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1 Introduction and main results
Consider a Liénard system with a vector parameter of the form

:ic:y—F(x,a), y:—g($)7 (11)

where F' and g are C*° functions satisfying

g(0) =0, ¢'(0)>0, F(0,a)=0, a€D (1.2)

with D C R™, m > 1. It is easy to see that the origin is a focus or node of (1.1) for all a« € D. If
?)f (0,ap) = 0 for some ag € D, then the origin is a focus or center, and (1.1) may have a limit cycle
near the origin for a near ag. Further, for a near ag the Poincaré return map, denoted by P(r,a), can be
defined for |r| small and it has a formal expansion of the form

P(r,a) —r = Zdj(a)rj.

j=1
For fixed a € D, the origin is called a focus of order k if
dj(a)=0, j=1,...,2k, dogsi(a)#DO0.
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Let us introduce two numbers H7, and Hp for the family (1.1). First, H}, is defined as follows:

H}, = mar))i{the order of the focus at the origin for (1.1)}.
ac

More precisely, for all a € D, the origin is a focus of order at most H}, unless it is a center, and there
exists a* € D such that the origin is a focus of order H},. Thus, H}, is the maximal order of the origin
as a focus of (1.1) for all possible a € D.

Then, we define Hp by

Hp = mag{the number of limit cycles of (1.1) near the origin}.
ac

In other words, there exists a neighborhood V' of the origin such that (1.1) has at most H p limit cycles
in V for all a € D, and for any neighborhood U C V of the origin, there exists a € D such that (1.1) has
Hp limit cycles in U. The number Hp is called the cyclicity of the family (1.1) at the origin.

Han [5] gave a way to find H}, and H D, obtaining the following theorem.

Theorem 1.1.  Let (1.2) be satisfied. Suppose

F(a(z),a) — F(z,a) = ZBj(a)xj,

Jj=z1

where a(z) = —x + O(x?) is the solution to the equation G(z) = G(y) ony < 0 < x with G(z) =
Jo 9(x)dx. Then
(1) for all k > 1 Bay = O(|B1, Bs, ..., Bag—_1|), and for fized a € D the origin is a focus of order k if
and only if
B](a) :05 j = 17"'52k7 B2k+1(a) 7&05

in this case, it is stable (unstable) if Bogi1(a) <0 (> 0).
(2) If (i) for some ap € D Baji1(ap) =0, j=0,....k, and

O(B1, Bs, ..., Bag11)

=k+1,
8(&1,&2,...,am) a=ap

then (1.1) has at least k limit cycles near the origin for some a near ag, each having an odd multiplicity.
If further (i) F(a(z),a) — F(x,a) =0 as Boj4+1 =0, 7 =0,...,k, then the cyclicity of (1.1) at the origin
is k for all a near ag. Moreover, when F is linear in a then the cyclicity of (1.1) at the origin is k for all
a €D, and hence we have Hf, = Hp =k in this case.

An easy corollary of the above theorem is that Hj, = Hp = ["5!] for the system
n
izy—Zajxj, Y= —uz,
j=1
where D = R" = {(a1,as,...,an)|la; € R}, n > 1. Han [5] proved Hj, = Hp = [?" 1] for the system
n
izy—Zaij, y=—-z(1—2z), n>1

j=1

A new proof of this conclusion can be found in [11].

Jiang and Han [6] observed the following theorem from the proof of the above theorem given in [5].
Theorem 1.2.  If there exists k > 1 such that for j > k + 1, Byjy1 = O(B1,Bs,...,Bogt1) as
|B1|, |Bsl, - ., |Bakt1| are sufficiently small, then there exists a neighborhood U of the origin such that (1.1)
has at most k limit cycles in U for all a € D.
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By using Theorems 1.1 and 1.2, it was proved in [6] that the system

where g(0) = 0, ¢'(0) > 0, g(—z) = —g(x), has the cyclicity [""7'~'] at the origin. The result implies
Hj = Hp = [""7"!] with D = R"*™ = {(a4, .. S, by, yom)

Then, a question arises naturally: Is it true Hj, = Hp for any system (1.1)? We will give an example
in Section 3 to show that the answer is negative, see Proposition 3.1.

