑
j=0

b0ju
2j
∑
j�1

βju
2j

]
≡ uS(u),

where

S(u) =
∑
k�0

Bk+1u
2k,

Bk+1 =
∑

i+j=k
0�i�m1

0�j

a0iαj −
∑

i+j=k
0�i�n1

1�j

b0iβj

Let M = max{m1 + n3, n1 +m3}, where m1 = [m−2
3 ], n1 = [n−2

3 ]. Then for m1 � 0 or n1 � 0 it is

easy to see, as before, that B0, B1, . . . , BM can be taken as free parameters, which implies the following

lemma.

Lemma 3.2. Let m,n � 1 and max{m,n} � 2. Then for any neighborhood U of the origin there exist

ε0 > 0 and functions g0, g1, f0 and f1 of the form (3.4) such that for all 0 < |λ| < ε0, (3.1) has at least

M limit cycles in U .

It is clear that Theorem 1.5 follows from Lemmas 3.1 and 3.2.

In the rest, we give two propositions mentioned in the first section.

Proposition 3.3. For H∗
D and ĤD introduced in Section 1, each of the cases H∗

D < ĤD and H∗
D > ĤD

can occur in certain examples.
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Proof. We need only to present an example. Let us consider a special system of degree 5 of the form

ẋ = y − (a1x+ a2x
3 + a3x

5), ẏ = −x. (3.5)

For the system we have

B1 = −2a1, B3 = −2a2, B5 = −2a3, B2j+1 = 0 for j � 3.

From [5], the Poincaré map satisfies

P (r, a)− r = r[B1P1(r, a) +B3r
2P2(r, a) +B5r

4P3(r, a)], (3.6)

where Pj(r, a) = N∗
j−1(B1) + O(r) with

N∗
j−1(0) = 2j−3/2

∫ 2π

0

cos2j θdθ, j = 1, 2, 3.

In fact, we can find

N∗
0 (0) =

π√
2
, N∗

1 (0) =
3π

4
√
2
, N∗

2 (0) =
5π

8
√
2
.

By Theorem 1.1 or using (3.6) one has for (3.5) H∗
D = ĤD = 2 with a = (a1, a2, a3) ∈ D = R3.

Now we consider two subclasses of (3.5) as follows

ẋ = y − (a2x
3 + a3x

5), ẏ = −x (3.7)

and

ẋ = y − (a1x− a23x
3 + a3x

5), ẏ = −x. (3.8)

We claim that

(i) for (3.7) with a = (a2, a3) ∈ D = R2 we have H∗
D = 2 > ĤD = 1;

(ii) for (3.8) with a = (a1, a3) ∈ D = R2 we have H∗
D = 1 < ĤD = 2.

In fact, for (3.7), (3.6) becomes

P (r, a)− r = r3[B3P2(r, a) +B5r
2P3(r, a)],

which has at most one positive zero in r, giving ĤD = 1. By Theorem 1.1 above it is clear that H∗
D = 2.

For (3.8) it is direct by Theorem 1.1 that H∗
D = 1. Since (3.8) is a special form of (3.5), it implies that

ĤD � 2. Now we use (3.6) to prove ĤD � 2. First, set a1 = 0. Then noting B3 = 2a23 and B5 = −2a3
for (3.8) we have from (3.6)

P (r, a)− r = r3[2a23P2(r, a)− 2a3r
2P3(r, a)] = 2a3r

3[a3P2(r, a)− r2P3(r, a)],

which has a zero of the form

r =

√
N∗

1 (0)

N∗
2 (0)

a3 +O(a3) ≡ r1(a3)

for 0 < a3 � 1.

In this case, the origin is an unstable focus of order 1 and there exists a stable limit cycle Γ1(a3) near

the origin. Then fix a3 and change a1 satisfying 0 < a1 � a3 so that a second zero,

r = r2(a1) =

√
a1N∗

0 (0)

a23N
∗
1 (0)

+ O(a1)

is produced (the stability of the origin has changed from unstable into stable), while the first zero keeps

remain near r1(a3). Thus we have that (3.8) has two limit cycles near the origin for 0 < a1 � a3 � 1,

implying ĤD � 2. Then the conclusion is shown.
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Table 2 The values of ([m−2
3

+ [ 2n+1
3

, n−2
3

+ [ 2m+1
3

, [n+m−1
2

])