Next, consider a polynomial system of the form

where f,, and g,, are polynomials in x of degrees n and m, respectively. Taking all coefficients of f,
and g,, as parameters, one can define two numbers H;; , and ﬁnm for (1.3) as before, see [3]. In other
words, H,: . is the maximal order of the origin as a focus of (1.3), and I/i\'n,m is the cyclicity of (1.3) at
the origin %or all possible f,, and gy,.

We have Hy; | = I?ml =[y]land H}; , = .H\-fan = [?"F1] from the discussion after Theorem 1.1. From the
works of [1-4,7,9,10,12], we can find the values of H,; ,, for many n and m, which suggest H,; ,, = ﬁmm.
As suggested in [3, p.1101] it may hold that Hy , > ﬁnm However, from Proposition 3.1 and the
> H, ,, for

,m =

discussion to (3.7) and (3.8) it must be nontrivial to prove either H; . < H, ., or H,
general system (1.3). That is, it is an open problem to prove that any one of the two inequalities is true.
From the discussion in [3], one can see that

21 -
HS,gzz{SnJr }<Hn,3 for 1<n <50,

8
3 2 ~
H;,m, = 2|: m8+ :| < H3,m for 1 <m< 50.

In Llibre et al. [8], the authors considered a system of the form

=y, y=-—1—cgm(r)—efn(r)y. (1.4)

A number was introduced in [8] for (1.4) which is the maximal number of limit cycles bifurcating from
the periodic orbits of the linear center & = y, y = —x for all possible f,, and g,,. We denote the number
by H,(f?)n By using the averaging theory of order 3, Llibre et al. [8] obtained

n,m = 2

The proof of the above inequality is very technical and complicated.

To our knowledge, we do not find other results for arbitrary m and n. As was shown in [5-7,11],
if the function F or ¢ in (1.1) has a particular form, then one can use Theorems 1.1 and 1.2 to find
a sharp estimate of the number of limit cycles in Hopf bifurcations. However, if both of the functions
are polynomials of arbitrary degrees, the theorems are very hard to be used to find a sharp estimate.
To overcome this difficulty, in this paper, we first introduce a small parameter in (1.1) and establish a
general theorem, and then apply it to give a new lower bound of the maximal number of limit cycles for
arbitrary m and n. More precisely, we first consider a system of the form with small parameter A,

&=y, §=—golx) = Agi(z) = Ng2(x) — [folz) + Af1(z) + X f2(2)]y, (1.5)
where f; and g; are C*° functions with

gj(0)=0, j=0,1,2, g;(0)>0.
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We will discuss the number of limit cycles in Hopf bifurcation.
Let

F(z,\) = Fy(x) + AFy (2) + N2 Fa(w), (1.3)
G(x,\) = Go(x) + MGy (x) + N2 Go(x), (1.4)
where . .
@ = [ f@de 6@ = [ gz j=01.2
The following lemma is fundamental.

Lemma 1.3. Let
Oz, \) = Fla(z,\),\) — F(z, ),

where a(z,\) = —x + O(a?) satisfies G(a(z,\),\) = G(z,\) for (x,\) near (0,0). Then

oz, \) = ap(z) + Ay (x) + Nag(z) + -,

and
O(z,\) = Bg () + A0y (x) + N2 Do (2) +-- -,
where
CG(n). (e = G1(@) = Gilao(z))

Go(ao(7)) = Go(z), ai(x) go(ao(x)) :

as(w) = go(oi)(a:)) Ga(r) — Ga(ao(x)) — g1(ao () (x) — ;96(00(@)0[%(%) ;

®o(z) = Fo(ao(x)) — Fo(x), @1(z) = Fi(ao(r)) — Fi(z) + fo(ao(z))ou (2),
and

Po(z) = Fa(ao(z)) — Fa(z) + folao(z))az(z) + fi(ao(z))ar(z) + ;fé(ao(x))af(m)-
In particular, if ®o(x) =0, then
1
9o()

Now suppose the functions f; and g; in (1.5) depend on a vector parameter 6 € R™. Then the function
O = &(x, A\, 9) is a function of (x, A, d). In this case, the main results can be stated as follows.

Theorem 1.4. Let fork=1ork=2

0, (2) = {g0(2)[F1(a0(x)) — Fi(2)] = fo(2)[G1(ao(x)) = Gu(2)]} - (1.6)

D(x, N, 8) = Mg (z,8) Py (z,8) + O,
i)k(x75) :ZB;(é)mja @0(075) #O
j=1
Suppose there exists §g € R™ such that
B§j+1(50)20a j=0,1,...,m—1,
and . .
a( 17337“'732777,71)

det
¢ 8(517525"'56m)

(do) # 0.

Then

(i) If B3,,11(00) # 0, (1.5) has at least m limit cycles, each having an odd multiplicity, in an arbitrary
neighborhood of the origin for some (X,0) sufficiently closed to (0, dp).

(ii) If ®(z,A,6) = 0 as B3;,; = 0,7 = 0,1,...,m — 1, then there exist a constant € > 0 and a
neighborhood U of the origin such that for all |\ < e, |6 — do| < &, (1.5) has at most m — 1 limit cycles
in U. Moreover, m — 1 limit cycles can appear in an arbitrary neighborhood of the origin for some (X, 9)
near (0, do).
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We remark that if § € R™*! and

Bjj1(00) =0, j=0,1,...,m,

8(B>1kaB§aaB>2km+1)(6O) 7& 0

det
9(01,02, -+, 0ma1)

for some dp, then by the first conclusion of the above theorem it is obvious that (1.5) has at least m limit
cycles in an arbitrary neighborhood of the origin for some (), d) sufficiently closed to (0, dp).
To show that the above theorem is a nice development of Theorem 1.1, we apply it to the polynomial
system
r=y, y= _gk(m) - ng(x) - Efn(x)ya (17)

where ¢ is small and g is a polynomial of degree k satisfying g5 (0) = 0 and g;,(0) > 0. We can obtain
the following theorem.

Theorem 1.5.  Let I/i\',(lk%l denote the mazimal number of limit cycles near the origin of (1.7) for all
possible fn and gm,. Then for m,n > 1

~ +m-—1 ~ m— 2 2n+1 n—2 2m+1
HWY > " H®2 >m + + .
n,m |: 2 ) n,m ax 3 3 9 3 3

Corollary 1.6.  For (1.4) we have H,, ,, > max{["; 2]+ [*1], ["5 2] + [P}, wherem > 2, n > 1.

To our knowledge, the result in the above corollary is the best lower bound for the maximal number
of limit cycles in Hopf bifurcations for arbitrary m and n.
It is not hard to prove that

hmmzmax{[m;ﬂ . {271;—1}, {n;Z] . {Zm;- 1]} N {n—f—gl—l]. s

See Proposition 3.2. Table 1 gives the values of the number pair (fm,y,, [ ']) for 1 < n < 9 and
1 < m < 13 to show the difference of the two numbers.

In Section 2, we give a proof of Lemma 1.3 and Theorem 1.4. In Section 3, we present an application
of Theorem 1.4, proving Theorem 1.5.