(i, j) ([m−2
3

] + [ 2n+1
3

], [n−2
3

] + [ 2m+1
3

], [n+m−1
2

])

(0,0) (l + 2k − 1, k + 2l − 1, [
3(k+l)−1

2
])

(1,0) (l + 2k, k + 2l − 1, [ 3(k+l)
2

])

(2,0) (l + 2k, k + 2l, [
3(k+l)+1

2
])

(0,1) (l + 2k − 1, k + 2l, [ 3(k+l)
2

])

(1,1) (l + 2k, k + 2l, [
3(k+l)+1

2
])

(2,1) (l + 2k, k + 2l+ 1, [ 3(k+l)
2

] + 1)

(0,2) (l + 2k, k + 2l, [
3(k+l)+1

2
])

(1,2) (l + 2k + 1, k + 2l, [
3(k+l)

2
] + 1)

(2,2) (l + 2k + 1, k + 2l + 1, [ 3(k+l)+1
2

] + 1)

Proposition 3.4. For all m,n � 1, (1.8) holds.

Proof. Let n = 3k+ i, m = 3l+ j, where 0 � i, j � 2. Then we have Table 2 for the values of the triple

([m−2
3 ] + [ 2n+1

3 ], [n−2
3 ] + [ 2m+1

3 ], [n+m−1
2 ]).

From Table 2, it is easy to see that to prove (1.8) we need only to prove the following two inequalities:

max{l+ 2k − 1, k + 2l− 1} �
[
3(k + l)− 1

2

]
,

and

max{l+ 2k, k + 2l− 1} �
[
3(k + l)

2

]
.

Note that

l + 2k − 1 �
[
3(k + l)− 1

2

]
as k � l,

l + 2k �
[
3(k + l)

2

]
as k � l − 1, and

l+ 2k − 1 �
[
3(k + l)

2

]
as k � l − 2. Then the above two inequalities follow directly.

In particular, for m = n, n+ 1 then (1.8) reduces to

hm,n = [(n+m− 1)/2],

and for m = n+ 2, n+ 3, n+ 4, n+ 5, n+ 6, n+ 7, (1.8) reduces to

hm,n � [(n+m− 1)/2].

For m = n+ 8, n+ 9, n+ 10, we have

hm,n � [(n+m− 1)/2] + 1.

And for m = 3n+ 1, 3n+ 2 we have

hm,n =

[
n− 2

3

]
+ 2n+ 1 > 2n = [(n+m− 1)/2].

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No.

11271261).



1556 Han M A et al. Sci China Math August 2013 Vol. 56 No. 8

References

1 Blows T R, Lloyd N G. The number of small-amplitude limit cycles of Li’enard equations. Math Proc Cambridge

Philos Soc, 1984, 95: 359–366

2 Christopher C J, Lloyd N G. Smallamplitude limit cycles in polynomial Li’enard systems. NoDEA Nonlinear Differ-

ential Equations Appl, 1996, 3: 183–190

3 Christopher C, Lynch S. Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping

or restoring forces. Nonlinearity, 1999, 12: 1099–1112

4 Gasull A, Torregrosa J. Small-amplitude limit cycles in Liénard systems via multiplicity. J Differential Equations,

1999, 159: 186–211

5 Han M A. Liapunov constants and Hopf cyclicity of Liénard systems. Ann Differential Equations, 1999, 15: 113–126

6 Jiang J, Han M A. Small-amplitude limit cycles of some Liénard-type systems. Nonlinear Anal, 2009, 71: 6373–6377

7 Jiang J, Han M A, Yu P, et al. Limit cycles in two types of symmetric Liénard’s systems. Int J Bifurcation Chaos,

2007, 17: 2169–2174

8 Llibre J, Mereu A C, Teixeira M A. Limit cycles of the generalized polynomial Liénard differential equations. Math

Proc Cambridge Philos Soc, 2010, 148: 363–383

9 Lloyd N, Lynch S. Small-amplitude limit cycles of certain Liénard systems. Proc R Soc Lond A, 1988, 418: 199–208

10 Lynch S, Christoper C. Limit cycles in highly nonlinear differential equations. J. Sound Vibration, 1999, 224: 505–517

11 Tian Y, Han M. Hopf bifurcation for two types of Liénard systems. J Differential Equations, 2011, 251: 834–859

12 Yu P, Han M. Limit cycles in generalized Liénard systems. Chaos Solitons Fractals, 2006, 30: 1048–1068