Table 1 Some values of the pair (hm,n, ["'HQ”_I])

m\n 1 2 3 4 5 6 7 8 9
1 0,00 (1,1) (1,1) (2,2) (22) (3,3  (4,3) (4,4 (5,4)
2 (L) (LD (2,2 (3,20 (3,3) (43 (5,4  (5,4) (6,5)
3 (1L,1) (22 (2,20 (33) (3,3 (44 (54 (5,5 (6,5)
4 (2,2 32 (3,3 (33 (44 (44 (55  (55) (6,6)
5 (2,2 (3,3) (3,3 (4,4 (44  (55) (6,5  (6,6) (7,6)
6 (3,3 (4,3) (44 44 (5,5 (55  (6,6)  (6,6) (7,7)
7 (43) (5,4 (54 (55 (6,5 (6,6) (6,6) (7,7) (7,7)
8 (4,4 (5,4 (5,5 (55 (6,6) (6,6) (7,7) (7,7) (8,8)
9  (5,4) (6,5 (6,5 (6,6) (7.6) (7,70 (7,7)  (88) (8,8)
10 (6,5 (7,50 (7,6) (7,6) (8,7 (87 (88  (9,8) (9,9)
1 (6,5 (7,6) (7,6) (7,7) (8,7 (88  (88) (9,9 (9,9)
12 (7,6) (86) (8,7 (87 (9,8 (9,8 (9,90 (10,9)  (10,10)
13 (8,6) (9,7) (9,7) (9,8 (10,8) (10,9) (10,9) (11,10) (11,10)
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2 Proofs of Lemma 1.3 and Theorem 1.4
Consider an equivalent form of (1.5) as follows:
T=y— F({E, )‘)7 Y= _90(1') — Ag1 ({E) - )\292(5E) = —g(x, )‘) (21)

Lemma 2.1.  There exists a unique function y = a(x, \) with «(0,0) =0 and ‘gg (0,\) = —1 such that
G(a(x,\),\) = G(xz,\). Moreover,

oz, \) = ap(z) + Ay (x) + Nag(z) + -,

where
CGr). an(g) = G1(@) — Gi(ao(2)
Go(ao(z)) = Go(z), ai(z) go(a0(z)) :
aale) = L [6al) — Galan(o)) = n(ana)ene) - Jaifan()ad(o)|
Proof.  Let
Gy, \) — Gz, \)
H(l‘,y,A):{ y—ux ) y#ﬂ?v
g(xv )\)a y==x

Then H is of C*° and satisfies
2
H(z,y,A) =Y
§=0
Since G,(x) = ég;.(O)a:Q + O(|z]?), we have

Gs0) = Gyle) = (=) 350y + ) + O

Hence, the first part follows from the implicit function theorem.
Then twice differentiating both sides of the quality G(a(x, ), \) = G(z, ) in A yields

Go(a, Nax + Gr(a, N) = Ga(z, ),

and
wa(a, )\)(O[)\)2 + Gw(a, )\)Oé)\)\ + 2G>\m(a, )\)a)\ + G)\)\(Oé, )\) = G)\)\({E, )\).

Thus, taking A = 0 in the above two formulas gives the formula of a; and «. This finishes the proof.

Lemma 2.2. Let
®(z,\) = Fa(z,\),\) — F(2,) = ®o(x) + A®1(2) + \2Po(2) + - - - .
Then
Do(x) = Fo(ao(z)) — Fo(z), P1(x) = Fi(ao(x)) — Fi(z) + folao(x))ar(z), (2.2)
Do(x) = Faao(z)) — Fa(z) + folao(x))az(z) + fi(ao(z))ar (z) + ;fé(ao(x))a?(w)- (2.3)

In particular, if ®o(x) =0, then (1.6) holds.
Proof.  We have

F(a,\) = Fy(a) + AFi(a) + N2 Fa(a),
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Fio(a) = Foloo) + Afo0o)on + X2 folao)az + | folan)ad | +O(°),

and
Fl(Oé) =F (Oéo) + )\fl(ao)al + O()\2)

Then the formula of ®,, ®; and ®- follows immediately.
When ®y(z) = 0, we have

folao)ag = fo(z), golan)an = go(x),

which implies
fo(ao) _ fo(x)
go(ao) go(ff).

Hence, (1.6) follows from the formula of o; and ®;. The proof is completed.

Let (z(t),y(t)) be the solution to (2.1) with the initial value 2:(0) = 0, y(0) = r. Then there exists a
first return time 79 (79, A\) € C* such that x(m9) = 0. Define d(rg, \) = y(70) — 70. It is obvious that the
function d is C* for (19, A) near (0,0) and system (2.1) has a periodic orbit near the origin if and only
if the function has two zeros in ro (with one positive and the other negative) near ro = 0. The function
d is called a displacement function or a bifurcation function.

From [5] we have the following lemma.

Lemma 2.3.  Suppose formally

F(a(z,A),\) = F(z,)) = Y Bi(M)a', (2.4)
i>1
and
7“07 Z d
i>1
Then

dy = B1Nj (B1),

dsj = O(|B1, Bs, ..., Baj_1]),

d2j41 = B2j4 1N} (B1) + O(|B1, Bs, ..., Baj-1]),
with N; € C* and N;(0) >0 for j > 0. Moreover, we have

F(a(z, \), \) = Agii(Mut, (2.5)
=0

where u = (sgnx)\/G(z,\),

Ay = (2/g2(0,)))2 By,
Asir1 = (2/95(0,\)** 2 Boyyy + O(|By, Bs, ..., Bog—1]), k> L.

Using the above lemma it is easy to prove the following lemma.

Lemma 2.4.  Suppose formally

F(a(z,\),\) — F(z,\) = Moo (z) ZB (2.6)

iz1

where g € C, po(0) # 0. Then
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where . )

di = B1(Bo + O(\¥)),

(’:ZQj - O(|Bl7 B3a s aBQj—lD;

CZQjJrl = B2j+1(6j +O(\F)) + O(|Bl, B, ..., ng,1|),
with By, B1,... being all nonzero constants.

Now, we are in a position to prove Lemma 1.3 and Theorem 1.4. It is clear that Lemma 1.3 is direct
from Lemmas 2.1 and 2.2. Then let us prove Theorem 1.4. Suppose all conditions of Theorem 1.4 are
satisfied. Then

(I)(xa )‘7 6) = )‘k@O(xﬂ 5) Z Bl(>\ﬂ 5)‘%17
i>1
where
Consider the change of parameters
ijBijl(A,(S), j:1,2,...,m.

By our assumptions, we can solve from the above equations

6 = (A, b) = 6o+ O(|A, b)),

where b = (b1, b2, ...,b,). Then by Lemma 2.4 the succession function d has the form
d(ro, X, 6) = A" di(\, 8)rf = d(ro, A\, b),
i>1
where

daj—1 = bi(Bj—1 + O(IN*,b])) + O(|b1, ba, ..., bj_1]),

Cz?j:O(“)lvva"'vbjDa j=1,2,...,m.

Therefore, we can rewrite d as
d(ro. A, b) = A’f[ 7o’ 0P (ro, A, b) + g™ P (ro, A, D) (2.7)
j=1
where P, ..., P, are polynomials in 7y of degree at most 2m — 1, P,,,11 € C*, P;(0,0,0) = 8;_1 # 0
for j =1,2,...,m, and P,,41(0,0,0) = B3,,,1(d)Bm. For definiteness, we may suppose ¢q(0,do) > 0,
which yields 8; > 0 for all j > 1.
If B3, 1(d0) # 0, we can change by, b —1,...,b1 in turn such that

0 < |bj] < |bjp1| <1, bjbjp1 <0, byB35,,1(00) <0.
Then by the form (2.7), the function d has at least m positive zeros in r¢ near ro = 0 in this case.
If @(z,A\,6)=0as B3;,; =0, j=0,1,...,m— 1, then
Baj1(A,6) = B3, 1(8) + O) = O(B3;_1(9), j=1.2.0...m,
which implies
B3, 1(8)=0, j=12,..., m&b=0.

Thus, by Lemma 2.4, in this case we have d(rg, \,0) = 0. Hence, the function P, in (2.7) satisfies
Pi1(ro, A, 0) = 0. Tt follows that
m
d(ro, A, b) = N "3 b, Py(ro, A, b),

j=1
where Pj =P+ O(rg(mfj)w). Then using the above, we can prove that d has at most m — 1 positive

zeros in 19 near ro = 0 for all small |b|, and m — 1 positive zeros can appear for some b.
Then the conclusion of Theorem 1.4 follows.
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3 Proof of Theorem 1.5 and some propositions

In this section, we consider a system of Liénard type with the form
y: —gm(l‘,A) _fn($7)\)y, (31)

T =y,
where g,,, and f, are polynomials in = of degree m and n, respectively, and have the form
gm(x,A) = go(x) + Ag1(z),  fulz, ) = fo(z) + Afi(x). (3.2)
First, we take
go(z) = iaojx%“, 2my+1<m, ¢qi(z) = ialjxj,
=0 = (3.3)

ni n
fo@) =Y boa®*!, 2 +1<n, filw) = Y by,
j=0 =0

where agg > 0.
In this case, we have by (1.6)
1 -

where
&1 (z) = g5 (@) [Fi(—2) — Fi(2)] — f5(2)[G1(=x) — G ()],

@)= 0 S ot fiw = - S b,
Jj=0 j=0

90
b1,2;

F(—z) - F = bip2itl — /2. b= —
1( J?) 1(‘]:) jzz:ob]x ) n2 [TL/ ]a bj 2j+1,

and
ma
_ 2541
Gi(—z) — Gyi(z) = jz:;ajx I my = [m/2], a; = o1
Let 7 = 22, then it is easy to see that

ma na ni ma2
dy(z) = m{ZaojN Zgjrj - Z bo;r’ Z (_LjT'j:| =Sy (r),
j=0 j=0 j=0 j=1

where

M
Sy (r) = ZBkﬂrk, M = max{mj + na,n1 + ma},
k=0

Bit1 = Z aoibj — Z boia;.

i+j=k i+j=k
0<i<m1 0<i<ny
0<j<ny 1<j<mo

Let first m be even. In this case, we take m; = 0, ny = [, '] so that
< m—1 + ni_|n- 1 n m i
my +ng < < =M.
P 2 2 2 2
We further take ago = 1, bon, # 0, bo; = 0 for 0 < i < ny — 1, and set

b "'7(_Lm2)

i _ vt
6:(bO;bla"'abnzaan2*n1+1a ER +1'

on = bOnlv
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Then B
br, 0 <k < ny,
Biy1 =14 b — bon,dny—n, k = nsy (for n even),
bon, Gk—n, » ne+1< k<M.
Evidently,

Bii1 =0, k=0,1,..., M < §=0;
8(B17"'aBM+1)
o)

= (_b()nl )anz .
6=0

det

Now let m be odd. Then take ny =0, m; = [, '] so that

e o] <[ ] )=

Further take apo = 1, aom, # 0, boo # 0, ag; =0 for 0 < i < m; — 1, and set

n= ((Loml,boo), 0= (6_11,6_12, .. .,C_lmz,g(), .. .,an) S RMJrl.

Then noting my = ms, we have

bo, k=0,

Brys — {Jk - bOOC_Lk: 1<k <mg—1,
bi, + @om, bo — booar, k =ma,
bi + A0my bk—rmy » ma+1< k<M.

As above

Bip1 =0, k=0,1,..., M <8=0;
a(Blv"'aBMJrl)

det
¢ 96 o

£0.

Then by Theorem 1.4(i) under (3.3) for all 0 < |A] < |p| and some ¢ near 0, the system (3.1) can have

at least M limit cycles near the origin.

Note that M = [m+§_1] and that || can be taken very small. We have immediately Lemma 3.1.

Lemma 3.1.  For any neighborhood U of the origin there exist g > 0 and functions go, g1, fo and fi
of the form (3.3), where agy > 0, |ag;| < €o for 1 < j < ma, |bo;j| < €0 for 0 < j < nq, |aj] < g0 for
1 <7< mand|bij| <eg for 0 < j<n, such that for all 0 < || < €9, (3.1) has at least [m+2”*1] limit

cycles in U.

Next, we take go, g1, fo and f1 in (3.2) to have the form

go(x) g(m)zaoﬂé(@]ja gl(x)zzaljxja
j=0 J=1

fo(z) = g(=) Zboﬂé(x)]ja fi(z) = Z bjad,

j=0 j=0
where
ago >0, g(x)=2(1—2), Gx)=2%/2—2°/3, 3mi+2<m, 3n+2<n.
Obviously,
x m
Golw) = [ mla)da =3 "GP

(3.4)
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Fo(z) = r)dr = 7 [G(x)]
@) = [ o) INCE)
which satisfy
Go(ao(z)) = Go(z), Folao(x)) = Fo(z),

where ag(r) = —z + O(2?) is defined by G(ag(z)) = G(x).
By (1.6), we have

where

D (x) = gg(@)[Fi (o) — Fi(2)] — f5(2)[G1(a0) — G1 ()],
. _go(m)_mla,*j *m:fo(x):m i
gO(m) - g(l‘) _jgo OJG ) fO( ) g(l‘) FZObOJG .
By (2.5), we have

Fi(ag) — Fi(z) = ZajUQjH,

=0

G1 (0&0) — Gl(x) = Zﬁju2j+1,

j=z1

where u = (sgnz)\/G(z). By [5, Theorem 3 and Proof of Theorem 5] and Lemma 2.3 (or [5, Lemma 1]),
we know that ag, v, ..., an, and 51, B2, ..., Bms can be taken as free parameters, and

a; = O(Jag, a1,...,anl), j=nsg+1,

5j:O(|Bla627"'75m3|)7 J>m3+17

where mg = [*"41], ng = [*%!]. Therefore,

Py (z) = u [ZaojUQj Zaju2j - Z boju’ Zﬁjuzj] = uS(u),
Jj=0 j=0

j=0 jz1
where
2k
S(u) = ZBk-HU' ,
k>0
Bi1 = Z ag; oy — Z bo; B;
i+i—k =k
0<i<my 0<i<ny
0<; 1<)
Let M = max{mj + ng, n1 +ms}, where m; = [m3_2], ny = [”52] Then for m; > 0 or ny = 0 it is
easy to see, as before, that By, B1,..., By can be taken as free parameters, which implies the following
lemma.

Lemma 3.2.  Let m,n > 1 and max{m,n} > 2. Then for any neighborhood U of the origin there exist
g0 > 0 and functions go, g1, fo and f1 of the form (3.4) such that for all 0 < |A| < &q, (3.1) has at least
M limat cycles in U.

It is clear that Theorem 1.5 follows from Lemmas 3.1 and 3.2.

In the rest, we give two propositions mentioned in the first section.

Proposition 3.3.  For H}, and Hyp introduced in Section 1, each of the cases 7 < Hp and Hy > Hp
can occur in certain examples.
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Proof.  We need only to present an example. Let us consider a special system of degree 5 of the form
&=y — (a12 + ao2® + azz®), §= —x. (3.5)
For the system we have
Bi1 = —2a,, Bs=—2a3, Bs=—-2a3, Bsj;1 =0 for j>3.
From [5], the Poincaré map satisfies
P(r,a) —r = r[B1Pi(r,a) + Bsr*Ps(r,a) + Bsr* Ps(r,a)], (3.6)

where Pj(r,a) = N;_;(B1) + O(r) with

27
N* (0 :21—3/2/ cos¥ 0df, j=1,2,3.
0

j—

In fact, we can find
m 3 o7

N = T N0y = T
By Theorem 1.1 or using (3.6) one has for (3.5) Hj, = Hp =2 with a = (a1, a2,a3) € D = R3.

N§(0) =

Now we consider two subclasses of (3.5) as follows
=y — (agz® +azx®), §=-=x (3.7)

and
b=y — (mx —aix® +azx®), §= -z (3.8)

We claim that
(i) for (3.7) with @ = (az,a3) € D = R? we have H}, =2 > Hp =1;
(ii) for (3.8) with a = (ay1,a3) € D = R? we have H, =1 < Hp=2.
In fact, for (3.7), (3.6) becomes

P(ria) —r = rs [BsPy(r,a) + B5r2P3(7', a)l,

which has at most one positive zero in r, giving ﬁD = 1. By Theorem 1.1 above it is clear that H}, = 2.
For (3.8) it is direct by Theorem 1.1 that H;, = 1. Since (3.8) is a special form of (3.5), it implies that
Hp < 2. Now we use (3.6) to prove Hp > 2. First, set a; = 0. Then noting B3 = 2a3 and Bs = —2a3
for (3.8) we have from (3.6)

P(r,a)—r = rs [2a§P2(7', a) — 2a3r2P3(7', a)] = 2asr> [asPy(r,a) — 7’2P3(7', a)l,

which has a zero of the form

N Ota = e

for 0 <agz < 1.

In this case, the origin is an unstable focus of order 1 and there exists a stable limit cycle I'y (a3) near
the origin. Then fix ag and change a; satisfying 0 < a; < a3 so that a second zero,

- - alN*(O)
r=ry(a) = \/a%Ng‘(O) + O(ay)

is produced (the stability of the origin has changed from unstable into stable), while the first zero keeps
remain near r1(as). Thus we have that (3.8) has two limit cycles near the origin for 0 < a1 < a3 < 1,
implying Hp > 2. Then the conclusion is shown.
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Table 2 The values of ([m?’_2 + [277.;—17 n;2 + [2"?'1 , [n"'";_l])

(+2k+1,k+2,[*®5 ] 4 1)
(+2k+1,k+20+ 1, [P )

(i,5) ™21+ P 2 + P )
(0,0) (U +2k — Lk 420 — 1, [PFED71))
(1,0) (U + 2k, k + 20— 1,[3EFD))
(2,0) (U + 2k, k + 21, [P*TDT)
(0,1) (U +2k — 1,k +21,[3*FD))
(1,1) (U + 2k, k + 21, [PFTDTL))
(2,1) (+2kk+20+1,[P®D] 1)
(0,2) (1 + 2k, k + 21, [P*TDT)
)
)

Proposition 3.4.  For all m,n > 1, (1.8) holds.

Proof.  Let n=3k+i, m =31+ 7, where 0 < i,j < 2. Then we have Table 2 for the values of the triple
(e B e Y Kol o G A M K B

From Table 2, it is easy to see that to prove (1.8) we need only to prove the following two inequalities:

max{l+ 2k — Lk +20— 1} > [3(“2”_1],
and 30kt ]
max{l+2k,k+2l—1}>[ ( ; )}.
Note that . .
I4+2k—1> {3( +) - ]
9
as k > 1,

s [4600]

as k>1—1, and

I 2k—1> {S(k—kl)]

2

as k < [ — 2. Then the above two inequalities follow directly.
In particular, for m = n,n + 1 then (1.8) reduces to

B = [(n+m — 1)/,
and for m=n+2,n+3,n+4,n+5n+6,n+7, (1.8) reduces to
B = [(n+m—1)/2].
For m =n+8,n+9,n+ 10, we have
hmp = [(n+m—1)/2] + 1.

And for m = 3n + 1,3n + 2 we have

hm,n =

{n;ﬂ +on+1>2n=[(n+m—1)/2.
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